eBooks-1T.org

-.ﬁr TECHNOLOGY IN ACTION™

Practical

OpenCV

HANDS ON PROJECTS FOR COMPUTER
VISION ON THE WINDOWS, LINUX AND
RASPBERRY Pl PLATFORMS

Samarth Brahmbhatt

https://www.ebooks-it.org/

H BB
Samarth Brahmbhatt

APIESS

https://www.ebooks-it.org/

Pry eBooks- 1 T. org

Cofryiipiier e oo oy Dathat i rerimioneee

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation,
reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and
retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation
are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer
system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of
the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through
RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6079-0
ISBN-13 (electronic): 978-1-4302-6080-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image
we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can
accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

President and Publisher: Paul Manning

Lead Editor: Michelle Lowman

Developmental Editor: Tom Welsh

Technical Reviewer: Steven Hickson

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, James DeWolf, Jonathan Gennick, Jonathan Hassell,
Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss, Tom Welsh

Coordinating Editor: Jill Balzano

Copy Editor: Laura Lawrie

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Cover Image Designer: Rakshit Kothari

Distributed to the book trade worldwide by Springer Science+Business Media New Y ork, 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-
SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm. com, or visit www . springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or Visit www.apress . com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles.
For more information, reference our Special Bulk Sales—eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at www . apress. com. For detailed information
about how to locate your book’s source code, go to www . apress.com/source-code/.

https://www.ebooks-it.org/

And to hope, and the power of dreams.

https://www.ebooks-it.org/

Cor eBooks-1T.org

About the Author
About the Technical Reviewer

Acknowledgments

Part 1: Getting Comfortable

Chapter 1: Introduction to Computer Vision and OpenCV
Chapter 2: Setting up OpenCYV on Your Computer
Chapter 3: CV Bling—OpenCYV Inbuilt Demos

Chapter 4: Basic Operations on Images and GUI Windows

Part 2: Advanced Computer Vision Problems and Coding Them in OpenCV
Chapter 5: Image Filtering

Chapter 6: Shapes in Images

Chapter 7: Image Segmentation and Histograms

Chapter 8: Basic Machine Learning and Object Detection Based on Keypoints

Chapter 9: Affine and Perspective Transformations and Their Applications to Image Panoramas
Chapter 10: 3D Geometry and Stereo Vision

Chapter 11: Embedded Computer Vision: Running OpenCV Programs on the Raspberry Pi

Index

https://www.ebooks-it.org/

Cor eBooks-1T.org

About the Author
About the Technical Reviewer

Acknowledgments
Part 1: Getting Comfortable

Chapter 1: Introduction to Computer Vision and OpenCV
Why Was This Book Written?
OpenCV

History of OpenCV
Built-in Modules

Summary

Chapter 2: Setting up OpenCYV on Your Computer

Operating Systems
Ubuntu
Windows
Mac OSX

Summary

Chapter 3: CV Bling—OpenCYV Inbuilt Demos
Camshift

Stereo Matching

Homography Estimation in Video

Circle and Line Detection

Image Segmentation

Bounding Box and Circle

Image Inpainting

Summary

Chapter 4: Basic Operations on Images and GUI Windows
Displaying Images from Disk in a Window
The cv::Mat Structure

Creating a cv:Mat
Accessing elements of a cv:Mat

Expressions with cv:Mat
Converting Between Color-spaces
GUI Track-Bars and Callback Functions

Callback Functions

ROIs: Cropping a Rectangular Portion out of an Image

Region of Interest in an Image

https://www.ebooks-it.org/

A eBooks-1T.org

Exercise

Videos

Displaying the Feed from Your Webcam or USB Camera/File
Writing Videos to Disk

Summary

Part 2: Advanced Computer Vision Problems and Coding Them in OpenCV
Chapter 5: Image Filtering

Image Filters
Blurring Images
Resizing Images—Up and Down
Eroding and Dilating Images
Detecting Edges and Corners Efficiently in Images
Edges
Canny Edges

Corners

Object Detector App
Morphological Opening and Closing of Images to Remove Noise

Summary

Chapter 6: Shapes in Images

Contours
Point Polygon Test

Hough Transform
Detecting Lines with Hough Transform

Detecting Circles with Hough Transform

Generalized Hough Transform

RANdom Sample Consensus (RANSAC)
Bounding Boxes and Circles

Convex Hulls

Summary

Chapter 7: Image Segmentation and Histograms

Image Segmentation
Simple Segmentation by Thresholding
Floodfill
Watershed Segmentation
GrabCut Segmentation

Histograms
Equalizing Histograms
Histogram Backprojections
Meanshift and Camshift

Summary

Chapter 8: Basic Machine Learning and Object Detection Based on Keypoints

https://www.ebooks-it.org/

K eBooks-1T.org
General Terms
How Does the Keypoint-Based Method Work?

SIFT Keypoints and Descriptors
Keypoint Detection and Orientation Estimation
SIFT Keypoint Descriptors
Matching SIFT Descriptors

SURF Keypoints and Descriptors
SURF Keypoint Detection
SURF Descriptor

ORB (Oriented FAST and Rotated BRIEF)

Oriented FAST Keypoints
BRIEF Descriptors

Basic Machine Learning
SVMs

Object Categorization
Strategy

Organization

Summary

Chapter 9: Affine and Perspective Transformations and Their Applications to Image Panoramas

Affine Transforms
Applying Affine Transforms

Estimating Affine Transforms
Perspective Transforms
Panoramas

Summary

Chapter 10: 3D Geometry and Stereo Vision

Single Camera Calibration
OpenCV Implementation of Single Camera Calibration

Stereo Vision
Triangulation
Calibration
Rectification and Disparity by Matching

Summary

Chapter 11: Embedded Computer Vision: Running OpenCV Programs on the Raspberry Pi
Raspberry Pi
Setting Up Your New Raspberry Pi

Installing Raspbian on the Pi
Initial Settings
Installing OpenCV

Camera board
Camera Board vs. USB Camera

Frame-Rate Comparisons

https://www.ebooks-it.org/

v emeoksiTorg
Color-based Object Detector
ORB Keypoint-based Object Detector

Summary

Index

https://www.ebooks-it.org/

Originally from the quiet city of Gandhinagar in India, Samarth Brahmbhatt is at present a graduate student at the University
of Pennsylvania in Philadelphia, USA. He loves making and programming all kinds of robots, although he has a soft spot for
ones that can see well. Samarth hopes to do doctoral research on developing vision algorithms for robots by drawing
inspiration from how humans perceive their surroundings. When he is not learning new things about computer vision, Samartl
likes to read Tolkien and Le Carr¢, travel to new places, and cook delicious Indian food.

https://www.ebooks-it.org/

Ab eBooks-IT.org

Steven Hickson is an avid technical blogger and current graduate student at Georgia Institute of Technology. He graduated
magna cum laude with a degree in Computer Engineering from Clemson University before moving on to the Department of
Defense. After consulting and working at the DoD, Steven decided to pursue his PhD with a focus in computer vision, robotic
and embedded systems. His open-source libraries are used the world over and they have been featured in places such as Lint
User and Developer Magazine, raspberrypi . org, Hackaday, and Lifehacker. In his free time, Steven likes to rock climt
program random bits of code, and play Magic: The Gathering.

https://www.ebooks-it.org/

Acl ksl Torg

The author would like to acknowledge the excellent job done by Tom Welsh, Jill Balzano, and Michelle Lowman at Apress i
editing and managing the workflow of this book. He would also like to acknowledge the beautiful design work by Rakshit
Kothari for the cover and the excellent technical reviewing by Steven Hickson.

https://www.ebooks-it.org/

.[-'. n

=4

.[-'. n

=4

[

Getting Comfortable

https://www.ebooks-it.org/

CH eBooks-1T.org

Introduction to Computer Vision and OpenCV

A significant share of the information that we get from the world while we are awake is through sight. Our eyes do a wonder
job of swiveling about incessantly and changing focus as needed to see things. Our brain does an even more wonderful job of
processing the information stream from both eyes and creating a 3D map of the world around us and making us aware of our
position and orientation in this map. Wouldn't it be cool if robots (and computers in general) could see, and understand what
they see, as we do?

For robots, seeing in itself is less of a problem—cameras of all sorts are available and quite easy to use. However, to a
computer with a camera connected to it, the camera feed is technically just a time-varying set of numbers.

Enter computer vision.

Computer vision is all about making robots intelligent enough to take decisions based on what they see.

Why Was This Book Written?

In my opinion, robots today are like personal computers 35 years ago—a budding technology that has the potential to
revolutionize the way we live our daily lives. If someone takes you 35 years ahead in time, don't be surprised to see robots
roaming the streets and working inside buildings, helping and collaborating safely with humans on a lot of daily tasks. Don't t
surprised also if you see robots in industries and hospitals, performing the most complex and precision-demanding tasks witk
ease. And you guessed it right, to do all this they will need highly efficient, intelligent, and robust vision systems.

Computer vision is perhaps the hottest area of research in robotics today. There are a lot of smart people all around the
world trying to design algorithms and implement them to give robots the ability to interpret what they see intelligently and
correctly. If you too want to contribute to this field of research, this book is your first step.

In this book I aim to teach you the basic concepts, and some slightly more advanced ones, in some of the most important
areas of computer vision research through a series of projects of increasing complexity. Starting from something as simple as
making the computer recognize colors, I will lead you through a journey that will even teach you how to make a robot estimat
its speed and direction from how the objects in its camera feed are moving.

We shall implement all our projects with the help of a programming library (roughly, a set of prewritten functions that cas
execute relevant higher-level tasks) called OpenCV.

This book will familiarize you with the algorithm implementations that OpenCV provides via its built-in functions,
theoretical details of the algorithms, and the C++ programming philosophies that are generally employed while using OpenC?
Toward the end of the book, we will also discuss a couple of projects in which we employ OpenCV’s framework for
algorithms of our own design. A moderate level of comfort with C++ programming will be assumed.

OpenCV

OpenCV (Open-source Computer Vision, opencv.orq) is the Swiss Army knife of computer vision. It has a wide range of
modules that can help you with a lot of computer vision problems. But perhaps the most useful part of OpenCV is its
architecture and memory management. It provides you with a framework in which you can work with images and video in any
way you want, using OpenCV’s algorithms or your own, without worrying about allocating and deallocating memory for your
images.

History of OpenCV

It is interesting to delve a bit into why and how OpenCV was created. OpenCV was officially launched as a research project
within Intel Research to advance technologies in CPU-intensive applications. A lot of the main contributors to the project

https://www.ebooks-it.org/

inclu eBooks-1T.org listed
as:

e Advance vision research by providing not only open but also optimized code for basic vision infrastructure. (No
more reinventing the wheel!)

¢ Disseminate vision knowledge by providing a common infrastructure that developers could build on, so that code
would be more readily readable and transferable.

e Advance vision-based commercial applications by making portable, performance-optimized code available for
free—with a license that did not require the applications to be open or free themselves.

The first alpha version of OpenCV was released to the public at the IEEE Conference on Computer Vision and Pattern
Recognition in 2000. Currently, OpenCV is owned by a nonprofit foundation called OpenCV. org.

Built-in Modules

OpenCV’s built-in modules are powerful and versatile enough to solve most of your computer vision problems for which we
established solutions are available. You can crop images, enhance them by modifying brightness, sharpness and contrast, detx
shapes in them, segment images into intuitively obvious regions, detect moving objects in video, recognize known objects,
estimate a robot’s motion from its camera feed, and use stereo cameras to get a 3D view of the world—to name just a few
applications. If, however, you are a researcher and want to develop a computer vision algorithm of your own for which these
modules themselves are not entirely sufficient, OpenCV will still help you a lot by its architecture, memory-management
environment, and GPU support. You will find that your own algorithms working in tandem with OpenCV’s highly optimized
modules make a potent combination indeed.

One aspect of the OpenCV modules that needs to be emphasized is that they are highly optimized. They are intended for
real-time applications and designed to execute very fast across a variety of computing platforms from MacBooks to small
embedded fitPCs running stripped down flavors of Linux.

OpenCV provides you with a set of modules that can execute roughly the functionalities listed in Table 1-1.

Table 1-1. Built-in modules offered by OpenCV

Module Functionality

Core Core data structures, data types, and memory management

Imgproc Image filtering, geometric image transformations, structure, and shape analysis
Highgui GUI, reading and writing images and video

Video Motion analysis and object tracking in video

Calib3d Camera calibration and 3D reconstruction from multiple views

Features2d Feature extraction, description, and matching

Objdetect Object detection using cascade and histogram-of-gradient classifiers

ML Statistical models and classification algorithms for use in computer vision applications
Flann Fast Library for Approximate Nearest Neighbors—fast searches in high-dimensional (feature) spaces
GPU Parallelization of selected algorithms for fast execution on GPUs

Stitching Warping, blending, and bundle adjustment for image stitching

Nonfree Implementations of algorithms that are patented in some countries

In this book, I shall cover projects that make use of most of these modules.

Summary

I hope this introductory chapter has given you a rough idea of what this book is all about! The readership I have in mind
includes students interested in using their knowledge of C++ to program fast computer vision applications and in learning the
basic theory behind many of the most famous algorithms. If you already know the theory, and are interested in learning Open(

https://www.ebooks-it.org/

some exciting projects!

https://www.ebooks-it.org/

CH eBooks-1T.org

Setting up OpenCYV on Your Computer

Now that you know how important computer vision is for your robot and how OpenCV can help you implement a lot of it, thi
chapter will guide you through the process of installing OpenCV on your computer and setting up a development workstation.
This will also allow you to try out and play with all the projects described in the subsequent chapters of the book. The officic
OpenCV installation wiki is available at http://opencv.willowgarage.com/wiki/InstallGuide, and this
chapter will build mostly upon that.

Operating Systems

OpenCV is a platform independent library in that it will install on almost all operating systems and hardware configurations
that meet certain requirements. However, if you have the freedom to choose your operating system I would advise a Linux
flavor, preferably Ubuntu (the latest LTS version is 12.04). This is because it is free, works as well as (and sometimes bettet
than) Windows and Mac OS X, you can integrate a lot of other cool libraries with your OpenCV project, and if you plan to
work on an embedded system such as the Beagleboard or the Raspberry Pi, it will be your only option.

In this chapter I will provide setup instructions for Ubuntu, Windows, and Mac OSX but will mainly focus on Ubuntu. Th
projects themselves in the later chapters are platform-independent.

Ubuntu

Download the OpenCV tarball fromhttp://sourceforge.net/projects/opencvlibrary/ and extractitto a
preferred location (for subsequent steps I will refer to it as OPENCV_DIR). You can extract by using the Archive Manager ¢
by issuing the tar —xvf command if you are comfortable with it.

Simple Install

This means you will install the current stable OpenCV version, with the default compilation flags, and support for only the
standard libraries.

1. If youdon’t have the standard build tools, get them by
sudo apt-get install build-essential checkinstall cmake
2. Make a build directory in OPENCV_DIR and navigate to it by

mkdir build
cd build

3. Configure the OpenCV installation by
cmake
4. Compile the source code by
make
5. Finally, put the library files and header files in standard paths by

sudo make install

https://www.ebooks-it.org/

Cu: eBooks-1T.org

This means that you will install a number of supporting libraries and configure the OpenCV installation to take them into
consideration. The extra libraries that we will install are:

e FFmpeg, gstreamer, x264 and v4l to enable video viewing, recording, streaming, and so on

e Qt for a better GUI to view images

1. If you don’t have the standard build tools, get them by
sudo apt-get install build-essential checkinstall cmake
2. Install gstreamer

sudo apt-get install libgstreamer0.10-0 libgstreamer0.10-dev gstreamer(0.10-
tools

gstreamer0.10-plugins-base libgstreamer-plugins-base(0.10-dev gstreamer0.10-
plugins—-good

gstreamer0.10-plugins-ugly gstreamer0.10-plugins-bad gstreamer0.10-ffmpeg

3. Remove any installed versions of ffmpeg and x264
sudo apt-get remove ffmpeg x264 libx264-dev
4. Install dependencies for ffimpeg and x264

sudo apt-get update

sudo apt-get install git libfaac-dev libjack-jackd2-dev libmp3lame-dev
libopencore-amrnb-dev libopencore-amrwb-dev libsdll.2-dev libtheora-dev
libva-dev libvdpau-dev libvorbis-dev libxll-dev libxfixes-dev libxvidcore-
dev

texi2html yasm zliblg-dev libjpeg8 libjpeg8-dev

5. Get a recent stable snapshot of x264 from
ftp://ftp.videolan.org/pub/videolan/x264/snapshots/, extract it to a folder on your
computer and navigate into it. Then configure, build, and install by

./configure —--enable-static
make
sudo make install

6. Get a recent stable snapshot of ffmpeg fromhttp://ffmpeg.org/download.html, extractit to a folder
on your computer and navigate into it. Then configure, build, and install by

./configure --enable-gpl --enable-libfaac --enable-libmp3lame

—-—enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libtheora
-—-enable-libvorbis --enable-1ibx264 --enable-libxvid --enable-nonfree
-—-enable-postproc --enable-version3 --enable-xllgrab

make

sudo make install

7. Get a recent stable snapshot of v4l fromhttp://www.linuxtv.org/downloads/v4l-utils/, extract
it to a folder on your computer and navigate into it. Then build and install by

make
sudo make install

8. Install cmake-curses—-gui, a semi-graphical interface to CMake that will allow you to see and edit

https://www.ebooks-it.org/

10.

11.

12.

13.

14.

eBooks-1T.org

sudo apt-get install cmake-curses-gui
Make a build directory in OPENCV_DIR by

mkdir build
cd build

Configure the OpenCV installation by

ccmake

Press ‘c’ to start configuring. CMake—-GUT should do its thing, discovering all the libraries you installed above,

and present you with a screen showing the installation flags (Figure 2-1).

Figure 2-1. Configuration flags when you start installing OpenCV

You can navigate among the flags by the up and down arrows, and change the value of a flag by pressing the

Return key. Change the following flags to the values shown in Table 2-1.

Table 2-1. Configuration flags for installing OpenCV with support for other common libraries

FLAG VALUE
BUILD_DOCS ON
BUILD_EXAMPLES ON
INSTALL C_EXAMPLES ON
WITH_GSTREAMER ON
WITH_JPEG ON
WITH_PNG ON
WITH_QT ON
WITH_FFMPEG ON
WITH_V4L ON

Press ‘c’ to configure and ‘g’ to generate, and then build and install by

make
sudo make install

Tell Ubuntu where to find the OpenCV shared libraries by editing the file opencv. conf (first time users might

not have that file—in that case, create it)

sudo gedit /etc/ld.so.conf.d/opencv.conf

https://www.ebooks-it.org/

15. eBooks- 1 T.org y
sudo ldconfig /etc/ld.so.conf
16. Similarly, edit /etc/bash.bashrc and add the following lines to the bottom of the file, save, and close:

PKG_CONFIG PATH=S$PKG CONFIG PATH:/usr/local/lib/pkgconfig
export PKG CONFIG PATH

Reboot your computer.

Customized Install (64-bit)

If you have the 64-bit version of Ubuntu, the process remains largely the same, except for the following changes.
1. During the step 5 to configure x264, use this command instead:
./configure --enable-shared —--enable-pic
2. During the step 6 to configure ffmpeg, use this command instead:

./configure --enable-gpl --enable-libfaac --enable-libmp3lame

—-—enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libtheora
-—-enable-libvorbis --enable-1ibx264 --enable-libxvid --enable-nonfree
—-—enable-postproc --enable-version3 --enable-xllgrab --enable-shared --

enable-pic

Checking the Installation

You can check the installation by putting the following code in a file called hello_opencv.cpp. It displays an image, and clos:

the window when you press “q”:

#include <iostream>

#include <opencv2/highgui/highgui.hpp>
using namespace std;

using namespace cv;

int main (int argc, char **argv)

{

Mat im = imread("image.jpg", CV_LOAD IMAGE COLOR) ;
namedWindow ("Hello") ;

imshow ("Hello", im);

cout << "Press 'gq' to quit..." << endl;
while (1)
{
if (char (waitKey (1)) == 'q') break;
}
destroyAllWindows () ;

return 0;

1. Open up that directory in a Terminal and give the following command to compile the code:

g+t+ 'pkg-config opencv --cflags' hello opencv.cpp -o hello opencv 'pkg-
config opencv --1libs'

https://www.ebooks-it.org/

2. eBooks-1T.org

./hello opencv

Note that you need to have an image called “image.jpg” in the same directory for this program to run.

Installing Without Superuser Privileges

Many times you do not have superuser access privileges to the computer you are working on. You can still install and use
OpenCV, if you tell Ubuntu where to look for the library and header files. In fact, this method of using OpenCV is
recommended over the previous method, as it does not “pollute” the system directories with conflicting versions of OpenCV
files according to the official OpenCV installation Wiki page. Note that installing extra libraries such as Qt, Ffmpeg, and so «
will still require superuser privileges. But OpenCV will still work without these add-ons. The steps involved are:

1. Download the OpenCV tarball and extract it to a directory where you have read/write rights. We shall call this
directory OPENCV_DIR. Make the following directories in OPENCV_ DIR

mkdir build
cd build
mkdir install-files

2. Configure your install as mentioned previously. Change the values of flags depending on which extra libraries you
have installed in the system. Also, set the value of CMAKE INSTALL PREFIX to
OPENCV_DIR/build/install-files.

3. Continue the same making process as the normal install, up to step 12. Then, runmake install instead of
sudo make install. This will put all the necessary OpenCV files in OPENCV_DIR/build/install-
files.

4. Now, edit the file ~/ .bashrc (your local bashrc file over which you should have read/write access) and add
the following lines to the end of the file, then save and close

export INCLUDE PATH=<path-to-OPENCV DIR>/build/install-
files/include:$INCLUDE PATH

export LD LIBRARY PATH=<path-to-OPENCV DIR>/build/install-
files/lib:$1LD LIBRARY PATH

export PKG CONFIG PATH=<path-to-OPENCV DIR>/build/install-
files/lib/pkgconfig:$PKG CONFIG PATH

where <path-to-OPENCV_ DIR> can for example be /home/user/libraries/opencv/.

1. Reboot your computer.

2. You can now compile and use OpenCV code as mentioned previously, like a normal install.

Using an Integrated Development Environment

If you prefer to work in an IDE rather than a terminal, you will have to configure the IDE project to find your OpenCV library
files and header files. For the widely used Code::Blocks IDE, very good instructions are available at

http://opencv.willowgarage.com/wiki/CodeBlocks, and the steps should be pretty much the same for any
other IDE.

Windows

Installation instructions for Windows users are available at
http://opencv.willowgarage.com/wiki/InstallGuide and they work quite well. Instructions for integratic

https://www.ebooks-it.org/

with eBooks-1T.org

Mac OSX

Mac OSX users can install OpenCV on their computers by following instructions at
http://opencv.willowgarage.com/wiki/Mac OS X OpenCV_ Port.

Summary

So you see how much more fun installing software in Linux than it is in Windows and Mac OS X! Jokes apart, going through
this whole process will give valuable insight to beginners about the internal workings of Linux and the use of Terminal. If,
even after following the instructions to the dot, you have problems installing OpenCV, Google your error. Chances are very
high that someone else has had that problem, too, and they have asked a forum about it. There are also a number of websites
and detailed videos on YouTube explaining the installation process for Linux, Windows, and Mac OS X.

https://www.ebooks-it.org/

CH eBooks-1T.org

CV Bling—OpenCV Inbuilt Demos

Now that you (hopefully) have OpenCV installed on your computer, it is time to check out some cool demos of what OpenCV
can do for you. Running these demos will also serve to confirm a proper install of OpenCV.

OpenCV ships with a bunch of demos. These are in the form of C, C++, and Python code files in the samples folder
inside OPENCV_ DIR (the directory in which you extracted the OpenCV archive while installing; see Chapter 2 for specifics
If you specified the flag BUILD EXAMPLES to be ON while configuring your installation, the compiled executable files
should be present ready for use in OPENCV_DIR/build/bin. If you did not do that, you can run your configuration and
installation as described in Chapter 2 again with the flag turned on.

Let us take a look at some of the demos OpenCV has to offer. Note that you can run these demos by

./<demo _name> [options]

where options is a set of command line arguments that the program expects, which is usually the file name. The demos
shown below have been run on images that ship with OpenCV, which can be found in OPENCV DIR/samples/cpp.
Note that all the commands mentioned below are executed after navigating to OPENCV_DIR/build/bin.

Camshift

Camshift is a simple object tracking algorithm. It uses the intensity and color histogram of a specified object to find an instan
of the object in another image. The OpenCV demo first requires you to draw a box around the desired object in the camera
feed. It makes the required histogram from the contents of this box and then proceeds to use the camshift algorithm to track the
object in the camera feed. Run the demo by navigating to OPENCV_DIR/build/bin and doing

./cpp-example-camshiftdemo

However, camshift a/lways tries to find an instance of the object. If the object is not present, it shows the nearest match as
detection (see Figure 3-4).

Figure 3-1. Camshift object tracking—specifying the object to be tracked

https://www.ebooks-it.org/

eBooks-1T.org

"5 fte+EPD LS PNAT "= T+ EDFEFHAS

e BIL b - B G5 B 305 v 30T) - R S Bl

Figure 3-2. Camshift object tracking

e HIL yebal - RE GERE nsBNL v 30T) - R G108 108

Figure 3-3. Camshift object tracking

e BIL b - B G5 B nn S5, vu 36T} - RT2D (L1

Figure 3-4. Camshift giving a false positive

Stereo Matching

The stereo matching demo showcases the stereo block matching and disparity calculation abilities of OpenCV. It take:
two images (taken with a left and right stereo camera) as input and produces an image in which the disparity is grey color-
coded. I will devote an entire chapter to stereo vision later on in the book, Meanwhile, a short explanation of disparity: wher
you see an object using two cameras (left and right), it will appear to be at slightly different horizontal positions in the two
images, The difference of the position of the object in the right frame with respect to the left frame is called disparity. Dispar
can give an idea about the depth of the object, that is, its distance from the cameras, because disparity is inversely proportior
to distance. In the output image, pixels with higher disparity are lighter. (Recall that higher disparity means lesser distance
from the camera.) You can run the demo on the famous Tsukuba images by

https://www.ebooks-it.org/

./cj eBooks-1T.org

OPENCV_ DIR/samples/Cpp/tsSukKuba_ r.png

where OPENCV_DIR is the path to OPENCV_DIR

gk Fon WL LA B L fapeas 2. 4, 3B LA BLeS . frop. ennple -50nren_sabch - 1Lbéar L fopendw- 1. 4. %) sasples, cppi iukeba_{ pog -1 b
o Efeanplen) ope fnvekue_ v pog
24T 1ma

TEEYT T P NI TE

=% t 4 EBDEEHAS ey
faad e

Figure 3-5. OpenCV stereo matching

Homography Estimation in Video

The video homography demo uses the FAST corner detector to detect interest points in the image and matches BRIEF
descriptors evaluated at the keypoints. It does so for a “reference” frame and any other frame to estimate the homography
transform between the two images. A homography is simply a matrix that transforms points from one plane to another. In this
demo, you can choose your reference frame from the camera feed. The demo draws lines in the direction of the homography
transform between the reference frame and the current frame. You can run it by

./cpp-example-video homography O

where 0 is the device ID of the camera. 0 usually means the laptop’s integrated webcam.

o

canangle cwldes_henogr aphy

srctne and brigf festrigtorn
HLeg) ARSgE 16 The Suery (REST) Lmage

TanE T8 RELER SGALRSL
frame mew svary frame

Figure 3-6. The reference frame for homography estimation, also showing FAST corners

https://www.ebooks-it.org/

eBooks-1T.org

waanale vides_Ronography

wcter and bitel Sescrigtors
misg) Anage Te The query (Tesi) image

Tane Lo match sgalrr
frane aas svary frans

Figure 3-7. Estimated homography shown by lines

Circle and Line Detection

The houghcircles and houghlines demos in OpenCV detect circles and lines respectively in a given image using the Hough
transform. I shall have more to say on Hough transforms in Chapter 6. For now, just know that the Hough transformis a very
useful tool that allows you to detect regular shapes in images. You can run the demos by

./cpp-example-houghcircles OPENCV DIR/samples/cpp/board.jpg

-
rte- S M L0 B - 4 W AR oS maaa T bar IR

Figure 3-8. Circle detection using Hough transform

and

./cpp-example-houghlines OPENCV_ DIR/samples/cpp/picl.png

e !
JoashiTidens [caners sumber]

ot kg
ESE -l the progren
& - vtop Ghe trackleg
b« swibch tafTren bachpralection vim
- whomfhide oblect histegran

B
B nirialite Trackisg, select
T6E0E_QUESTRIMS: Tawsltd ar - — -
I e alid argees = 5 F b BB O P H 4 = T 4+ E@BEEEH

105 00_QuisvmEs: Tmealld argens

AL dose
aar Cr-nsar the Erah rios - WS

THLE proghan derendlraled The wa

o track plansr sbpects by conps

cage| . [cpp-aninple-wideo_boneg
he following keys de wbuffc

L: gt 4 referesce frase

L 3 makey the reference

q o ::.uw it

200 quimTEa) |r

1 A g 28], v - Fua it s3] - Bl G

4 &
¥ » seference Trame to nptch sgaimet
£ S et o Sl TR g gy el
o or Estape
LE don
e Ur-ancer Uhe DAt Fs - MBEIDS - LA Rr Les apency 2. 8, 3iad LA/ WLeg . feap exangle Soughrircles = TUBarues fepente- 1. 4.3/ Henples/ copiveard. oo
it dens
arsar Unfrbset th- Tl Fos-R3E10: -1 Librar Les fopency- 2. 8. SBuiLd/bLes . feap exinple boughlioen ~f LiBFar Lis apeacys 2. 8. Sfussple cpp fplel . peg
it das

https://www.ebooks-it.org/

Figure eBooks- 1 T. or g

Image Segmentation

The meanshift segmentation demo implements the meanshift algorithm for image segmentation (distinguishing
different “parts” of the image). It also allows you to set various thresholds associated with the algorithm. Run it by

./cpp-example-meanshift segmentation OPENCV DIR/samples/cpp/tsukuba 1l.png

bl ot - Wb 008 REERY

e, A oy Vst g

i1

54800 B 1wy, e s 1| sy

Figure 3-10. Image segmentation using the meanshift algorithm

As you can see, various regions in the image are colored differently.

Bounding Box and Circle

The minarea demo finds the smallest rectangle and circle enclosing a set of points. In the demo, the points are selected fro
within the image area randomly.

./cpp-example-minarea

https://www.ebooks-it.org/

e eBooks-1T.org

DETALMI: Tmeslid argusent

tamar th- Doaglh ros-HEE18: - Librar Lot fapencv- 1. A Gl et e

[ihis progran densratrated the wse of Festwesdd with W B D -
- 2hi by conittig tul? bespripig 0 # 4+ B B B B H

5] uanplag foppiBeard, dpg

e LT A

r. rrrrr beging Fyisg device revarned sagise == 8, Tpper 3

Figure 3-11. Bounding box and circle

Image Inpainting

Image inpainting is replacing certain pixels in the image with surrounding pixels. It is mainly used to repair damages to imagx
such as accidental brush-strokes. The OpenCV inpaint demo allows you to vandalize an image by making white marks on
and then runs the inpainting algorithm to repair the damages.

./cpp-example-inpaint OPENCV DIR/samples/cpp/fruits.jpg

~FUABrarLesfopenty: 2. 4. HibatLd/bLed _fege . eaangie video_henogr azhy ¥
Fipanan

=%t 4 EDELHS

ples/cppiboard. jpg

nicee plc . pag

Bete dans

Figure 3-12. Image inpainting

Summary

The purpose of this chapter was to give you a glimpse of OpenCV’s varied abilities. There are lots of other demos; feel free
try them out to get an even better idea. A particularly famous OpenCV demo is face detection using Haar cascades. Proactive
readers could also go though the source code for these samples, which can be found in OPENCV_DIR/samples/cpp. Ma
of the future projects in this book will make use of code snippets and ideas from these samples.

https://www.ebooks-it.org/

CH eBooks-1T.org

Basic Operations on Images and GUI Windows

In this chapter you will finally start getting your hands dirty with OpenCV code that you write yourself. We will start out witl
some easy tasks. This chapter will teach you how to:

Display an image in a window

Convert your image to/from color to grayscale

Create GUI track-bars and write callback functions

Crop parts from an image

Access individual pixels of an image

Read, display and write videos

Let’s get started! From this chapter onward, [will assume that you know how to compile and run your code, that you are
comfortable with directory/path management, and that you will put all the files that the program requires (e.g., input images) i
the same directory as the executable file.

I also suggest that you use the OpenCV documentation at http://docs.opencv.org/ extensively. It is not possiblc
to discuss all OpenCV functions in all their forms and use-cases in this book. But the documentation page is where informatic
about all OpenCV functions as well as their usage syntaxes and argument types is organized in a very accessible manner. So
every time you see a new function introduced in this book, make it a habit to look it up in the docs. You will become familiar
with the various ways of using that function and probably come across a couple of related functions, too, which will add to
your repertoire.

Displaying Images from Disk in a Window

It is very simple to display disk images in OpenCV. The highgui module’s imread (), namedWindow () and
imshow () functions do all the work for you. Take a look at Listing 4-1, which shows an image in a window and exits wher
you press Esc or ‘q” or ‘Q’ (it is exactly the same code we used to check the OpenCV install in Chapter 2):

Listing 4-1. Displaying an image in a window

#include <iostream>
#include <opencv2/highgui/highgui.hpp>
using namespace std;
using namespace cv;

int main(int argc, char **argv)

{

Mat im = imread("image.jpg", CV_LOAD IMAGE COLOR) ;
namedWindow ("Hello") ;

imshow ("Hello", im);

cout << "Press 'g' to quit..." << endl;

while (char (waitKey (1)) != 'g") {}
return O;

https://www.ebooks-it.org/

} eBooks-1T.org

I’ll now break the code down into chunks and explain it.
Mat im = imread("image.jpg", CV_LOAD IMAGE COLOR) ;

This creates a variable im of type cv: :Mat (we write just Mat instead of cv: : Mat because we have used namespace
cv; above, this is standard practice). It also reads the image called image . jpg from the disk, and puts it into im through
function imread () . CV_LOAD IMAGE COLORIis a flag(a constant defined in the highgui . hpp header file) that tell
imread () to load the image as a color image. A color image has 3 channels — red, green and blue as opposed to a grayscalc
image, which has just one channel—intensity. You can use the flag CvV__ LOAD IMAGE GRAYSCALE to load the image as
grayscale. The type of im here is CV_8UC3, in which 8 indicates the number of bits each pixel in each channel occupies, U
indicates unsigned character (each pixel’s each channel is an 8-bit unsigned character) and C3 indicates 3 channels.

namedWindow ("Hello") ;
imshow ("Hello", im);

First creates a window called Hello (Hello is also displayed in the title bar of the window) and then shows the image
stored in im in the window. That’s it! The rest of the code is just to prevent OpenCV from exiting and destroying the window
before the user presses ‘q’ or ‘Q’.

A noteworthy function here is waitKey (). This waits for a key event infinitely (whenn <= 0) or for n milliseconds,
when it is positive. It returns the ASCII code of the pressed key or —1 if no key was pressed before the specified time elapse
Note that waitKey () works only if an OpenCV GUI window is open and in focus.

The cv::Mat Structure

The cv::Mat structure is the primary data structure used in OpenCV for storing data (image and otherwise). It is worthwhile t
take a slight detour and learn a bit about how awesome cv::Mat is.

The cv::Mat is organized as a header and the actual data. Because the layout of the data is similar to or compatible with
data structures used in other libraries and SDKs, this organization allows for very good interoperability. It is possible to mak
a cv::Mat header for user-allocated data and process it in place using OpenCV functions.

Tables 4-1, 4-2, and 4-3 describe some common operations with the cv::Mat structure. Don’t worry about remembering i
all right now; rather, read through them once to know about things you can do, and then use the tables as a reference.

Creating a cv::Mat

Table 4-1. Creating a cv::Mat

Syntax Description

double m(2][2] = {{1.0, 2.0}, {3.0, 4.0} }; Mat M(2, 2, Creates a 2 x 2 matrix from multidimensional array data

CV_32F, m);

Mat M(100, 100, CV_32FC2, Scalar(1, 3)); Creates a 100 x 100 2 channel matrix, 1st channel filled with 1 and 2nd channel filled with 3
M.create(300, 300, CV_8UC(15)); Creates a 300 x 300 15 channel matrix, previously allocated data will be deallocated

nt sizes[3] = {7, 8, 9}; Mat M(3, sizes, CV_8U, Creates a 3 dimensional array, where the size of each dimension is 7, 8 and 9 respectively.
Scalar::all(0)); The array is filled with 0

Mat M = Mat:eye(7, 7, CV_32F); Creates a 7 x 7 identity matrix, each element a 32 bit float

Creates a 7 x 7 matrix filled with 64 bit float zeros. Similarly Mat::ones() creates matrices

Mat M = Mat:zeros(7, 7, CV_64F); filled with ones

Accessing elements of a cv::Mat

Table 4-2. Accessing elements from a cv::Mat

Syntax Description

https://www.ebooks-it.org/

M.at<

eBooks-1T.org

M.row(1) Accesses the 1st row of M. Note that the number of rows starts from 0

M.col(3) Accesses the 3rd column of M. Again, number of columns starts from 0
M.rowRange(1, 4) Accesses the 1st to 4th rows of M

M.colRange(1, 4) Accesses the 1st to 4th columns of M

M.rowRange(2, 5).colRange(1, 3) Accesses the 2nd to Sth rows and 1st to 3rd columns of M

M.diag() Accesses the diagonal elements of a square matrix. Can also be used to create a square

matrix from a set of diagonal values

Expressions with cv::Mat

Table 4-3. Expressions with a cv::Mat

Syntax Description

Mat M2 = Ml.clone(); Makes M2 a copy of M1

Mat M2; M1.copyTo(M2); Makes M2 a copy of M1

Mat M1 = Mat:zeros(9, 3, CV_32FC3); Mat M2 = Makes M2 a matrix with same number of channels as M1 (indicated by the 0) and with 3 rows
M1.reshape(0, 3); (and hence 9 columns)

Mat M2 = M1.t(); Makes M2 a transpose of M1

Mat M2 = Ml1.inv(); Makes M2 the inverse of M1

Mat M3 =M1 * M2; Makes M3 the matrix product of M1 and M2

Mat M2 =M1 +s5; Adds a scalar s to matrix M1 and stores the result in M2

Many more operations with cv::Mats can be found on the OpenCV documentation page at
http://docs.opencv.org/modules/core/doc/basic structures.html#mat.

Converting Between Color-spaces

A color-space is a way of describing colors in an image. The simplest color space is the RGB color space, which just
represents the color of every pixel as a Red, a Green, and a Blue value, as red, green, and blue are primary colors and you c:
create all other colors by combining the three in various proportions. Usually, each “channel” is an 8-bit unsigned integer (w
values ranging from 0 to 255); hence, you will find that most color images in OpenCV have the type CV_8UC3. Some commc
RGB triplets are described in Table 4-4.

Table 4-4. Common RGB triplets

Triplet Color
(255,0,0) Red
(0, 255, 0) Green
(0,0,255) Blue
(0,0,0) Black
(255, 255, 255) White

Another color space is grayscale, which is technically not a color space at all, because it discards the color information.
All it stores is the intensity at every pixel, often as an 8-bit unsigned integer. There are a lot of other color spaces, and notabl
among them are YUV, CMYK, and LAB. (You can read about them on Wikipedia.)

As you saw previously, you can load images in either the RGB or grayscale color space by using the
CV_LOAD IMAGE COLOR and CV_LOAD IMAGE GRAYSCALE flags, respectively, with imread(). However, if you
already have an image loaded up, OpenCV has functions to convert its color space. You might want to convert between color
spaces for various reasons. One common reason is that the U and V channels in the YUV color space encode all color
information and yet are invariant to illumination or brightness. So if you want to do some processing on your images that neec

https://www.ebooks-it.org/

to be eBooks-1T.org isively

StOI‘eb UIC HIICIISILY 1HHOLaUULL). INOLWC Uldl HULIC U1 UIC I\, UJ U1 D CHALUICLS dl© 1Tullliliauoll 1ivdal1dalit.
The function cvtColor() does color space conversion. For example, to convert an RGB image in imgl to a grayscale imag
you would do:

cvtColor (imgl, img2, CV_RGB2GRAY) ;

where CV_RGB2GRAY is a predefined code that tells OpenCV which conversion to perform. This function can convert to a
from a lot of color spaces, and you can read up more about it at its OpenCV documentation page
(http://docs.opencv.org/modules/imgproc/doc/miscellaneous transformations.html?
highlight=cvtcolor#cv.CvtColor).

GUI Track-Bars and Callback Functions

This section will introduce you to a very helpful feature of the OpenCV highgui module—track-bars or sliders, and the
callback functions necessary to operate them. We will use the slider to convert an image from RGB color to grayscale and vi
versa, so hopefully that will also reinforce your concepts of color-space conversions.

Callback Functions

Callback functions are functions that are called automatically when an event occurs. They can be associated with a variety of
GUI events in OpenCV, like clicking the left or right mouse button, shifting the slider, and so on. For our color-space
conversion application, we will associate a callback function with the shifting of a slider. This function gets called
automatically whenever the user shifts the slider. In a nutshell, the function examines the value of the slider and display the
image after converting its color-space accordingly. Although this might sound complicated, OpenCV makes it really simple.
Let us look at the code in Listing 4-2.

Listing 4-2. Color-space conversion

// Function to change between color and grayscale representations of an image usin
a GUI trackbar
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <iostream>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace std;
using namespace Cv;

// Global variables

const int slider max = 1;
int slider;

Mat img;

// Callback function for trackbar event

void on_ trackbar (int pos, void *)

{
Mat img converted;
if (pos > 0) cvtColor (img, img converted, CV_RGB2GRAY) ;
else img converted = img;

imshow ("Trackbar app", img converted);

https://www.ebooks-it.org/

int eBooks-1T.org
img = imread("image.jpg");

namedWindow ("Trackbar app");
imshow ("Trackbar app", img);

slider = 0;

createTrackbar ("RGB <-> Grayscale", "Trackbar app", &slider, slider max,
on_trackbar) ;
while (char (waitKey (1)) != 'g') {}

return O;

As usual, I’'ll break up the code into chunks and explain.
The lines

const int slider max = 1;
int slider;
Mat img;

declare global variables for holding the original image, slider position and maximum possible slider position. Since we wan
just two options for our slider—color and grayscale (0 and 1), and the minimum possible slider position is always 0, we set
the maximum slider position to 1. The global variables are necessary so that both functions can access them.

The lines
img = imread("image.jpg")

namedWindow ("Trackbar app"):;
imshow ("Trackbar app", img);

in the main function simply read a color image called image . jpg, create a window called “Trackbar app” (a window is
necessary to create a track-bar) and show the image in the window.

createTrackbar ("RGB <-> Grayscale", "Trackbar app", &slider, slider max,
on_trackbar) ;

creates a track-bar with the name ‘RGB <-> Grayscale’ in the window called “Trackbar app” that we created earlier (you
should look up this function in the OpenCV docs). We also pass a pointer to the variable that holds the starting value of the
track-bar by using & s11ider, the maximum possible value of the track-bar and the associate the callback function called
on_trackbar to track-bar events.

Now let us look at the callback function on _trackbar () , which (for a track-bar callback) must always be of the type
void foo (int. void *) . The variable pos here holds the value of the track-bar and every time the user slides the
track-bar, this function will be called with an updated value for pos. The lines

if (pos > 0) cvtColor (img, img converted, CV_RGB2GRAY) ;
else img converted = img;

imshow ("Trackbar app", img converted);

simply check the value of pos and display the proper image in the previously created window.
Compile and run your color-space converter application and if everything goes well, you should see it in action as showr
in Figure 4-1.

https://www.ebooks-it.org/

S T VEBEPLPPLPHY

LrwX Cor hanen weing =
- | fob{j"t-ﬂ:,_l‘lf.l

RGB <-> Gr (0/1) (I

(x=168, yv=4) ~ R:209 G:204 B:198

Trackbar app

e« + @B PLPPLPHY

2w X Cor e weing s
Lwt\?.a.nd cooct = 1Y

RGB <> Gr (1/1) (A)
(x=7,y=217) ~ L:254

Figure 4-1. The color-space conversion app in action

ROIs: Cropping a Rectangular Portion out of an Image

In this section you will learn about ROIs—Regions of Interest. You will then use this knowledge to make an app that allows
you to select a rectangular part in an image crop it out.

Region of Interest in an Image

A region of interest is exactly what it sounds like. It is a region of the image in which we are particularly interested and woul
like to concentrate our processing on. It is used mainly in cases in which the image is too large and all parts of it are not

https://www.ebooks-it.org/

relev eBooks-1T.org bitive

Usuau_y d NUL IS SPCUILICU dd d 1CLLdlgIC. 111 UPCIICU VvV d 100Ldlguldl NUL IS SPCULIIICU USIE d TEC L SUULLUWIT (agdlll, lUUk fOI‘
rect in the OpenCV docs). We need the top-left corner position, width and height to define a rect.
Let us take a look at the code for our application (Listing 4-3) and then analyze it a bit at a time.

Listing 4-3. Cropping a part out of an image

// Program to crop images using GUI mouse callbacks
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <iostream>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace std;
using namespace Cv;

// Global variables

// Flags updated according to left mouse button activity
bool ldown = false, lup = false;

// Original image

Mat img;

// Starting and ending points of the user's selection
Point cornerl, corner2;

// ROI

Rect box;

// Callback function for mouse events
static void mouse callback(int event, int x, int y, int, void *)
{
// When the left mouse button is pressed, record its position and save it 1iI
cornerl
if (event == EVENT_LBUTTONDOWN)
{
ldown = true;
cornerl.x = x;
cornerl.y Vs
cout << "Corner 1 recorded at " << cornerl << endl;

}

// When the left mouse button is released, record its position and save it
in corner?
if (event == EVENT LBUTTONUP)
{
// Also check if user selection is bigger than 20 pixels (jut for
fun!)
if (abs(x - cornerl.x) > 20 && abs(y - cornerl.y) > 20)
{

lup = true;

corner2.x = X;

corner2.y = y;

cout << "Corner 2 recorded at " << corner?2 << endl << endl;

else

https://www.ebooks-it.org/

eBooks-1T.org

1LUoOwll — Ldlogcy,

}

// Update the box showing the selected region as the user drags the mouse

if (ldown == true && lup == false)
{
Point pt;
pt.x = x;
pt.y = vy;
Mat local img = img.clone();

rectangle (local img, cornerl, pt, Scalar(0, 0, 255));
imshow ("Cropping app", local img);

}

// Define ROI and crop it out when both corners have been selected

if (ldown == true && lup == true)
{
box.width = abs (cornerl.x - corner2.x);
box.height = abs(cornerl.y - corner2.y);
box.x = min(cornerl.x, corner2.X);
(

box.y = min (cornerl.y, corner2.y);

// Make an image out of Jjust the selected ROI and display it in a new
window

Mat crop (img, box);

namedWindow ("Crop") ;

imshow ("Crop", crop);

ldown = false;
lup = false;

}

int main ()
{

img = imread("image.jpg");

namedWindow ("Cropping app")
imshow ("Cropping app", img):

// Set the mouse event callback function
setMouseCallback ("Cropping app", mouse callback);

// Exit by pressing 'qg'
while (char (waitKey (1)) != 'qg') {}

return 0;

The code might seem big at the moment but, as you may have realized, most of it is just logical handling of mouse events.
the line

setMouseCallback ("Cropping app", mouse callback);

of the main function, we set the mouse callback to be the function called mouse callback. The function

https://www.ebooks-it.org/

mou: eBooks-1T.org

e Records the (x,y) position of the mouse when the left button is pressed.
e Records the (x,y) position of the mouse when the left button is released.

e Defines a ROI in the image when both of these have been done and shows another image made of just the ROI in
another window (you could add in a feature that saves the ROl—use imwrite() for that).

e Draws the user selection and keeps updating it as the user drags the mouse with left button pressed.

Implementation is quite simple and self explanatory. I want to concentrate on three new programming features introduced
this program: the Point, the rect, and creating an image from another image by specifyinga rect ROL

The Point structure is used to store information about a point, in our case the corners of the user’s selection. The
structure has two data members, both int, called x and y. Other point structures such as Point3d, Point2d, and
Point3f also exist in OpenCV and you should check them out in the OpenCV docs.

The rect structure is used to store information about a rectangle, using its x, v, width, and height. x and y here a
the coordinates of the top left corner of the rectangle in the image.

Ifa rect called r holds information about a ROI in an image M1, you can extract the ROI in a new image M2 using
Mat M2 (M1, r);

The cropping app looks like Figure 4-2 in action.

5 amae Thifi aade ith- [nspiron-H0V0: ~/Dolument £ Mook icode/bin/chapterdt . /coded-T = = T - EH O Fj .C- H «
init done

Corner 1 recorded at [TE, 37]

Corner I recorded at [I33, I80]

Cormer 1 recorded at | 374]
Flease select a b
Corner 1 recorded !
Flease select a bigper
LT L= s
Cormar I

]

Lirindt Cor rue-Sen oling foe, y=19) = Re21S 6212 Bi208
e i iy —

En @

=220, w=14) - 210 G207 B2

Figure 4-2. The cropping app in action

Accessing Individual Pixels of an Image

Sometimes it becomes necessary to access values of individual pixels in an image or its ROIL. OpenCV has efficient ways of
doing this. To access the pixel at position (1, j) inacv::Mat image, youcanuse the cv: :Mat’s at () attribute as
follows:

For a grayscale image M in which every pixel is an 8-bit unsigned char, use M. at<uchar> (i, J).

For a 3-channel (RGB) image M in which every pixel is a vector of 3 8-bit unsigned chars, use M. at<Vec3b>[c],
where c is the channel number, from 0 to 2.

Exercise

Can you make a very simple color image segmentation app based on the concepts you have learned so far?

Segmentation means identifying different parts of an image. Parts here are defined in the sense of color. We want to ident
red areas in an image: given a color image, you should produce a black-and-white image output, the pixels of which are 255
(ON) at the red regions in the original image, and 0 (OFF) at the non-red regions.

https://www.ebooks-it.org/

Y eBooks-1T.org
corresponding pixel of the output image. Y ou can of course do 1t the simple way, by 1terating through all pixels 1n the 1mage.
But see if you can go through the OpenCV docs and find a function that does exactly the same task for you. Maybe you can ev
make a track bar to adjust this range dynamically!

Videos

Videos in OpenCV are handled through FFMPEG support. Make sure that you have installed OpenCV with FFMPEG suppor
before proceeding with the code in this section.

Displaying the Feed from Your Webcam or USB Camera/File

Let’s examine a very short piece of code (Listing 4-4) that will display the video feed from your computer’s default camera
device. For most laptop computers, that is the integrated webcam.

Listing 4-4. Displaying the video feed from default camera device

// Program to display a video from attached default camera device
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>

using namespace Cv;
using namespace std;

int main ()
{

// 0 is the ID of the built-in laptop camera, change if you want to use
other camera

VideoCapture cap(0);

//check if the file was opened properly

if (!cap.isOpened())

{
cout << "Capture could not be opened successfully" << endl;
return -1;

}

namedWindow ("Video") ;

// Play the video in a loop till it ends
while (char (waitKey (1)) != 'qg' && cap.isOpened())
{
Mat frame;
cap >> frame;
// Check if the video is over
if (frame.empty ())
{
cout << "Video over" << endl;
break;
}

imshow ("Video", frame);

https://www.ebooks-it.org/

eBooks-1T.org

The code itself is self-explanatory, and I would like to touch on just a couple of lines.
VideoCapture cap (0);
This creates a VideoCapture object that is linked to device number 0 (default device) on your computer. And

cap >> frame;

extracts a frame from the device to which the VideoCapture object cap is linked. There are some other ways to extract frame:
from camera devices, especially when you have multiple cameras and you want to synchronize them (extract frames from all
them at the same time). I shall introduce such methods in Chapter 10.

You can also give a file name to the VideoCapture constructor, and OpenCV will play the video in that file for you exactl
in the same manner (see Listing 4-5).

Listing 4-5. Program to display video froma file

// Program to display a video from a file

// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

// Video
from:http://ftp.nluug.nl/ftp/graphics/blender/apricot/trailer/sintel trailer-
480p.mp4

#include <opencv2/opencv.hpp>

using namespace Cv;
using namespace std;

int main ()

{
// Create a VideoCapture object to read from video file
VideoCapture cap ("video.mp4d");

//check if the file was opened properly

if (!cap.isOpened())

{
cout << "Capture could not be opened succesfully" << endl;
return -1;

}
namedWindow ("Video") ;

// Play the video in a loop till it ends
while (char (waitKey (1)) != 'qg' && cap.isOpened())
{
Mat frame;
cap >> frame;
// Check if the video is over
if (frame.empty())
{
cout << "Video over" << endl;
break;
}

imshow ("Video", frame);

https://www.ebooks-it.org/

eBooks-1T.org

return 0;

Writing Videos to Disk

A VideoWriter objectis used to write videos to disk. The constructor of this class requires the following as input:

e Output file name

e Codec of the output file. In the code that follows, we use the MPEG codec, which is very common. You can
specify the codec using the CV._ FOURCC macro. Four character codes of various codecs can be found at

www . fourcc.org/codecs.php. Note that to use a codec, you must have that codec installed on your
computer

e Frames per second

e Size of frames

You can get various properties of a video (like the frame size, frame rate, brightness, contrast, exposure, etc.) froma

VideoCapture object using the get () function. In Listing 4-6, which writes video to disk from the default camera devic

we use the get () function to get the frame size. You can also use it to get the frame rate if your camera supports it.

Listing 4-6. Code to write video to disk from the default camera device feed

// Program to write video from default camera device to file
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>

using namespace Cv;
using namespace std;

int main ()
{

// 0 is the ID of the built-in laptop camera, change if you want to use
other camera

VideoCapture cap(0);

//check if the file was opened properly
if(!cap.isOpened())

{

cout << "Capture could not be opened succesfully" << endl;
return -1;

}

// Get size of frames

Size S = Size((int) cap.get (CV_CAP PROP FRAME WIDTH), (int)
cap.get (CV_CAP PROP FRAME HEIGHT)) ;

// Make a video writer object and initialize it at 30 FPS
VideoWriter put ("output.mpg", CV_FOURCC('M','P',6'E','G'), 30, S);
if (!put.isOpened())

{

cout << "File could not be created for writing. Check permissions" <«

endl;
return -1;

https://www.ebooks-it.org/

eBooks-1T.org

lialileaw Lilaow (- v.Laco),

// Play the video in a loop till it ends
while (char (waitKey (1)) != 'qg' && cap.isOpened())
{
Mat frame;
cap >> frame;
// Check if the video is over
if (frame.empty ())
{
cout << "Video over" << endl;
break;
}
imshow ("Video", frame);
put << frame;

}

return O;

Summary

In this chapter, you got your hands dirty with lots of OpenCV code, and you saw how easy it is to program complex tasks sucl
as showing videos in OpenCV. This chapter does not have a lot of computer vision. It was designed instead to introduce you
the ins and outs of OpenCV. The next chapter will deal with image filtering and transformations and will make use of the
programming concepts you learned here.

https://www.ebooks-it.org/

Advanced Computer Vision Problems and Coding Them in OpenCV

https://www.ebooks-it.org/

CH eBooks-1T.org

Image Filtering

In this chapter, we will continue our discussion of basic operations on images. In particular, we will talk about some filter
theory and different kinds of filters that you can apply to images in order to extract various kinds of information or suppress
various kinds of noise.

There is a fine line between image processing and computer vision. Image processing mainly deals with getting different
representations of images by transforming them in various ways. Often, but not always, this is done for “viewing” purposes—
examples include changing the color space of the image, sharpening or blurring it, changing the contrast, affine transformatior
cropping, resizing, and so forth. Computer vision, by contrast, is concerned with extracting information from images so that o
can make decisions. Often, information has to be extracted from noisy images, so one also has to analyze the noise and think ¢
ways to suppress that noise while not affecting the relevant information content of the image too much.

Take, for example, a problem where you have to make a simple wheeled automatic robot that can move in one direction,
which tracks and intercepts a red colored ball.

The computer vision problem here is twofold: see if there is a red ball in the image acquired from the camera on the robc
and, if yes, know its position relative to the robot along the direction of movement of the robot. Note that both these are
decisive pieces of information, based on which the robot can take a decision whether to move or not and, if yes, which
direction to move in.

Filters are the most basic operations that you can execute on images to extract information. (They can be extremely
complex. too, but we will start out with simple ones.) To give you an overview of the content of this chapter, we will first st
out with some image filter theory and then look into some simple filters. Applying these filters can serve as a useful pre- or
postprocessing step in many computer vision pipelines. These operations include:

Blurring

Resizing images—up and down

Eroding and dilating

Detecting edges and corners

We will then discuss how to efficiently check for bounds on values of pixels in images. Using this newfound knowledge,
we will then make our first very simple objector detector app. This will be followed by a discussion on the image morpholo;
operations of opening and closing, which are useful tools in removing noise from images (we will demonstrate this by adding
the opening and closing steps to our object detector app to remove noise).

Image Filters

A filter is nothing more than a function that takes the local value(s) of a signal and gives an output that is proportional in son
way to the information that is contained in the signal. Usually, one “slides” the filter through the signal. To make these two
important statements clear, consider the following one-dimensional time-varying signal, which could be the temperature of a
city everyday (or something of that sort).

The information that we want to extract is temperature fluctuation; specifically, we want to see how drastically the
temperature changes on a day-to-day basis. So we make a filter function that just gives the absolute value of the difference in
today’s temperature with yesterday’s temperature. The equation that we follow is y[n] = [x[n] — x[n—1]|, where y[n] is the
output of the filter at day n and x[n] is the signal, that is, the city’s temperature at day n.

This filter (of length 2) is “slid” through the signal, and the output looks something like Figure 5-1.

https://www.ebooks-it.org/

eBooks-1T.org

|
1
3
|

S T [Al e I AT O

e

Figure 5-1. 4 simple signal (above) and output of a differential filter on that signal (below)

As you can observe, the filter enhanced the difference in the signal. Stated simply, if today’s temperature is a lot different
than yesterday, the filter’s output for today will be higher. If today’s temperature is almost the same as yesterday, the filter
output today will be almost zero. Hopefully this very simple example convinces you that filter design is basically figuring ou
function that will take in the values of the signal and enhance the chosen information content in it. There are some other
conditions and rules you have to take care of, but we can ignore them for our simplistic applications.

Let’s now move on to image filters, which are a bit different from the 1-D filter we discussed earlier, because the image
signal is 2-D and hence the filter also has to be 2-D (if we want to consider pixel neighbors on all four sides). An example
filter that detects vertical edges in the image will help you to understand better. The first step is to determine a filter matrix. /
filter matrix is a discretized version of a filter function, and makes applying filters possible on computers. Their lengths and
widths are usually odd numbers, so a center element can be unambiguously determined. For our case of detecting vertical
edges, the matrix is quite simple:

0 0 0
-1 2 -1
0 0 0

Or if we want to consider two neighboring pixels:

0 0 0 0 0
0 0 0 0 0
-1 -2 6 -2 -1
0 0 0 0 0
0 0 0 0 0

Now, let’s slide this filter through an image to see if it works! Before that, I must elaborate on what “applying” a filter
matrix (or kernel) to an image means. The kernel is placed over the image, usually starting from the top-left corner of the
image. The following steps are executed at every iteration:

¢ Element-wise multiplication is performed between elements of the kernel and pixels of the image covered by the
kernel

e A function is used to calculate a single number using the result of all these element-wise multiplications. This
function can be sum, average, minimum, maximum, or something very complicated. The value thus calculated is
known as the “response” of the image to the filter at that iteration

e The pixel falling below the central element of the kernel assumes the value of the response
e The kernel is shifted to the right and if necessary down

Filtering an image made of just horizontal and vertical edges with this filter matrix (also called a kernel) gives us the
filtered image shown in Figure 5-2.

https://www.ebooks-it.org/

— eBooks-1T.org

Figure 5-2. A simple image with horizontal and vertical edges (left) and output of filtering with kernel (right)

OpenCV has a function called £i11ter2D () that we can use for efficient kernel-based filtering. To see how it is used,
study the code used for the filtering discussed earlier, and also read up on its documentation. This function is quite powerful,
because it allows you to filter an image by any kernel you specify. Listing 5-1 shows this function being used.

Listing 5-1. Program to apply a simple filter matrix to an image to detect horizontal edges

// Program to apply a simple filter matrix to an image
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>

using namespace std;
using namespace Cv;

int main () {
Mat img = imread("image.jpg", CV_LOAD IMAGE GRAYSCALE), img filtered;

// Filter kernel for detecting vertical edges

float vertical fk[(5][5] = {{0,0,0,0,0}, {0,0,0,0,0}, {-1,-2,6,-2,-1},
{0,0,0,0,0}, {0,0,0,0,0}1};

// Filter kernel for detecting horizontal edges

float horizontal fk[5](5] = {{0,0,-1,0,0}, {0,0,-2,0,0}, {0,0,6,0,0}, {0,0,-
2,0,0}y, {0,0,-1,0,0}1};

Mat filter kernel = Mat (5, 5, CV_32FCl, horizontal fk);

// Apply filter
filter2D(img, img filtered, -1, filter kernel);

namedWindow ("Image") ;

namedWindow ("Filtered image");

imshow ("Image", img);

imshow ("Filtered image", img filtered);

// imwrite ("filtered image.jpg", img filtered);
while (char (waitKey (1)) != 'g') {}

return 0;

As you might have guessed, the kernel to detect vertical edges is:

https://www.ebooks-it.org/

0 eBooks-1T. org
0 U - U U
0 0 6 0 0
0 0 -2 0 0
0 0 -1 0 0

And it nicely detects vertical edges as shown in Figure 5-3.

Figure 5-3. Detecting vertical edges in an image

It is fun to try making different detector kernels and experimenting with various images!

If you give a multichannel color image as inputto filter2D (), it applies the same kernel matrix to all channels.
Sometimes you might want to detect edges only in a certain channel or use different kernels for different channels and select t
strongest edge (or average edge strength). In that case, you should split the image using the split () function and apply
kernels individually.

Don’t forget to check the OpenCV documentation on all the new functions you are learning!

Because edge detection is a very important operation in computer vision, a lot of research has been done to devise metho
and intelligent filter matrices that can detect edges at any arbitrary orientation. OpenCV offers implementations of some of
these algorithms, and I will have more to say on that later on in the chapter. Meanwhile, let us stick to our chapter plan and
discuss the first image preprocessing step, blurring.

Blurring Images

Blurring an image is the first step to reducing the size of images without changing their appearance too much. Blurring can be
thought of as a low-pass filtering operation, and is accomplished using a simple intuitive kernel matrix. An image can be
thought of as having various “frequency components” along both of its axes’ directions. Edges have high frequencies, wherea
slowly changing intensity values have low frequencies. More specifically, a vertical edge creates high frequency components
along the horizontal axis of the image and vice versa. Finely textured regions also have high frequencies (note that an area is
called finely textured if pixel intensity values in it change considerably in short pixel distances). Smaller images cannot hand
high frequencies nicely.

Think of it like this: suppose that you have a finely textured 640 x 480 image. You cannot maintain all of those short-
interval high-magnitude changes in pixel intensity values in a 320 x 240 image, because it has only a quarter of the number of
pixels. So whenever you want to reduce the size of an image, you should remove high-frequency components from it. In other
words, blur it. Smooth out those high-magnitude short-interval changes. If you do not blur before you resize, you are likely to
observe artifacts in the resized image. The reason for this is simple and depends on a fundamental theorem of signal theory,
which states that sampling a signal causes infinite duplication in the frequency domain of that signal. So if the signal has many

https://www.ebooks-it.org/

high- eBooks-1T.org r. Onc

that h‘appcub, UIC Siglidl Callllut UC 1CCUVUICU 1alullully. ITICIC, UlC Siglidl 15 oul 1Hagl dllu 1CS1Z111E 1S UULIC VY 1CHIV VILE IOWS a
columns, that is, down-sampling. This phenomenon is known as aliasing. If you want to know more about it, you should able
find a detailed explanation in any good digital signal processing resource. Because blurring removes high-frequency
components from the image, it helps in avoiding aliasing,

Blurring is also an important postprocessing step when you want to increase the size of an image. If you want to double tt
size of an image, you add a blank row (column) for every row (column) and then blur the resulting image so that the blank rov
(columns) assume appearance similar to their neighbors.

Blurring can be accomplished by replacing each pixel in the image with some sort of average of the pixels in a region
around it. To do this efficiently, the region is kept rectangular and symmetric around the pixel, and the image is convolved wi
a “normalized” kernel (normalized because we want the average, not the sum). A very simple kernel is a box kernel:

= e e e
R
o e e e
o e e e
[e I S S S

This kernel deems every pixel equally important. A better kernel would be one that decreases the effect of a pixel as its
distance from the central pixel increases. The Gaussian kernel does this, and is the most commonly used blurring kernel:

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

One “normalizes” the kernel by dividing by the sum of all elements, 25 for the box kernel and 256 for the Gaussian kernel
You can create different sizes of the Gaussian kernel by using the OpenCV function getGaussianKernel (). Check the
documentation for this function to see the formula OpenCV uses to calculate the kernels. You can go ahead and plug these
kernels into Listing 5-1 to blur some images (don’t forget to divide the kernel by the sum of its elements). However, OpenCV
also gives you the higher level function GaussianBlur () which just takes the kernel size and variance of the Gaussian
function as input and does all the other work for us. We use this function in the code for Listing 5-2, which blurs an image wi
a Gaussian kernel of the size indicated by a slider. It should help you understand blurring practically. Figure 5-4 shows the
code in action.

Listing 5-2. Program to interactively blur an image using a Gaussian kernel of varying size

// Program to interactively blur an image using a Gaussian kernel of varying size
// Author: Samarth Manoj Brahmbhatt, University of Pennyslvania

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace std;
using namespace Cv;

Mat image, image blurred;
int slider = 5;
float sigma = 0.3 * ((slider - 1) * 0.5 - 1) + 0.8;

void on_trackbar (int, void *) {
int k size = max(1l, slider);
k size = k size % == 0 ? k size + 1 : k size;
setTrackbarPos ("Kernel Size", "Blurred image", k size);

https://www.ebooks-it.org/

4 4 4 ’ ’

imshow ("Blurred image", iaage_blurred); B B

}

int main () {
image = imread ("baboon.jpg");

namedWindow ("Original image");
namedWindow ("Blurred image");

imshow ("Original image", image);

sigma = 0.3 * ((slider - 1) * 0.5 - 1) + 0.8;

GaussianBlur (image, image blurred, Size(slider, slider), sigma);
imshow ("Blurred image", image blurred);

createTrackbar ("Kernel Size", "Blurred image", é&slider, 21, on trackbar);
while (char (waitKey (1) !'= 'g')) {}

return O;

Do S, b= V1B 51 0B

Figure 5-4. Blurring an image with a Gaussian kernel

Note the heuristic formula we use for calculating the variance based on size of the kernel and also the toolbar ‘locking’
mechanism that uses the set TrackbarPos () function to force the kernel size to be odd and greater than 0.

Resizing Images—Up and Down

Now that we know the importance of blurring our images while resizing them, we are ready to resize and verify if the theorie
that I have been expounding are correct.

You can do a naive geometric resize (simply throwing out rows and columns) by using the resize () function as showr
in Figure 5-5.

https://www.ebooks-it.org/

eBooks-1T.org

=

Figure 5-5. Aliasing artifacts—simple geometric resizing of an image down by a factor of 4

Observe the artifacts produced in the resized image due to aliasing. The pyrDown () function blurs the image by a
Gaussian kernel and resizes it down by a factor of 2. The image in Figure 5-6 is a four-times downsized version of the origin
image, obtained by using pyrDown () twice (observe the absence of aliasing artifacts).

Figure 5-6. Avoiding aliasing while resizing images by first blurring them with a Gaussian kernel
The function resize () also works if you want to up-size an image and employs a bunch of interpolation techniques tha

you can choose from. If you want to blur the image after up-sizing, use the pyrUp () function an appropriate number of times
(because it works by a factor of 2).

Eroding and Dilating Images

https://www.ebooks-it.org/

Eros: eBooks-1T.org ns wo
on ‘[hc 10I1I1 d1d SUucure o1 uic 1ndge.

Erosion is done by sliding a rectangular kernel of all ones (a box kernel) over an image. Response is defined as the
maximum of all element-wise multiplications between kernel elements and pixels falling under the kernel. Because all kernel
elements are ones, applying this kernel means replacing each pixel value with the minimum value in a rectangular region
surrounding the pixel. You can imagine that this will cause the black areas in the image to “encroach” into the white areas
(because pixel value for white is higher than that for black).

Dilating the image is the same, the only difference being that the response if defined as the maximum of element-wise
multiplications instead of minimum. This will cause the white regions to encroach into black regions.

The size of the kernel decides the amount of erosion or dilation. Listing 5-3 makes an app that switches between erosion
and dilation, and allows you to choose the size of the kernel (also known as structuring element in the context of morphologic
operations).

Listing 5-3. Program to examine erosion and dilation of images

// Program to examine erosion and dilation of images
// Author: Samarth Manoj Brahmbhatt, University of Pennyslvania

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace std;
using namespace cv;

Mat image, image processed;
int choice slider = 0, size slider = 5; // 0 - erode, 1 - dilate

void process () {
Mat st elem = getStructuringElement (MORPH RECT, Size(size slider, size slider))

if (choice slider == 0) {

erode (image, image processed, st elem);
}
else {

dilate (image, image processed, st elem);
}
imshow ("Processed image", image processed);

}

void on choice slider (int, wvoid *) {
process () ;

}

void on_size slider (int, void *) {
int size = max(l, size_ slider);
size = size % 2 == 0 ? size + 1 : size;
setTrackbarPos ("Kernel Size", "Processed image", size);
process () ;

}

int main () {
image = imread("j.png");

namedWindow ("Original image");

https://www.ebooks-it.org/

eBooks-1T.org

imshow ("Original image", image);

Mat st elem = getStructuringElement (MORPH RECT, Size(size slider, size slider))
erode (image, image processed, st elem);

imshow ("Processed image", image processed);

createTrackbar ("Erode/Dilate", "Processed image", &choice slider, 1,
on choice slider);

createTrackbar ("Kernel Size", "Processed image", &size slider, 21,
on size slider);

while (char (waitKey (1) !'= 'g')) {}

return O;

Figure 5-7 shows an image being eroded and dilated by different amounts specified by the user using sliders.

Y

Processed Image

*=m t @B B P PHLY
=% ¢+ $ @8 BE L L HY
[

Ercde/Dila (0/1) |

(x= 101, va135) = =255 G:255 B:255
Kernel Siz {11/21) S

(x=30, v=141) = R0 G:0 B:0

Processed image

| est @B PLPLH
“ s>t 4@ PPLPHY =

L _.1

—
Erode/Dila (1/1)
{x=101, v=135) ~ R=255 G:255 B:255
Kernel 5iz (07/21)

(x=7. y=2) ~ R:255 G255 B:255

Figure 5-7. Eroding and dilating images

Notable in this code apart from the functions erode () and dilate () is the function getStructuralElement ()
which returns the structural element (kernel matrix) of a specified shape and size. Predefined shapes include rectangle, ellips
and cross. You can even create custom shapes. All of these shapes are returned embedded in a rectangular matrix of zeros
(elements belonging to the shape are ones).

Detecting Edges and Corners Efficiently in Images

You saw earlier that vertical and horizontal edges can be detected quite easily using filters. If you build a proper kernel, you
can detect edges of any orientation, as long as it is one fixed orientation. However, in practice one has to detect edges of all
orientations in the same image. We will talk about some intelligent ways to do this. Corners can also be detected by employi
kernels of the proper kind.

Edges

Edges are points in the image where the gradient of the image is quite high. By gradient we mean change in the value if the
intensity of pixels. The gradient of the image is calculated by calculating gradient in X and Y directions and then combining

https://www.ebooks-it.org/

w

them eBooks-1T.org

aI'Ctaugcut U1 UIC 1aUV U1 gldUICLILS 111 I dlld A U1 CCUULS, ITSPCLUvLly.

X and Y direction gradients are calculated by convolving the image with the following kernels, respectively:

-3 0 3

-10 0 10

-3 0 3 (for X direction)
And

-3 -10 -3

0 0 0

3 10 3 (for Y direction)

Overall gradient, G = sqrt(Gx* + Gy?)

Angle of gradient, @ = arctan(Gy / Gx)

The two kernels shown above are known as Scharr operators and OpenCV offers a function called Scharr() that applies &
Scharr operator of a specified size and specified orientation (X or Y) to an image. So let us make our Scharr edges detector
program as shown in Listing 5-4.

Listing 5-4. Program to detect edges in an image using the Scharr operator

// Program to detect edges in an image using the Scharr operator
// Author: Samarth Manoj Brahmbhatt, University of Pennyslvania

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace std;
using namespace Cv;

int main () {
Mat image = imread("lena.jpg"), image blurred;

// Blur image with a Gaussian kernel to remove edge noise
GaussianBlur (image, image blurred, Size(3, 3), 0, 0);

// Convert to gray
Mat image gray;
cvtColor (image blurred, image gray, CV_RGB2GRAY) ;

// Gradients in X and Y directions
Mat grad x, grad y;

Scharr (image gray, grad x, CV_32F, 1, 0);
Scharr (image gray, grad y, CV_32F, 0, 1);

// Calculate overall gradient
pow (grad x, 2, grad x);
pow (grad_y, 2, grad_y);

Mat grad = grad x + grad y;
sgrt (grad, grad);

// Display
namedWindow ("Original image");

https://www.ebooks-it.org/

eBooks-1T.org

// Convert to 8 bit depth for displaying

Mat edges;

grad.convertTo (edges, CV_8U);

imshow ("Original image",
imshow ("Scharr edges",

image) ;
edges) ;
while (char (waitKey (1)) != 'qg') {}

return O;

Figure 5-8 shows Scharr edges of the beautiful Lena image.

Sonetod.cop” L, 11 witien

Figure 5-8. Scharr edge detector

You can see that the Scharr operator finds gradients as promised. However, there is a lot of noise in the edge image.
Because the edge image has 8-bit depth, you can threshold it by a number between 0 and 255 to remove the noise. As always.
you can make an app with a slider for the threshold. Code for this app is shown in Listing 5-5 and the thresholded Scharr

outputs at different thresholds are shown in Figure 5-9.

Listing 5-5. Program to detect edges in an image using the thresholded Scharr operator

// Program to detect edges in an image using the thresholded Scharr operator

// Author: Samarth Manoj Brahmbhatt,

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace std;
using namespace cv;

Mat edges, edges thresholded;
int slider = 50;

void on slider (int, void *) {
if (!edges.empty()) {
Mat edges thresholded;
threshold(edges, edges thresholded,
imshow ("Thresholded Scharr edges",

University of Pennyslvania

slider, 255, THRESH TOZERO) ;

edges thresholded) ;

https://www.ebooks-it.org/

eBooks-1T.org
}

int main () {
//Mat image = imread("lena.jpg"), image blurred;
Mat image = imread("lena.jpg"), image blurred;

// Blur image with a Gaussian kernel to remove edge noise
GaussianBlur (image, image blurred, Size(3, 3), 0, 0);

// Convert to gray
Mat image gray;
cvtColor (image blurred, image gray, CV_BGR2GRAY);

// Gradients in X and Y directions
Mat grad x, grad y;

Scharr (image gray, grad x, CV_32F, 1, 0);
Scharr (image gray, grad y, CV_32F, 0, 1);

// Calculate overall gradient
pow (grad x, 2, grad Xx);
pow (grad_y, 2, grad_ y);

Mat grad = grad x + grad y;
sgrt (grad, grad);

// Display
namedWindow ("Original image");

namedWindow ("Thresholded Scharr edges");

// Convert to 8 bit depth for displaying
grad.convertTo (edges, CV_8U);
threshold (edges, edges thresholded, slider, 255, THRESH TOZERO);

imshow ("Original image", image);
imshow ("Thresholded Scharr edges", edges thresholded);

createTrackbar ("Threshold", "Thresholded Scharr edges", &slider, 255,
on_slider);

while (char (waitKey (1)) !'= 'g') {}

return 0;

https://www.ebooks-it.org/

e eBooks-1T.org

r-td&ih.#"»Hf

o

Figure 5-9. Scharr edge detector with thresholds of 100 (top) and 200 (bottom)

Canny Edges

The Canny algorithm uses some postprocessing to clean the edge output and gives thin, sharp edges. The steps involved in
computing Canny edges are:

e Remove edge noise by convolving the image with a normalized Gaussian kernel of size 5

e Compute X and Y gradients by using two different kernels:

-1 0 1

-2 0 2

-1 0 1 for X direction and
-1 -2 -1

0 0 0

1 2 1 for Y direction

e Find overall gradient strength by Pythagoras’ theorem and gradient angle by arctangent as discussed previously.
Angle is rounded off to four options: 0, 45, 90, and 135 degrees

e Nonmaximum suppression: A pixel is considered to be on an edge only if its gradient magnitude is larger than that
at its neighboring pixels in the gradient direction. This gives sharp and thin edges

e Hysteresis thresholding: This process uses two thresholds. A pixel is accepted as an edge if its gradient magnitude
is higher than the upper threshold and rejected if its gradient magnitude is lower than the lower threshold. If the
gradient magnitude is between the two thresholds, it will be accepted as an edge only if it is connected to a pixel
that is an edge

You can run the OpenCV Canny edge demo on the Lena picture to see the difference between Canny and Scharr edges.

https://www.ebooks-it.org/

Figu eBooks-1T.org

M= Edge Map
=% §+ @B L LH

Min Thresh (042/100) (S
(x=161, v=347) ~ R0 G:0 B:0

Figure 5-10. Canny edge detector

Corners

The OpenCV function goodFeaturesToTrack () implements a robust corner detector. It uses the interest-point detector
algorithm proposed by Shi and Tomasi. More information about the internal workings of this function can be found in its
documentation page at http://docs.opencv.org/modules/imgproc/doc/feature detection.html?
highlight=goodfeaturestotrack#goodfeaturestotrack.

The function takes the following inputs:

e Grayscale image
e A STL vector of Point2d’s to store the corner locations in (more on STL vectors later)

e Maximum number of corners to return. If the algorithm detects more corners than this number, only the strongest
appropriate number of corners are returned

e Quality level: The minimum accepted quality of the corners. The quality of a corner is defined as the minimum
eigenvalue of the matrix of image intensity gradients at a pixel or (if the Harris corner detector is used) the
image’s response to the Harris function at that pixel. For more details read the documentation for
cornerHarris () and cornerMinEigenVal ()

¢ Minimum Euclidean distance between two returned corner locations

¢ A flag indicating whether to use the Harris corner detector or minimum eigenvalue corner detector (default is
minimum eigenvalue)

o Ifthe Harris corner detector is used, a parameter that tunes the Harris detector (for usage of this parameter, see
documentation for cornerHarris ())

STL is an abbreviation for Standard Template Library, a library that provides highly useful data structures that can be
template into any data type. One of the data structures is a vector, and we will use a vector of OpenCV’s Point2d’s t
store the location of the corners. As you might recall, Point2d is OpenCV’s way of storing a pair of integer values (usually
location of a point in an image). Listing 5-6 shows code that extracts corners from an image using the
goodFeaturesToTrack () function, allowing the user to decide the maximum number of corners.

https://www.ebooks-it.org/

Listi eBooks-1T.org

// Program to detect corners in an image
// Author: Samarth Manoj Brahmbhatt, University of Pennyslvania

#include <opencv2/opencv.hpp>

#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <stdlib.h>

using namespace std;
using namespace cv;

Mat image, image gray;
int max corners = 20;

void on slider (int, void *) ({

if (image gray.empty()) return;
max corners = max(l, max corners);
setTrackbarPos ("Max no. of corners", "Corners", max corners);

float quality = 0.01;
int min distance = 10;

vector<Point2d> corners;
goodFeaturesToTrack (image gray, corners, max corners, quality, min distance);

// Draw the corners as little circles

Mat image corners = image.clone();
for(int 1 = 0; i < corners.size(); i++) {
circle (image corners, corners[i], 4, CV_RGB(255, 0, 0), -1);

}

imshow ("Corners", image corners);

}
int main () {
image = imread ("building.jpg"):;
cvtColor (image, image gray, CV_RGB2GRAY);
namedWindow ("Corners") ;
on slider (0, 0);
createTrackbar ("Max. no. of corners", "Corners", &max corners, 250, on slider);
while (char (waitKey (1)) != 'gq') {}
return 0;

In this app, we change the maximum number of returnable corners by a slider. Observe how we use the circle ()
function to draw little red filled circles at locations of the corners. Output produced by the app is shown in Figure 5-11.

https://www.ebooks-it.org/

eBooks-1T.org

o FIEHITOHY
: - .

g

Max. nd. o (03042 50)

[—
[x=51%, y=350) ~ F=243 G241 B229

Comers

«% 4+480 ﬁ P H

~*~°g§,

Max. no. o (175/250)

(xs484, vu353) = F174 G160 BoISR

Figure 5-11. Corners at different values of max_corners

Object Detector App

Our first object detector program will use just color information. In fact, it is more of a color bound-checking program than a
object detector in the strict sense because there is no machine learning involved. The idea is to take up the problem we
discussed at the beginning of this chapter—finding out the rough position of a red colored ball and controlling a simple
wheeled robot to intercept it. The most naive way to detect the red ball is to see if the RGB values of pixels in the image
correspond to the red ball, and that is what we will start with. We will also try to improve this app as we keep learning new
techniques over the next chapter. If you solved the exercise question to the last chapter you already know which OpenCV
function to use—inRange () . Here goes Listing 5-7, our first attempt at object detection!

Listing 5-7. Simple color based object detector

// Program to display a video from attached default camera device and detect
colored blobs using simple // R G and B thresholding
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

https://www.ebooks-it.org/

eBooks-1T.org

#intrcce——cp oo orre e
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace Cv;
using namespace std;

Mat frame, frame thresholded;
int rgb slider = 0, low slider = 30, high slider = 100;
int low r = 30, low g = 30, low b = 30, high r = 100, high g = 100, high b = 100;

void on_rgb trackbar (int, void *) {
switch(rgb slider) {

case 0:
setTrackbarPos ("Low threshold", "Segmentation", low r);
setTrackbarPos ("High threshold", "Segmentation", high r);
break;

case 1:
setTrackbarPos ("Low threshold", "Segmentation", low g);
setTrackbarPos ("High threshold", "Segmentation", high g);
break;

case 2:
setTrackbarPos ("Low threshold", "Segmentation", low b);
setTrackbarPos ("High threshold", "Segmentation", high b);
break;

void on_ low thresh trackbar (int, void *) {
switch(rgb slider) {

case 0:
low r = min(high slider - 1, low slider);
setTrackbarPos ("Low threshold", "Segmentation", low r);
break;

case 1:
low g = min(high slider - 1, low slider);
setTrackbarPos ("Low threshold", "Segmentation", low g);
break;

case 2:
low b = min(high slider - 1, low slider);
setTrackbarPos ("Low threshold", "Segmentation", low b);
break;

}

void on high thresh trackbar (int, void *) ({
switch(rgb slider) {

case O:
high r = max(low slider + 1, high slider);
setTrackbarPos ("High threshold", "Segmentation", high r);
break;

case 1:
high g = max(low slider + 1, high slider);

https://www.ebooks-it.org/

eBooks-1T.org

DIedky

case 2:
high b = max(low slider + 1, high slider);
setTrackbarPos ("High threshold", "Segmentation", high b);
break;

}

int main ()
{

// Create a VideoCapture object to read from video file

// 0 is the ID of the built-in laptop camera, change if you want to use
other camera

VideoCapture cap(0);

//check if the file was opened properly

if(!cap.isOpened())

{
cout << "Capture could not be opened succesfully" << endl;
return -1;

}

namedWindow ("Video") ;
namedWindow ("Segmentation") ;

createTrackbar ("0. R\nl. G\n2.B", "Segmentation", &rgb slider, 2,
on_rgb trackbar);

createTrackbar ("Low threshold", "Segmentation", &low slider, 255,
on low thresh trackbar);

createTrackbar ("High threshold", "Segmentation", &high slider, 255,
on high thresh trackbar);

while (char (waitKey (1)) != 'q' && cap.isOpened())
{

cap >> frame;

// Check if the video 1is over

if (frame.empty())

{

cout << "Video over" << endl;
break;

}

inRange (frame, Scalar(low b, low g, low r), Scalar(high b, high g,
high r), frame thresholded);

imshow ("Video", frame);
imshow ("Segmentation", frame thresholded);

}

return 0;

Figure 5-12 shows the program detecting an orange-colored object.

https://www.ebooks-it.org/

eBooks-1T.org

Figure 5-12. Color-based object detector

Observe how we have used locking mechanisms to ensure that the lower threshold is never higher than the higher thresho
and vice versa. To use this app, first hold the object in front of the camera. Then, hover your mouse over the object in the
window named “Video” and observe the R, G and B values. Finally, adjust ranges appropriately in the “Segmentation”
window. This app has many shortcomings:

e [t cannot detect objects of multiple colors
e It is highly dependent on illumination

o It gives false positives on other objects of the same color

But it is a good start!

Morphological Opening and Closing of Images to Remove Noise

Recall the definitions of morphological erosion and dilation. Opening is obtained by eroding an image followed by dilating i
It will have an effect of removing small white regions in the image. Closing is obtained by dilating an image followed by
eroding it; this will have the opposite effect. Both these operations are used frequently to remove noise from an image. Openi
removes small white pixels while closing removes small black “holes.” Our object detector app is an ideal platform to
examine this, because we have some noise in the form of white and black dots in the “Segmentation” window, as you can see
Figure 5-12.

The OpenCV function morphologyEX () can be used to perform advanced morphological operations such as opening
and closing on images. So we can open and close the output of the inRange () function to remove black and white dots by
adding the three lines in the while loop inthe main () function of our previous object detector code. The new main ()
function is shown in Listing 5-8.

Listing 5-8. Adding the opening and closing steps to the object detector code

int main ()
{

// Create a VideoCapture object to read from video file

// 0 is the ID of the built-in laptop camera, change if you want to use
other camera

VideoCapture cap(0);

//check if the file was opened properly

if (!cap.isOpened())

{
cout << "Capture could not be opened succesfully" << endl;
return -1;

https://www.ebooks-it.org/

eBooks-1T.org

namedwWwlindow ("osegmentation™™) ;

createTrackbar ("0. R\nl. G\n2.B", "Segmentation", &rgb slider, 2,
on_rgb trackbar);

createTrackbar ("Low threshold", "Segmentation", &low slider, 255,
on low thresh trackbar);

createTrackbar ("High threshold", "Segmentation", &high slider, 255,

on _high thresh trackbar);

while (char (waitKey (1)) != 'qg' && cap.isOpened())
{
cap >> frame;
// Check if the video is over
if (frame.empty())
{
cout << "Video over" << endl;
break;

}

inRange (frame, Scalar(low b, low g, low r), Scalar(high b, high g,
high r), frame thresholded);

Mat str el = getStructuringElement (MORPH RECT, Size(3, 3));

morphologyEx (frame thresholded, frame thresholded, MORPH OPEN,
str _el);

morphologyEx (frame thresholded, frame thresholded, MORPH CLOSE,
str el);

imshow ("Video", frame);
imshow ("Segmentation", frame thresholded);

}

return O;

Figure 5-13 shows that opening and closing the color-bound checker output does indeed remove speckles and holes.

Figure 5-13. Removing small patches of noisy pixels by opening and closing

Summary

https://www.ebooks-it.org/

Imag eBooks- 1 T.org canb

COHSIIUCI'CU ds d LICTINE OPCIdUOIL, DECAUSC yOu dIC UYLIEZ O CXWdCL SOIIC ICICVAIll HTIOITIdUOII OUl O1 UIC 1dI'ZC Zdllutl Uf
different kinds of information contained in the image. In this chapter you learned a lot of filter-based image operations that w:
help you as starting steps in many complicated computer vision projects. Remember, computer vision is complete only when
you extract decisive information from the image. You also developed the roots of the simple color based object detector app.
which we will continue with in the next chapter.

Whereas this chapter dealt with a lot of low-level algorithms, the next chapter will focus more on algorithms that deal wi
the form and structure of regions in images.

https://www.ebooks-it.org/

CH eBooks-1T.org

Shapes in Images

Shapes are one of the first details we notice about objects when we see them. This chapter will be devoted to endowing the
computer with that capability. Recognizing shapes in images can often be an important step in making decisions. Shapes are
defined by the outlines of images. It is therefore logical that the shape recognition is step is usually applied after detecting
edges or contours.

Therefore, we will discuss extracting contours from images first. Then we shall begin our discussion of shapes, which w-
include:

The Hough transform, which will enable us to detect regular shapes like lines and circles in images

Random Sample Consensus (RANSAC), a widely used framework to identify data-points that fit a particular
model. We will write code for the algorithm and employ it to detect ellipses in images

Calculation of bounding boxes, bounding ellipses, and convex hulls around objects

Matching shapes

Contours

There is a marked difference between contours and edges. Edges are local maxima of intensity gradients in an image
(remember Scharr edges in the previous chapter?). As we also saw, these gradient maxima are not all on the outlines of objex
and they are very noisy. Canny edges are a bit different, and they are a lot like contours, since they pass through a lot of post-
processing steps after gradient maxima extraction. Contours, by contrast, are a set of points connected to each other, most lik
to be located on the outline of objects.

OpenCV’s Contour extraction works on a binary image (like the output of Canny edge detection or a threshold applied on
Scharr edges or a black-and-white image) and extracts a hierarchy of connected points on edges. The hierarchy is organized
such that contours higher up the tree are more likely to be outlines of objects, whereas contours lower down are likely to be
noisy edges and outlines of “holes” and noisy patches.

The function that implements these features is called findContours () and it uses the algorithm described in the paper
“Topological Structural Analysis of Digitized Binary Images by Border Following” by S. Suzuki and K. Abe (published in th
1985 edition of CVGIP) for extracting contours and arranging them in a hierarchy. The exact set of rules for deciding the
hierarchies are described in the paper but, in a nutshell, a contour is considered to be “parent” to another contour if it
surrounds the contour.

To show practically what we mean by hierarchy, we will code a program, shown in Listing 6-1, that uses our favorite toc
the slider, to select the number of levels of this hierarchy to display. Note that the function accepts a binary image only as inp
Some means of getting a binary image from an ordinary image are:

Threshold using threshold () or adaptiveThreshold ()

Check for bounds on pixel values using inRange () as we did for our color-based object detector

Canny edges
Thresholded Scharr edges

Listing 6-1. Program to illustrate hierarchical contour extraction

// Program to illustrate hierarchical contour extraction
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

https://www.ebooks-it.org/

eBooks-1T.org

T
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace std;
using namespace Cv;

Mat img;
vector<vector<Point> > contours;
vector<Vec4i> heirarchy;

int levels = 0;

void on trackbar (int, void *) {
if (contours.empty()) return;

Mat img show = img.clone();

// Draw contours of the level indicated by slider

drawContours (img show, contours, -1, Scalar(0, 0, 255), 3, 8, heirarchy,
levels) ;

imshow ("Contours", img show);

}

int main() {
img = imread("circles.jpg");

Mat img b;
cvtColor (img, img b, CV_RGB2GRAY) ;

Mat edges;
Canny (img b, edges, 50, 100);

// Extract contours and heirarchy
findContours (edges, contours, heirarchy, CV_RETR TREE, CV_CHAIN APPROX NONE) ;

namedWindow ("Contours") ;
createTrackbar ("levels", "Contours", &levels, 15, on trackbar);

// Initialize by drawing the top level contours (as 'levels' is initialized to

on trackbar (0, 0);
while (char (waitKey (1)) != 'g") {}

return O;

Note how each contour is an STL vector of points. Hence, the data structure that holds the contours is a vector of vectors
points. The hierarchy is a vector of four-integer vectors. For each contour, its hierarchical position is described by four
integers: they are 0-based indexes into the vector of contours indicating the position of next (at the same level), previous (at t
same level), parent, and first child contours. If any of these are nonexistent (for example, if a contour does not have a parent
contour), the corresponding integer will be negative. Note also how the function drawContours () modifies the input ima
by drawing contours on it according to the hierarchy and maximum allowable level of that hierarchy to draw (consult the doc
for the function)!

Figure 6-1 shows the various levels of contours in a convenient picture.

https://www.ebooks-it.org/

eBooks-1T.org

« % Tt yEBEPPLPH

levels (01/15) @I
(x=91, v=236) ~ R:0 G:0 B:0

5 ¢t $EB B PPLHL

@O

levels (03/15) | — @ D
(x=149, v=239) ~ R:0 G:0 B:0

https://www.ebooks-it.org/

eBooks-1T.org

e s F $EO P PHLS

O

levels (09/15) NN | B
(x=280, v=44) ~ R:0 G:0 B:0

Figure 6-1. Various levels of the hierarchy of contours

A function that is used often in conjunction with findContours () is approxPolyDP () . approxPolyDP ()
approximates a curve or a polygon with another curve with fewer vertices so that the distance between the two curves is less
or equal to the specified precision. You also have the option of making this approximated curve closed (i.e., the starting and
ending points are the same).

Point Polygon Test

We take a brief detour to describe an interesting feature: the point-polygon test. As you might have guessed, the function
pointPolygonTest () determines whether a point is inside a polygon. It also returns the signed Euclidean distance to th
point from the closest point on the contour if you set the measureDist flag on. The distance is positive if the point is insid
the curve, negative if outside, and zero if the point is on the contour. If the flag is turned off, the signed distance is replaced b;
+1, —1, and 0, accordingly.

Let’s make an app to demonstrate our newfound knowledge of the point-polygon test and closed-curve approximation—a
app that finds the smallest closed contour in the image enclosing a point clicked by the user. It will also illustrate navigation
through the contour hierarchy. The code is shown in Listing 6-2.

Listing 6-2. Program to find the smallest contour that surrounds the clicked point

// Program to find the smallest contour that surrounds the clicked point
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace std;
using namespace cv;

Mat img all contours;
vector<vector<Point> > closed contours;
vector<Vec4i> heirarchy;

// Function to approximate contours by closed contours

https://www.ebooks-it.org/

vec! eBooks-1T.org

veCLoOoLsNveCLOL\NrolLIlie~> ~ UJ_UbSLl_UUIlLUU.Lb,'
closed contours.resize (contours.size());
for(int 1 = 0; i < contours.size(); i++)
approxPolyDP (contours[i], closed contours[i], 0.1, true);

return closed contours;

}

// Function to return the index of smallest contour in 'closed contours'

surrounding the clicked point
int smallest contour (Point p, vector<vector<Point> > contours, vector<Vec4i>

heirarchy) {

int idx = 0, prev idx = -1;
while (idx >= 0) {
vector<Point> ¢ = contours[idx];

// Point-polgon test
double d = pointPolygonTest (c, p, false);
// If point is inside the contour, check its children for an even smaller
contour...
if(d > 0) {
prev_idx = 1idx;
idx = heirarchyl[idx][2];
}
// ...else, check the next contour on the same level
else idx = heirarchy[idx] [0];

}

return prev_ idx;

}

void on mouse (int event, int x, int y, int, void *) {
if (event != EVENT LBUTTONDOWN) return;

// Clicked point
Point p(x, V):

// Find index of smallest enclosing contour
int contour show idx = smallest contour (p, closed contours, heirarchy);
// If no such contour, user clicked outside all contours, hence clear image
if (contour show idx < 0) {
imshow ("Contours", img all contours);
return;

}

// Draw the smallest contour using a thick red line
vector<vector<Point> > contour show;
contour show.push back(closed contours[contour show idx]);

if (!contour show.empty()) {
Mat img show = img all contours.clone();
drawContours (img show, contour show, -1, Scalar(0, 0, 255), 3);
imshow ("Contours", img show);

https://www.ebooks-it.org/

int eBooks-1T.org

Md Ut J.lll(:j — dllllcedd ((_)J_J_(_)J_Eb._]pg) 7
img all contours = img.clone();
Mat img b;

cvtColor (img, img b, CV_RGB2GRAY) ;

Mat edges;
Canny (img b, edges, 50, 100);

// Extract contours and heirarchy
vector<vector<Point> > contours;
findContours (edges, contours, heirarchy, CV_RETR TREE, CV_CHAIN APPROX NONE) ;

// Make contours closed so point-polygon test is wvalid
closed contours = make contours closed(contours);

// Draw all contours usign a thin green line
drawContours (img all contours, closed contours, -1, Scalar (0, 255, 0));

imshow ("Contours", img all contours);

// Mouse callback
setMouseCallback ("Contours", on mouse);

while (char (waitKey (1)) != 'g') {}
return 0;
Comments should help you understand the logic I follow in the code. A bit of detail about navigating the contour hierarch
is needed. If 1dx is the index of a contour in the vector of vector of points and hierarchy is the hierarchy:

e hierarchy[idx] [0] will return the index of the next contour at the same level of hierarchy

hierarchy[idx[1] will return the index of the previous contour at the same level
e hierarchy[idx] [2] will return the index of the first child contour
e hierarchy[idx] [3] will return the index of the parent contour

If any of these contours do not exist, the index returned will be negative.
Some screenshots of the app in action are shown in Figure 6-2.

https://www.ebooks-it.org/

eBooks-1T.org

% T 3IEBEPLPLHLI

@&

(x=253, y=72) ~ R:0 G:0 B:0

™ Contours

et 4 @O L LHY

O

(x=72,v=105) ~ R:0 G:0 B:0

«= ¢+ @B L LH

O

(x=36,v=126) ~ R:0 G:0 B:0

Figure 6-2. Smallest enclosing contour app

OpenCV also offers some other functions that can help you filter contours in noisy images by checking some of their
properties. These are listed in Table 6-1.

Table 6-1. Contour post-processing functions in OpenCV

Function Description

https://www.ebooks-it.org/

ArcLe eBooks- 1 T. org

ContourAreal) FInd area and orientation oI a contour

BoundingRect() Compute the upright bounding rectangle of a contour

ConvexHull() Compute a convex hull around a contour

IsContourConvex() Tests a contour for convexity

MinAreaRect() Computes a rotated rectangle of the minimum area around a contour
MinEnclosingCircle() Finds a circle of minimum area enclosing a contour

FitLine() Fits a line (in the least-squares) sense to a contour

Hough Transform

The Hough transform transforms a contour from X-Y space to a parameter space. It then uses certain parametric properties of
target curves (like lines or circles) to identify the points that fit the target curve in parameter space. For example, let’s take th
problem of detecting lines in the output of edge detection applied to an image.

Detecting Lines with Hough Transform
A point in a 2D image can be represented in two ways:

e (X, Y) coordinates

e (r, theta) coordinates: r is the distance from (0, 0)and theta is angle from a reference line, usually the
x-axis. This representation is shown in Figure 6-3.

) theta

» X

Figure 6-3. The (v, theta) coordinate representation

The relation between these coordinates is:
x*cos (theta) + y*sin(theta) = 2*r

As you can see, the plot of a point (x, vy)inthe (r, theta) parameter space is a sinusoid. Thus, points that are
collinear in the Cartesian space will correspond to different sinusoids in the Hough space, which will intersect at a common
(r, theta) point. This (1, theta) point represents a line in the Cartesian space passing through all these points. To give you
some examples, Figure 6-4 shows the Hough space representations of a point, a pair of points and five points, respectively.
The Matlab code shown in Listing 6-3 was used to generate the figures.

https://www.ebooks-it.org/

theta

Figure 6-4. Hough transform of a point, a pair of points, and 5 points (top to bottom, clockwise), respectively

Listing 6-3. Matlab code to understand the Hough transform

%% one point
theta = linspace (0, 2*pi, 500);

https://www.ebooks-it.org/

eBooks-1T.org

X =Y
y = 1;

r = 0.5 * (x * cos(theta) + y * sin(theta));
figure; plot(theta, 1r);
xlabel ('theta'); ylabel('r');

o)

%% two points
theta = linspace (0, 2*pi, 500);

x = [1 3];
y = 2*x + 1;

rl =
r2 =

(x(1) * cos(theta) + y(1) * sin(theta));

0.5 *
0.5 * (x(2) * cos(theta) + y(2) * sin(theta));

figure; plot(theta, rl, theta, r2);
xlabel ('theta'); ylabel('r');

%% five collinear points
theta = linspace (0, 2*pi, 500);

x = [1 357 91;
y = 2*x + 1;

figure; hold on;

r = zeros (numel (x), numel (theta));

for i =1 : size(r, 1)
r(i, :) = 0.5 * (x(i) * cos(theta) + y(i) * sin(theta));
plot (theta, r(i, :));

end

xlabel ('theta'); ylabel('r');

We can then detect lines by the following strategy:
e Define a 2-D matrix of the discretized Hough space, for example with r values along rows and theta values
along columns

e For every (x, vy) pointinthe edge image, find the list of possible (r, theta) values using the equation, and
increment the corresponding entries in the Hough space matrix (this matrix is also called the accumulator)

e When you do this for all the edge points, certain (r, theta) values in the accumulator will have high values.
These are the lines, because every (r, theta) point represents a unique line

The OpenCV function HoughLines () implements this strategy and takes the following inputs:

e Binary edge image (for example, output of the Canny edge detector)
e rand theta resolutions

e Accumulator threshold for consideringa (r, theta) pointas a line

Detecting Circles with Hough Transform

A circle can be represented by three parameters: two for the center and one for the radius. Because the center of the circle lic
along the normal to every point on the circle, we can use the following strategy:

https://www.ebooks-it.org/

. eBooks-1T.org
yYou vOIC DY HICTCIHICIUIE UIC dCCUIIULIALO POSIUOIS COITCSPONUIIE O P1IXCIS d101E UIC NOIIIdl. AS YOU dO UllS 101
all the pixels on the circle, because the center lies on all the normals, the votes for the center will start increasing.
You can find the centers of circles by thresholding this accumulator

¢ In the next stage, you make a 1D radius histogram per candidate center for estimating radius. Every edge point
belonging to the circle around the candidate center will vote for almost the same radius (as they will be at almost
the same distance from the center) while other edge points (possibly belonging to circles around other candidate
centers) will vote for other spurious radii

The OpenCV function that implements Hough circle detection is called HoughCircles (). It takes the following inputs

e Grayscale image (on which it applies Canny edge detection)

¢ Inverse ratio of the accumulator resolution to image resolution (for detecting centers of circles). For example, if it
is set to 2, the accumulator is half the size of the image

e Minimum distance between centers of detected circles. This parameter can be used to reject spurious centers

e Higher threshold of the Canny edge detector for pre-processing the input image (the lower threshold is set to half
of the higher threshold)

e The accumulator threshold

e Minimum and maximum circle radius, can also be used to filter out noisy small and false large circles

Figure 6-5 shows line and circle detection using the Hough transform in action with a slider for the accumulator thresholc
and a switch for the choice of detecting lines or circles. The code follows in Listing 6-4.

« 5+t @B PLLHY

ome
O,

Lmes;‘c:rc (1/1) &

Acc. Thres (103/300) G |
(x=8, v=22) ~ R:250 G:250 B:252

https://www.ebooks-it.org/

e S tI4EPLALPHLY

\-
i

Lines/Circ (1/1) . |

Acc. Thres (156/300) (|
(x=130, v=292) ~ R:253 G:253 B:253

Shapes

et @B PLPLH Y

.. _V

LY e =mah
/] M [N

Lines/Circ (0/1) (I

Acc. Thres (156/300)
(x=24, y=0) - R:255 G:252 B:251

et 4@OPLPLHI \

IS, ot .
___,)(__/) Il
~ N s BN —
]
/ N=n

Lines/Circ (0/1) (I

Acc. Thres (106/300) (— |
(x=11, v=118) ~ R:252 G:252 B:250

Figure 6-5. Circle and line detection at different accumulator thresholds using the Hough transform

Listing 6-4. Program to illustrate line and circle detection using Hough transform

https://www.ebooks-it.org/

/0 eBooks-1T.org

// AULIIOL : Sdllldr LIl Mdallo j bprdalliplidactte, UlllverslLly Ol CFellllsylvdllld

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace std;
using namespace cv;

Mat img;
int shape = 0; //0 => lines, 1 -> circles
int thresh = 100; // Accumulator threshold

void on trackbar (int, void *) { // Circles

if (shape == 1) {
Mat img gray;
cvtColor (img, img gray, CV_RGB2GRAY) ;
// Find circles
vector<Vec3f> circles;
HoughCircles (img gray, circles, CV_HOUGH GRADIENT, 1, 10, 100, thresh,
// Draw circles

Mat img show = img.clone () ;

for(int 1 = 0; i < circles.size(); i++) {
Point center (cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]):

// draw the circle center
circle(img show, center, 3, Scalar(0, 0, 255), -1);
// draw the circle outline
circle(img show, center, radius, Scalar(0, 0, 255), 3, 8, 0);
}
imshow ("Shapes", img show) ;
}
else if (shape == 0) { // Lines
Mat edges;
Canny (img, edges, 50, 100);
// Find lines
vector<Vec2f> lines;
HoughLines (edges, lines, 1, CV _PI/180.f, thresh);
// Draw lines

Mat img show = img.clone () ;
for(int 1 = 0; i < lines.size(); i++) {
float rho = lines[i][0];

float theta = lines[i]][1

double a = cos(theta), b sin (theta);

double x0 = a * rho, y0 = b * rho;

Point ptl (cvRound(x0 + 1000 * (-b)), cvRound(y0O + 1000 * (a)));
Point pt2 (cvRound(x0 - 1000 * (-b)), cvRound(y0 - 1000 * (a)));
line (img show, ptl, pt2, Scalar(0, 0, 255));

:| .

I~

}

imshow ("Shapes", img show) ;

}

int main () {

5);

https://www.ebooks-it.org/

eBooks-1T.org

namedWindow (" Shapes") ;

// Create sliders
createTrackbar ("Lines/Circles", "Shapes", &shape, 1, on trackbar);
createTrackbar ("Acc. Thresh.", "Shapes", &thresh, 300, on trackbar);

// Initialize window
on_trackbar (0, 0);

while (char (waitKey (1)) !'= "'g') {}

return 0;

Generalized Hough Transform

The generalized Hough Transform can be used to detect irregular shapes in an image that do not follow a simple equation.
Theoretically, any shape can be represented by an equation, but recall that as the number of parameters in the equation
increases, so do the dimensions of the required accumulator. The Wikipedia article and
http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm are good introductions to the generalized Hough
transform.

RANdom Sample Consensus (RANSAC)

RANSAC is a powerful framework for finding data-points that fit to a particular model. The model that we will consider her
to apply RANSAC on is the conic section model of the ellipse. RANSAC is quite resistant to “outliers”—data-points that do
not fit the given model. To explain the algorithm itself, let us consider the problem of finding a line in a noisy dataset of 2D
points. The strategy is:

e Randomly sample points from the dataset
¢ Find the equation of a line that fits those points

e Find “inliers”—points that fit this model of the line. For determining if a point is an inlier or outlier with respect
to a model, we need a measure of distance. Here, that measure will be the Euclidean distance of the line from the
point. We will decide a value of this distance measure that acts as threshold for inlier/outlier determination

e lterate till you find a line that has more inliers than a certain pre-decided number

Sounds simple, right? Yet this simple mechanism is really robust to noise, as you will observe in the ellipse detection
example. Before going further, you should read:

e The Wikipedia article on RANSAC, because we will use the RANSAC algorithm framework outlined there, and it
has some good visualizations that will help you develop an intuitive understanding of the algorithm

e The Wolfram Alpha article on ellipses (http://mathworld.wolfram.com/Ellipse.html),
especially equations 15 to 23 for the mathematical formulas that we will use to calculate various properties of the
ellipse

e The article http://nicky.vanforeest.com/misc/fitEllipse/fitEllipse.html, which
describes the strategy we will use to fit an ellipse to a set of points. Understanding this article requires knowledge
of matrix algebra, especially eigenvalues and eigenvectors

For this app, I decided to adopt an object oriented strategy, to leverage the actual power of C++. Functional programmin
(like the programming we have been doing so far—using functions for different tasks) is okay for small applications. Howewv:
it is significantly advantageous in terms of code readability and strategy formation to use an object oriented strategy for large

https://www.ebooks-it.org/

appli eBooks-1T.org

e Detect Canny edges in the image using a tight threshold and extract contours so that spurious contours are avoided.
Also reject contours that are less than a certain threshold in length, using the function arcLength () to measure
contour length

e Have a certain number of iterations for each contour in which:

e a certain number of points are selected at random from the contour and fitted to an ellipse to those points.
Decide the number of inliers to this ellipse in the current contour based on a distance threshold

o the ellipse that best fits (has the greatest number of inliers) to the current contour is found. One should not use
all the points in the contour at once to fit the ellipse, because a contour is likely to be noisy, and consequently
the ellipse fitted to all the points in the contour might not be the best. By randomly selecting points and doing
this many times, one gives the algorithm more chance to find the best fit

e Repeat this process for all the contours, and find the ellipse that has the most number of inliers

For accomplishing this algorithm I use the following RANSAC parameters:

e Number of iterations where we choose random points. Decreasing this lessens the chance of finding the best set of
random points to represent the ellipse, while increasing this parameters increases the chance but causes the
algorithm to take more processing time

e Number of random points to be considered at each iteration. Choosing too low a value, such as 4 or 5, will not
define an ellipse properly, while choosing too high a value will increase the chance of drawing a point from an
undesirable part of the contour. Hence, this parameter must be turned carefully

e Threshold on distance between point and ellipse for the point to be considered inlier to the ellipse

e Minimum number of inliers for an ellipse to be considered for further processing. This is checked on the ellipse
fitted to the random points chosen at each iteration. Increasing this parameter makes the algorithm stricter

The code itselfis quite simple. It is long, and I have also written a bunch of debug functions that you can activate to see
some debugging images (e.g., the best contour chosen by the algorithm, and so forth). The function debug () allows you to f
an ellipse to a specific contour. Be advised that this uses all the points in the contour at once, and the result is likely to be not
as good as the random points strategy discussed earlier. We use the Eigen library for finding eigenvalues and eigenvectors to
fit an ellipse to a set of points, as for unknown reasons the OpenCV eigen () does not work as expected. The code in Listir
6-5 1s not optimized, so it might take some time to process bigger images with lots of contours. It is recommended that you us
as tight Canny thresholds as possible to reduce the number of contours the algorithm has to process. You can also change the
RANSAC parameters if needed.

Because we use the Eigen library in addition to OpenCV, you should of course install it if you don’t have it (although mo:
Ubuntu systems should have an installation of Eigen), and compile the code as follows:

g++ -I/usr/include/eigen3 'pkg-config opencv --cflags' findEllipse.cpp -0
findEllipse 'pkg-config opencv --1libs'

You can install Eigen by typing sudo apt-get install libeigen3-dev ina terminal.
The code is shown in Listing 6-5.

Listing 6-5. Program to find the largest ellipse using RANSAC

// Program to find the largest ellipse using RANSAC
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <Eigen/Dense>

#include <opencv2/core/eigen.hpp>
#include <opencv2/opencv.hpp>

#include <opencv2/highgui/highgui.hpp>

https://www.ebooks-it.org/

#1in eBooks-1T.org
#inUJ.L,lU.E \d.J.(:jULJ_Llllll/
#include <math.h>

#define PI 3.14159265

using namespace std;
using namespace cv;
using namespace Eigen;

// Class to hold RANSAC parameters
class RANSACparams {
private:
//number of iterations
int iter;
//minimum number of inliers to further process a model
int min inliers;
//distance threshold to be conted as inlier
float dist thresh;
//number of points to select randomly at each iteration
int N;
public:
RANSACparams (int iter, int min inliers, float dist thresh, int N) {
//constructor

iter = iter;
min inliers = min inliers;
dist thresh = dist thresh;
N = _N;
}
int get iter() {return iter;}
int get min inliers() {return min inliers;}
float get dist thresh() {return dist thresh;}

int get N() {return N;}
b7

// Class that deals with fitting an ellipse, RANSAC and drawing the ellipse in the

image
class ellipseFinder {
private:
Mat img; // input image
vector<vector<Point> > contours; // contours in image
Mat Q; // Matrix representing conic
section of detected ellipse
Mat fit ellipse(vector<Point>); // function to fit ellipse to a
contour

Mat RANSACellipse (vector<vector<Point> >); // function to find ellipse in
contours using RANSAC

bool is good ellipse (Mat) ; // function that determines whethe
given conic section represents a valid ellipse

vector<vector<Point> > choose random(vector<Point>); //function to choose
points at random from contour

vector<float> distance (Mat, vector<Point>); //function to return distance o

points from the ellipse
float distance (Mat, Point); //overloaded function to return

https://www.ebooks-it.org/

sigi eBooks-1T.org
vOL1lQ uLdW_ELLLPﬁE\MdL};
image

vector<Point> ellipse contour (Mat);
ellipse to a contour of points

void draw inliers (Mat, vector<Point>);

// RANSAC parameters
int iter, min inliers, N;
float dist thresh;

public:
ellipseFinder (Mat img, int 1 canny,
constructor
img = img.clone();

int h canny, RANSACparams rp) {

// LUIllCLLOIl LO ULdw €©111pse 1ll an

//function to convert equation of

//function to debug inliers

//

// Edge detection and contour extraction

Mat edges; Canny(img, edges,
vector<vector<Point> > c;
findContours (edges, ¢, CV_RETR LIST,

1 canny,

h canny);

CV_CHAIN APPROX NONE) ;

// Remove small spurious short contours

for(int i = 0; 1 < c.size(); i++) {
bool is closed = false;
vector<Point> c¢ = c[i];
Point pl = c.front(), p2 = c.back();
float d = sgrt(pow(pl.x - p2.x%x,2) + pow(pl.y - pP2.V,2));

if(d <= 0.5) 1is _closed = true;

d = arclLength(c,

is closed);

if(d > 50) contours.push back(c);

}

iter = rp.get iter();

min inliers = rp.get min inliers();
N = rp.get N();
dist thresh = rp.get dist thresh();
Q = 1,

Mat: :eye (6, CV_32F);

/*
//for debug

Mat img show = img.clone();

drawContours (img show, contours, -1, Scalar(0, 0, 255));
imshow ("Contours"™, img show);

//imshow ("Edges", edges);

*/

cout << "No. of Contours = " << contours.size() << endl;

}

void detect ellipse();

void debug() ; //debug function

//final wrapper function

https://www.ebooks-it.org/

vecl]

}

eBooks-1T.org

vVECLOLSNFOLlIIL-, €©1l1l1lpseE — €©1l1l1lpse COllLour (V)

vector<float> distances;

for(int 1 = 0; i < c.size();

i++) |

distances.push back(float (pointPolygonTest (ellipse,

}

return distances;

float ellipseFinder::distance (Mat Q, Point p)
vector<Point> ellipse = ellipse contour(Q);
return float (pointPolygonTest (ellipse, p,

}

{

true));

cl[i]l, true)));

vector<vector<Point> > ellipseFinder::choose random(vector<Point> c) {

vector<vector<Point> > cr;
vector<Point> cr0, crl;

// Randomly shuffle all elements of contour
std::random shuffle(c.begin(),

// Put the first N elements into cr[0]

algorithm) and
// the rest in cr[l] to check for inliers

}

for(int 1 = 0; 1 < c.size();

c.end());

i+4+) |

if (i < N) crO.push back(c[i]);
else crl.push back(c[i]);

}

cr.push back(cr0);
cr.push back(crl);

return cr;

as consensus set

Mat ellipseFinder::fit ellipse (vector<Point> c) {

/*

// for debug

Mat img show = img.clone ()
vector<vector<Point> > cr;
cr.push back(c);
drawContours (img_show, cr,
imshow ("Debug fitEllipse",
*/

int N = c.size();

Mat D;

for(int 1 = 0; i < N; i++)
Point p = cl[i];
Mat r(l, 6, CV_32FCl);
r = (Mat <float>(1l, 6)

£

D.push back(r);

}
Mat S = D.t() * D, S;

double d = invert (S, S);

.
14

-1,

Scalar (0,

img show) ;

<<

(p.x)*(p.x),

0,

255), 2);

(p.xX)*(p.Y),

(see Wikipedia RANSAC

(p.y)*(p.VY),

b.X,

pP.y,

https://www.ebooks-it.org/

eBooks-1T.org

Mat C = Mat::zeros (6, 6, CV_32F);
C.at<float> (2, 0) = 2;
C.at<float>(1, 1) = -1;
C.at<float> (0, 2) = 2;

// Using EIGEN to calculate eigenvalues and eigenvectors
Mat prod = S * C;

Eigen::MatrixXd prod e;

cvzeigen (prod, prod e);

EigenSolver<Eigen::MatrixXd> es (prod e);

Mat evec, eval, vec(6, 6, CV_32FCl), val(6, 1, CV_32FCl);

eigen2cv (es.eigenvectors (), evec);
eigen2cv (es.eigenvalues (), eval);

evec.convertTo (evec, CV_32F);
eval.convertTo (eval, CV_32F);

// Eigen returns complex parts in the second channel (which are all 0 here) so
select just the first channel

int from to[] = {0, 0};

mixChannels (&evec, 1, &vec, 1, from to, 1);

mixChannels (&eval, 1, &val, 1, from to, 1);

Point maxLoc;
minMaxLoc (val, NULL, NULL, NULL, &maxLoc);

return vec.col (maxLoc.y);

}

bool ellipseFinder::is good ellipse (Mat Q) {
float a = Q.at<float> (0, 0),

b = (Q.at<float>(1l, 0))/2,

c = Q.at<float>(2, 0),

d (Q.at<float> (3, 0))/2,

f (Q.at<float> (4, 0))/2,

g = Q.at<float>(5, 0);
if(b*b - a*c == 0) return false;

float thresh = 0.09,
num = 2 * (a*f*f + c*d*d + g*b*b - 2*b*d*f - a*c*qg),

denl = (b*b - a*c) * (sgrt((a-c)*(a-c) + 4*b*b) - (a + C)),

den2 = (b*b - a*c) * (-sgrt((a-c)*(a-c) + 4*b*b) - (a + c)),

a len = sgrt(num / denl),

b len = sqgrt(num / den2),

major axis = max(a len, b len),

minor axis = min(a len, b len);

if (minor axis < thresh*major axis || num/denl < 0.f || num/den2 < 0.f ||
major axis > max(img.rows, img.cols)) return false;

else return true;

}

https://www.ebooks-it.org/

Mat eBooks-1T. org

Il DEeES L_UVELCLJ.J._J_IIJ_J_EL_EUULE — Uy
Mat Q best = 777 * Mat::ones (6, 1, CV _32FCIl);
int idx best = -1;

//for each contour...

for(int 1 = 0; i < contours.size(); i++) {
vector<Point> ¢ = contours[i];
if(c.size() < min inliers) continue;

Mat Q;
int best inlier score = 0;
for(int 3 = 0; J < iter; j++) {
// ...choose points at random...
vector<vector<Point> > cr = choose random(c);
vector<Point> consensus set = cr[0], rest = cr[l];
// ...fit ellipse to those points...
Mat Q maybe = fit ellipse(consensus_ set);
// ...check for inliers...
vector<float> d = distance(Q maybe, rest);
for(int k = 0; k < d.size(); k++)
if (abs(d[k]) < dist thresh) consensus set.push back(rest[k]);
// ...and find the random set with the most number of inliers
if (consensus set.size() > min inliers && consensus set.size() >
best inlier score) {
Q = fit ellipse(consensus_set);
best inlier score = consensus_ set.size();

}
// find cotour with ellipse that has the most number of inliers
if (best inlier score > best overall inlier score && is good ellipse(Q)) {
best overall inlier score = best inlier score;
Q best = Q.clone();
1f(Q best.at<float>(5, 0) < 0) Q best *= -1.f;
idx best = 1i;

}

/*

//for debug

Mat img show = img.clone();

drawContours (img_show, contours, idx best, Scalar (0, 0, 255), 2);
imshow ("Best Contour", img show);

cout << "inliers " << best overall inlier score << endl;

*/

if (idx best >= 0) draw inliers(Q best, contours[idx best]);
return Q best;

}

vector<Point> ellipseFinder::ellipse contour (Mat Q) {
float a = Q.at<float> (0, 0),
b = (Q.at<float>(1, 0))/2,
o} Q.at<float>(2, 0),
d (O.at<float>(3, 0))/2,

https://www.ebooks-it.org/

eBooks-1T.org

g — Y.dLSsSL10dL~ 9y U) s

vector<Point> ellipse;

if(b*b - a*c == 0) {
ellipse.push back(Point (0, 0));
return ellipse;

}
Point2f center((c*d - b*f)/(b*b - a*c), (a*f - b*d)/(b*b - a*c));

float num = 2 * (a*f*f + c*d*d + g*b*b - 2*b*d*f - a*c*qg),
denl = (b*b - a*c) * (sgrt((a-c)*(a-c) + 4*b*b) - (a + ¢)),
den2 = (b*b - a*c) * (-sgrt((a-c)*(a-c) + 4*b*b) - (a + c)),
a len = sgrt(num / denl),
b len = sqgrt(num / den2),
major axis = max(a len, b len),
minor axis = min(a len, b len);

— o~

//angle of rotation of ellipse
float alpha = 0.f;

if(b == 0.f && a == c¢) alpha = PI/2;
else if(b != 0.f && a > c) alpha = 0.5 * atan2(2*b, a-c);
else if(b != 0.f && a < ¢) alpha = PI/2 - 0.5 * atan2(2*b, a-c);

// 'draw' the ellipse and put it into a STL Point vector so you can use
drawContours ()
int N = 200;
float theta = 0.f%;
for(int i = 0; 1 < N; 1i++, theta += 2*PI/N) {
float x = center.x + major axis*cos(theta) *cos(alpha) +
minor axis*sin(theta) *sin(alpha) ;
float y = center.y - major axis*cos(theta) *sin(alpha) +
minor axis*sin (theta) *cos (alpha) ;
Point p(x, V):
if(x < img.cols && y < img.rows) ellipse.push back(p);
}
if (ellipse.size() == 0) ellipse.push back(Point (0, 0));

return ellipse;

}

void ellipseFinder::detect ellipse() {
Q = RANSACellipse (contours);
cout << "Q" << Q0 << endl;
draw_ellipse(Q);

}

void ellipseFinder::debug() {

int 1 = 1; //index of contour you want to debug

cout << "No. of points in contour " << contours[i].size() << endl;
Mat a = fit ellipse(contours([i]);

Mat img show = img.clone () ;

drawContours (img show, contours, i, Scalar(0, 0, 255), 3);
imshow ("Debug contour", img show);
draw inliers(a, contours([i]);

https://www.ebooks-it.org/

eBooks-1T.org

}

void ellipseFinder::draw ellipse (Mat Q)
vector<Point> ellipse =
vector<vector<Point> > c;
c.push back(ellipse);

Mat img show = img.clone();
drawContours (img_show, ¢, -1,
imshow ("Ellipse", img show);

}

Scalar (0, O,

{

ellipse contour (Q);

255), 3);

void ellipseFinder::draw _inliers (Mat Q, vector<Point> c) {

vector<Point> ellipse =
vector<vector<Point> > cs;
cs.push back(ellipse);

Mat img show = img.clone () ;

// draw all contours in thin red

ellipse contour (Q);

drawContours (img show, contours, -1, Scalar(0, 0, 255));
// draw ellipse in thin blue
drawContours (img show, cs, 0, Scalar (255, 0, 0));
int count = 0;
// draw inliers as green points
for(int 1 = 0; 1 < c.size(); 1++) {
double d = pointPolygonTest(ellipse, cl[i], true);
float dl = float(d):;
if (abs(dl) < dist thresh) {
circle(img show, c[i], 1, Scalar(0, 255, 0), -1);

count ++;

}

imshow ("Debug inliers", img show);

cout << "inliers " << count << endl;
}
int main () {

Mat img = imread("testd.jpg"):;

namedWindow ("Ellipse") ;

// object holding RANSAC parameters,

RANSACparams rp (400, 100, 1, 5);
// Canny thresholds
int canny 1 = 250, canny h = 300;

// Ellipse finder object,

ellipseFinder ef (img, canny 1, canny h,
ef.detect ellipse();

//ef .debug () ;

while (char (waitKey (1)) != 'g') {}

return 0;

Figure 6-6 shows the algorithm in action.

initialized using the constructor

initialized using the constructor

rp);

https://www.ebooks-it.org/

eBooks-1T.org
" T sTEISF IR T SEBHFEFSSRY

-

[x=65, v=62) ~ R:d1 G:30 B:26 (x=34, y=19) ~ R:253 G241 B:227

(x=308, v=130) ~R:101 GO B:S6 E_gx:& v=231) ~ R8T 74 B

% T 4 EBPLPLPHT S ¢ $ED L PLH

S

{x=300, v=225) ~ R:229 G:221 B:202 {x=0, y=146) ~ R:80 G:71 B:40

S

Figure 6-6. Finding the largest ellipse in the image using RANSAC

Bounding Boxes and Circles

OpenCV offers functions that compute a rectangle or circle of the minimum area enclosing a set of points. The rectangle can't
upright (in which case it will not be the rectangle with the minimum area enclosing the set of points) or rotated (in which cas
it will be). These shapes can be useful in two ways:

e Many high-level feature detection functions in OpenCV accept an upright rectangle as Region of Interest (ROI). A
ROl is used often to speed up computation. Many times we want to use a computationally intensive function, for
example the stereo block matching function that gives disparity from left and right images. However, we are
interested in only a certain part of the image. By specifying a proper ROI, one can tell the function to ignore the
other parts of the image, thereby not wasting computation on parts of images that we are not interested in.

e One can use the properties of these bounding boxes and circles (e.g., area, aspect ratio) to infer roughly the size of
an object or distance of an object from the camera.

The functionminAreaRrect () calculates a rotated rectangle, ninEnclosingCircle () calculates a circle, and
boundingRect () calculates the upright rectangle of the smallest size enclosing a set of points. The set of points is usuall
specified as a STL vector, but you can do so using a Mat, too. In Listing 6-6, take a look at the modified version of
draw ellipse () fromour ellipse detector code to learn how to use these functions. This version of the app not only find
an ellipse in an image but also shows the bounding rectangles and circle around the ellipse as shown in Figure 6-7.

Listing 6-6. Modified draw_ellipse() to show bounding circle and rectangles

https://www.ebooks-it.org/

VOl eBooks-1T.org
VEeCLOILSFOLlIL~-, elllpsSe = eJ.J.lpS@_COHEOUI‘\Q),'

vector<vector<Point> > c¢;

c.push back(ellipse);

Mat img show = img.clone();

//draw ellipse

drawContours (img_show, ¢, -1, Scalar(0, 0, 255), 3);

//compute bounding shapes

RotatedRect r rect = minAreaRect (ellipse);

Rect rect = boundingRect (ellipse);

Point2f center; float radius; minEnclosingCircle(ellipse, center, radius);

//draw bounding shapes
rectangle (img show, rect, Scalar (255, O,

255)); //magenta
circle (img show, center, radius, Scalar (255, 0, 0));
//blue

Point2f vertices[4]; r rect.points(vertices);
for(int 1 = 0; 1 < 4; i++)
line (img show, vertices([i], vertices[(1 + 1)
//green

o°

41, Scalar (0, 255, 0));

imshow ("Ellipse", img show) ;

% T $EBEPLPLHY

(x=135, v=7) ~ R:57 G:58 B:60

Figure 6-7. Bounding circle and rectangles (upright and rotated) for the ellipse detected using RANSAC

Convex Hulls

A convex hull for a set of 2D points is the smallest convex closed contour that encloses all the points. Because it is convex, t
line joining any two points on the convex hull does not intersect the hull boundary. Because it has to be the smallest, the conv
hull of a set of points is a subset of this set. The OpenCV function convexHull () can calculate the hull for a set of points.
gives its output in two different forms—a vector of indices into the input contour for points that constitute the hull, or the hull
points themselves. OpenCV has a nice convex hull demo, which randomly selects a set of points and draws the hull around it
Figure 6-8 shows it in action.

https://www.ebooks-it.org/

eBooks-1T.org

[x=457. v=186) ~ R:0 G:0 B:0

Figure 6-8. OpenCV convex hull demo

The motivation behind computing the convex hull is that you get the smallest possible closed contour that is convex and
encloses all the points in your set. You can then use contourArea () and arcLength () to estimate the area and
perimeter of your set of points, respectively.

As an exercise, you might want to take the color-based object detector code from the last chapter and modify it to get the
area and perimeter of the red object. Here’s what you will need to do:

e Extract contours in the binary output of the detector

e Convert those contours to closed contours using either approxPolyDP () or convexHull () .
convexHull () will probably be overkill for this and slower, too.

¢ Find area and/or perimeter of closed contours with contourArea () and/or arcLength () respectively, and
display the contour with the largest area as that is most likely to be your desired object

Summary

This chapter talked a lot about dealing with shapes in images. You might have noticed that we have now moved on to a lot of
“higher”-level algorithms and I do not dwell much on lower pixel-level procedures. This is because I assume that you have
read through the previous chapters carefully! Shapes are a simple way to recognize known objects in images. But they are als
prone to a lot of errors, especially because of occlusion of a part of the object by another object. The other method to recogni
objects, the keypoint-feature-based approach, solves this, and we will discuss keypoint-based object recognition in a later
chapter.

Meanwhile, I want to stress the importance of the ellipse detection program that I introduced in this chapter. It is importas
because it has a vital trait of a real-world computer vision program—it does not just put together a bunch of built-in OpenCV
functions, but it involves using them to aid your own indigenous algorithm instead. It is also object-oriented, which is the
preferred style of writing large programs. If you do not understand any line in that code, please refer the online OpenCV
documentation for that function and/or consult the previous chapters.

https://www.ebooks-it.org/

CH eBooks-1T.org

Image Segmentation and Histograms

Welcome to the seventh chapter! After discussing shapes and contours in the last chapter, I want to talk about the very
important topic of image segmentation, which is one of the most fundamental computer vision problems attracting a lot of
research today. We will discuss some of the segmentation algorithms that OpenCV has up its sleeve, and also how you can us
other techniques such as morphological operations to make your own custom segmentation algorithm.

Specifically, we will begin with the naive segmentation technique—thresholding and work our way up the complexity
ladder with floodFill, watershed segmentation and grabCut segmentation. We will also make our own segmentation algorithn
that builds on top of floodFill to count objects in a photo.

Toward the end of the chapter, I have also discussed image histograms and their applications, which are useful
preprocessing steps.

Image Segmentation

Image segmentation can be defined as a procedure to separate visually different parts of the image. In fact, we have been doit
some rudimentary image segmentation for our color-based object detector app already! In this chapter, you will learn some
techniques that will help you to better the object detector app by a large margin.

Now, as being “visually” different is a subjective property that can change with the problem at hand, segmentation is alsc
usually considered correct when it is able to divide the image properly for the desired purpose. For example, let us consider
the same image (Figure 7-1) for which we want to solve two different problems—counting balls and extracting foreground.
Both problems are, as you might have realized, problems of proper image segmentation. For the problem of counting balls wr
will need a segmentation algorithm that will divide the image into all the visually different regions—background, hand, and
balls. On the contrary, for the other problem (that of extracting foreground), it is acceptable that the hand and balls be regarde
as one single region.

Figure 7-1. Image for two segmentation problems: Foreground extraction and counting objects

A word of caution about code and syntax: I will now introduce functions and discuss strategies to use them and not spend
too much time on the syntax. This is because I expect you to consult the online OpenCV documentation
(http://docs.opencv.orq) for those functions. Moreover, introduction of a function is usually followed by code that
uses that function in a constructive manner. Seeing that usage example will further help you understand the syntax aspect of th
function.

https://www.ebooks-it.org/

Sinx eBooks-IT.org

One of the simplest segmentation strategies is to threshold color values (and that is what we do for the color-based object
detector). OpenCV has functions threshold () (threshold values in a Mat with different options for the action taken when
the threshold is exceeded and when the threshold is followed—check out the documentation!), inRange () (apply a low an
high threshold on values ina Mat), and adaptiveThreshold () (same as threshold (), except that the threshold for
each pixel depends values of its neighbors in a patch, the size of which is defined by the user) to help you with thresholding.
We have so far used inRange () in the RGB values of pixels, and found that simple RGB values are very sensitive to
illumination.

However, illumination just affects the intensity of pixels. The problem with thresholding in the RBG colorspace is that th
intensity information is shared by all of R, G, and B (Intensity = 30% R + 59% G + 11% B). The HSV (hue, saturation, value
colorspace, by contrast, encodes intensity (brightness) in just V. H and S encode solely color information. H represents the
actual color, while S represents its “strength” or purity.
http://www.dig.cs.gc.cuny.edu/manuals/Gimp2/Grokking-the-GIMP-v1.0/node51.html isa
good place if you want to read more on the HSV color space. This is great, because we can now just threshold the H and S
channels in the image, and get a lot of illumination invariance. Listing 7-1 therefore is the same as our last object detector
code, except that it converts the frames to the HSV colorspace first using cvtColor () and thresholds the H and S channels
Figure 7-2 shows the code in action, but you should experiment with it under different illumination conditions to see how mu
invariance you get.

Listing 7-1. Color-based object detection using Hue and Saturation thresholding

// Program to display a video from attached default camera device and detect
colored blobs using H and S thresholding

// Remove noise using opening and closing morphological operations

// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace Cv;
using namespace std;

int hs slider = 0, low slider = 30, high slider = 100;
int low h = 30, low s = 30, high h = 100, high s = 100;

void on_hs trackbar (int, void *) {
switch(hs slider) ({

case 0:
setTrackbarPos ("Low threshold", "Segmentation", low h);
setTrackbarPos ("High threshold", "Segmentation", high h);
break;

case 1:
setTrackbarPos ("Low threshold", "Segmentation", low_ s);
setTrackbarPos ("High threshold", "Segmentation", high s);
break;

}

void on low thresh trackbar (int, void *) {
switch (hs slider) {
case 0:
low h = min(high slider - 1, low slider);
setTrackbarPos ("Low threshold", "Segmentation", low h);

https://www.ebooks-it.org/

eBooks-1T.org

case 1:
low s = min(high slider - 1, low slider);
setTrackbarPos ("Low threshold", "Segmentation", low s);
break;

}

void on_high thresh trackbar(int, void *) {
switch(hs slider) ({

case 0:
high h = max(low slider + 1, high slider);
setTrackbarPos ("High threshold", "Segmentation", high h);
break;

case 1:
high s = max(low slider + 1, high slider);
setTrackbarPos ("High threshold", "Segmentation", high s);
break;

}

int main ()

{

// Create a VideoCapture object to read from video file

// 0 is the ID of the built-in laptop camera, change if you want to use other
camera

VideoCapture cap(0);

//check if the file was opened properly
if (!cap.isOpened())
{

cout << "Capture could not be opened succesfully" << endl;
return -1;

}

namedWindow ("Video") ;
namedWindow ("Segmentation") ;

createTrackbar ("0. H\nl. S", "Segmentation", &hs slider, 1, on_hs trackbar);
createTrackbar ("Low threshold", "Segmentation", &low slider, 255,

on low thresh trackbar);
createTrackbar ("High threshold", "Segmentation", &high slider, 255,

on _high thresh trackbar);

while (char (waitKey (1)) != 'q' && cap.isOpened())
{

Mat frame, frame thresholded, frame hsv;
cap >> frame;
cvtColor (frame, frame hsv, CV_BGRZ2HSV);

// Check if the video is over
if (frame.empty ())
{

cout << "Video over" << endl;

https://www.ebooks-it.org/

eBooks-1T.org
J

// extract the Hue and Saturation channels

int from to[] = {0,0, 1,1};

Mat hs(frame.size (), CV_8UC2);

mixChannels (&frame hsv, 1, &hs, 1, from to, 2);

// check the image for a specific range of H and S
inRange (hs, Scalar(low h, low s), Scalar(high h, high s),
frame thresholded) ;

// open and close to remove noise

Mat str el = getStructuringElement (MORPH ELLIPSE, Size(7, 7));
morphologyEx (frame thresholded, frame thresholded, MORPH OPEN, str el);
morphologyEx (frame thresholded, frame thresholded, MORPH CLOSE, str el);

imshow ("Video", frame);
imshow ("Segmentation”, frame thresholded);

}

return 0;

% T @O0 L LAY

https://www.ebooks-it.org/

eBooks-1T.org

Figure 7-2. Object detection by Hue and Saturation range-checking

As you can see in Figure 7-2, I was trying to detect a blue colored object. You will face some difficulty if you try to set tl
ranges for red, because of an inherent property of the HSV colorspace. Hue is generally represented as a circle from 0 to 36(
(OpenCV halves this number to store ina CV_ 8U image) with red wrapping around. This means the range of hue for red is
roughly > 340 and < 20, with 0 coming after 360. So you will not be able to specify the whole range of the hue for red with tl
kind of slider processing we are using. It is an exercise for you to figure out how to process your slider values to address this
problem. Hint: because the Hue is halved, the maximum possible hue in any image is 180. Make use of the extra space (255 -
180 =75) that you have.

Floodfill

OpenCV’s £1loodFill () functiondetermines pixels in the image that are similar to a seed pixel, and connected to it. The
similarity is usually defined by gray level in case of grayscale images, and by RGB values in case of a color image. The
function takes the range of gray (or RGB) values around the gray (or RGB) value of the seed point that define whether a pixel
should be considered similar to the seed pixel. There are two ways to determine if a pixel is connected to another pixel: 4-
connectivity and 8-connectivity, which are evident from the cases shown in Figure 7-3.

=1, ¢ r~=1,c=1 r~1,¢ =1, ¢+]
r,e=1 [r,c+l r,c=] r.c r,c+l
r+l, ¢ r+l, e r+l, ¢ r+1, e+l

Figure 7-3. 4-connectivity (left) and 8-connectivity (right)

The OpenCV floodFill demo is a lot of fun to play with. It allows you to click on an image to specify the seed point and u
sliders to specify the upper and lower range around the seed point for defining similarity.

https://www.ebooks-it.org/

- eBooks-1T.org

* 5 Tt 4EPPLPLHLY

lo_diff (020/255) @]

up_diff (049/255) CEEEEN
(x=344.v=472) ~ R:9 G:1 B:14

Figure 7-4. OpenCV floodFill demo
One can use the following strategy to utilize f1oodFil1l () to automate the color-based object detector app:

o Ask the user to click on that object
e Get the similar connected pixels to this pointby f1oodFil1l ()

e Convert this collection of pixels to HSV and, from it, decide the range of H and S values to check for using
inRange ()

Check out Listing 7-2, which is now our “intelligent” color-based object detector app!

Listing 7-2. Program to use floodFill to make the color-based object detector “intelligent”

// Program to automate the color-based object detector using floodFill
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace cv;
using namespace std;

Mat frame hsv, frame, mask;

int low diff = 10, high diff = 10, conn = 4, val = 255, flags = conn + (val << 8)
CV_FLOODFILL MASK ONLY;
double h h = 0, 1 h =0, h s =0, 1 s = 0;

bool selected = false;
void on low diff trackbar(int, void *) ({}
void on _high diff trackbar (int, void *) ({}

void on mouse (int event, int x, int y, int, void *) {
if (event != EVENT LBUTTONDOWN) return;

selected = true;

//seed point

https://www.ebooks-it.org/

eBooks-1T.org

// make mask using floodFill

mask = Scalar::all(0);
floodFill (frame, mask, p, Scalar (255, 255, 255), 0, Scalar(low diff, low diff,

low diff), Scalar(high diff, high diff, high diff), flags);

// find the H and S range of piexels selected by floodFill

Mat channels[3];
split (frame hsv, channels);
minMaxLoc (channels[0], &1 h, &h h, NULL, NULL, mask.rowRange(l, mask.rows-

1) .colRange (1, mask.cols-1));
minMaxLoc (channels[1l], &l s, &h s, NULL, NULL, mask.rowRange(l, mask.rows-

1) .colRange (1, mask.cols-1));

int main () {
// Create a VideoCapture object to read from video file
// 0 is the ID of the built-in laptop camera, change if you want to use other

camera
VideoCapture cap (0);

//check if the file was opened properly

if(!cap.isOpened()) {
cout << "Capture could not be opened succesfully" << endl;
return -1;

}

namedWindow ("Video") ;
namedWindow ("Segmentation") ;

createTrackbar ("Low Diff", "Segmentation", &low diff, 50, on low diff trackbar)
createTrackbar ("High Diff ", "Segmentation", &high diff, 50,
on high diff trackbar);

setMouseCallback ("Video", on mouse) ;

while (char (waitKey (1)) != 'qg' && cap.isOpened()) {
cap >> frame;
if (!selected) mask.create(frame.rows+2, frame.cols+2, CV 8UCI);

// Check if the video is over

if (frame.empty()) {
cout << "Video over" << endl;
break;

}
cvtColor (frame, frame hsv, CV_BGRZ2HSV);

// extract the hue and saturation channels

int from tol] = {0,0, 1,1};

Mat hs(frame.size (), CV_8UC2);

mixChannels (&frame hsv, 1, &hs, 1, from to, 2);

// check for the range of H and S obtained from floodFill

Mat frame thresholded;
inRange (hs, Scalar(l h, 1 s), Scalar(h h, h s), frame thresholded);

https://www.ebooks-it.org/

eBooks-1T.org

rat SstL ©l1 — ygclLotluClLullllgnlellcllt (MuRrFn RECL, olz€ (o, J)),
morphologyEx (frame thresholded, frame thresholded, MORPH OPEN, str el);
morphologyEx (frame thresholded, frame thresholded, MORPH CLOSE, str el);

imshow ("Video", frame);
imshow ("Segmentation", frame thresholded);

return O;

Figure 7-5. Using floodFill in the color-based object detector

Watershed Segmentation

The watershed algorithm is a good way to segment an image with objects that are touching each other, but the edges are not
strong enough for accurate segmentation. Consider the example of an image of the top view a box of fruits, and the problem o
segmenting the individual fruits to count them. Canny edges at a tight threshold are still too noisy, as shown in Figure 7-6.

Fitting Hough circles (with a limit on the minimum radius of the circles) to these edges is obviously not going to work, as you
can see in the same figure.

https://www.ebooks-it.org/

eBooks-1T.org

LinesfCirc (1/1) &

Acc. Thres (052/300) EE—

(x=548, ya3ad) - 2152 G:152 B2152

https://www.ebooks-it.org/

Lines/circ (1/1)

Acc. Thees (042/300) I
| {x=82, y=481) ~ R:85 G:B5 B:85

Figure 7-6. (clockwise, from top left) original image, Canny edges with a tight threshold and attempts to fit circles to the image at different Hough accumulat
thresholds

Now let us see how watershed segmentation can help us here. Here is how it works:

e Use some function to decide the “height” of pixels in an image, for example, gray level

e Reconstruct the image to force all the regional minima to the same level. Hence “basins” are formed around the
minima

e Flood this depth structure with liquid from the minima till the liquid reaches the highest point in the structure.
Wherever liquids from two basins meet, a “dam” or “watershed line” is constructed to prevent them from mixing

o After the process is complete, the basins are returned as different regions of the image, while the watershed lines
are the boundaries of the regions

The OpenCV function watershed () implements marker controlled watershed segmentation, which makes things a littl
bit easier for us. The user gives certain markers as input to the algorithm, which first reconstructs the image to have local
minima only at these marker points. The rest of the process continues as described earlier. The OpenCV watershed demo
makes the user mark these markers on the image (Figure 7-7).

et 4 @A L LHY et d@BOLHHY

[x= 386, y=2B6] - B 34 G55 B0 K= 180, ya3) ~ FRD G006 B108

Figure 7-7. OpenCV watershed demo—marker-based watershed segmentation

The main challenge in using the watershed transform for an object counter application is figuring out the markers by code
rather than having the human input them. The following strategy, which uses a lot of morphological operations that you learnt
before, is used in Listing 7-3:

https://www.ebooks-it.org/

Figure 7-8. Histogram equalization improves image contrast

¢ Dilate the image to remove small black spots (Figure 7-9)

«-% t 4@DPLPLHT

{x=0, ¥=278) ~ L:47

Figure 7-9. Dilating the image removes black spots

e Open and close to highlight foreground objects (Figure 7-10)

im_oc

e st 4 @B PLPLHY

|(x=158, y=200) ~ L.213

https://www.ebooks-it.org/

Figure eBooks-1T.org

e Apply adaptive threshold to create a binary mask that is 255 at regions of foreground objects and 0 otherwise
(Figure 7-11)

.i.!.' B

Figure 7-11. Adaptively thresholding the previous image (almost) isolates the different objects

(%=230, v=0) ~

e Erode twice to separate some regions in the mask (Figure 7-12)

(x=11, v=41) -

Figure 7-12. Eroding the previous image twice completely isolates the objects

The regions in this mask can now we be used as markers in the watershed () function. But before that, these regions
have to be labeled by positive integers. We do this by detecting contours and then filling these contours by
drawContours () using successively increasing integers. Figure 7-13 shows how the final output of the watershed
transform looks. Note the little neat tricks that [borrowed from the OpenCV watershed demo code to color the regions and
transparently display them. Listing 7-3 shows the actual program.

https://www.ebooks-it.org/

%t $E@OPLLPHY

EM?S. v=162) - R:134 G:147 B:190

Figure 7-13. Segmentation after the watershed transform

Listing 7-3. Program to count the number of objects using morphology operations and the watershed transform

// Program to count the number of objects using morphology operations and the
watershed transform

// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace cv;
using namespace std;

class objectCounter {
private:
Mat image, gray, markers, output;
int count;
public:
objectCounter (Mat); //constructor
void get markers() //function to get markers for watershed segmentation

int count objects(); //function to implement watershed segmentation and
count catchment basins

}i

objectCounter: :objectCounter (Mat image) {
image = 1image.clone();
cvtColor (image, gray, CV_BGR2GRAY) ;
imshow ("image", image) ;

}

void objectCounter::get markers() {
// equalize histogram of image to improve contrast
Mat im e; equalizeHist (gray, im e);
//imshow ("im e", im e);

// dilate to remove small black spots

https://www.ebooks-it.org/

eBooks-1T.org

Mdatot 1l u, JulldLe (L1l <, 1l a, strLel),

//imshow ("im d", im d);

// open and close to highlight objects

strel = getStructuringElement (MORPH ELLIPSE, Size (19, 19));
Mat im oc; morphologyEx (im d, im oc, MORPH OPEN, strel);
morphologyEx (im oc, im oc, MORPH CLOSE, strel);
//imshow ("im oc", im oc);

// adaptive threshold to create binary image

Mat th a; adaptiveThreshold(im oc, th a, 255, ADAPTIVE THRESH MEAN C,
THRESH BINARY, 105, 0);

//imshow ("th a", th a);

// erode binary image twice to separate regions
Mat th e; erode(th a, th e, strel, Point(-1, -1), 2);
//imshow ("th e", th e);

vector<vector<Point> > ¢, contours;
vector<Vec4i> hierarchy;
findContours (th e, ¢, hierarchy, CV_RETR CCOMP, CV_ CHAIN APPROX NONE) ;

// remove very small contours
for (int idx = 0; idx >= 0; idx = hierarchy[idx][0])
if (contourArea(c[idx]) > 20) contours.push back(c[idx]);

cout << "Extracted " << contours.size () << " contours" << endl;
count = contours.size();

markers.create (image.rows, image.cols, CV_32SCl);

for(int idx = 0; 1idx < contours.size(); idx++)

drawContours (markers, contours, idx, Scalar::all(idx + 1), -1, 8);

}

int objectCounter::count objects() {
watershed (image, markers);

// colors generated randomly to make the output look pretty
vector<Vec3b> colorTab;
for(int 1 = 0; 1 < count; i++) {

int b = theRNG() .uniform (0, 255);

int g = theRNG() .uniform (0, 255);

int r = theRNG() .uniform (0, 255);

colorTab.push back (Vec3b ((uchar)b, (uchar)g, (uchar)r));
}

// watershed output image
Mat wshed(markers.size (), CV_8UC3);

// paint the watershed output image

for(int 1 = 0; 1 < markers.rows; 1i++)
for(int j = 0; Jj < markers.cols; Jj++) {
int index = markers.at<int> (i, 7J);

if (index == -1)

https://www.ebooks-it.org/

eBooks-1T.org

cloe 1L (1lldex Ss— U | lLilaex ~ Coulll)
wshed.at<Vec3b>(i, j) = Vec3b(0, 0, 0);

else
wshed.at<Vec3b>(i, j) = colorTabl[index - 1];

}

// superimpose the watershed image with 50% transparence on the grayscale
original image

Mat imgGray; cvtColor(gray, imgGray, CV_GRAY2ZBGR);

wshed = wshed*0.5 + imgGray*0.5;

imshow ("Segmentation", wshed);

return count;

}

int main () {
Mat im = imread("fruit.jpg"):;

objectCounter oc(im);
oc.get markers();

int count = oc.count objects();
cout << "Counted " << count << " fruits." << endl;
while (char (waitKey (1)) != 'g') {}

return O;

GrabCut Segmentation

GrabCut is a graph-based approach to segmentation that allows you to specify a rectangle around an object of interest and the
tries to segment the object out of the image. While I will restrict discussion of this algorithm to the OpenCV demo, you can
check out the paper on this algorithm, “GrabCut: Interactive foreground extraction using iterated graph cuts” by C. Rother, V.
Kolmogorov, and A. Blake. The OpenCV demo allows you to run several iterations of the algorithm, with each iteration givis
successively better results. Notice that the initial rectangle that you specify must be as tight as possible.

https://www.ebooks-it.org/

— eBooks-1T.org

= ¢+ $E P L PLPHY

|‘x=|93_u=234} ~R173 G119 B:49

o= o

image

(x=0, y=76) ~ R:0 G:0 B:0

Figure 7-14. OpenCV GrabCut demo

Histograms

Histograms are a simple yet powerful way of representing distributions of data. If you do not know what a histogram is, I
suggest reading the Wikipedia page. In images, the simplest histograms can be made from the gray levels (or R, G, or B valug
of all pixels of the image. This will allow you to spot general trends in the image data distribution. For example, in a dark
image, the histogram will have most of its peaks in the lower part of the 0 to 255 range.

Equalizing Histograms

The simplest application of histograms is to normalize the brightness and improve contrast of the image. This is done by first
thresholding out very low values from the histogram and then “stretching” it so that the histogram occupies the entire 0 to 255
range. A very efficient way of doing this is:

https://www.ebooks-it.org/

. eBooks-1T.org

e Calculate the cumulative sum of the histogram:
H'(i)= X% H(j)
e Make the new image dst from original image src as follows:
dst (x,y)z H'(sre(x,p))

The OpenCV function equalizeHist () implements this. Listing 7-4 is a small app that can show you the difference
between a normal image and its histogram-equalized version. You can apply equalizeHist () to RGB images, too, by
applying it individually to all the three channels. Figure 7-15 shows the magic of histogram equalization!

Listing 7-4. Program to illustrate histogram equalization

// Program to illustrate histogram equalization in RGB images
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace cv;
using namespace std;

Mat image, image eq;
int choice = 0;

void on trackbar (int, void*) ({
if (choice == 0) // normal image
imshow ("Image", image);
else // histogram equalized image
imshow ("Image", image eq);

}

int main () {
image = imread ("scene.jpg");
image eqg.create (image.rows, image.cols, CV_8UC3);

//separate channels, equalize histograms and them merge them
vector<Mat> channels, channels eqg;

split (image, channels);

for(int 1 = 0; i < channels.size(); 1i++) {
Mat eqg;
equalizeHist (channels[i], eq):
channels eqg.push back(eq);

}

merge (channels eq, image eq);
namedWindow ("Image") ;

createTrackbar ("Normal/Eg.", "Image", &choice, 1, on_trackbar) ;
on_trackbar (0, 0);

https://www.ebooks-it.org/

eBooks-1T.org

return 0;

Image

T EE T I ENILE:

Mormal/Eg. (0/1) (I

(=562, y=190) ~ R:60 G:50 B:38

Normal/Eg. (1/1) |

(x=212, y=4T1) ~ R:91 G:173 B:210

Figure 7-15. Histogram equalization

Histogram Backprojections

Histogram backprojection is the reverse process of calculating a histogram. Say you already have a histogram. You can
backproject it into another image by replacing every pixels value of that image with the value of the histogram at the bin in
which the pixel value falls. This effectively fills regions in the image that match the histogram distribution with high value an
the rest with small values. The OpenCV functions calcHist () and calcBackProject () canbe used to calculate
histograms and backproject them, respectively. To give you an example of their usage, Listing 7-5 is a modification of the
floodFill-automated object detector:

e Itallows the user to click at an object in the window

https://www.ebooks-it.org/

. eBooks-1T.org
e [t calculates the hue and saturation histogram of the points selected by f1oodFi11 ()

o It backprojects this histogram into successive video frames

Figure 7-16 shows the backprojection application in action.

Listing 7-5. Program to illustrate histogram backprojection

// Program to illustrate histogram backprojection
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace cv;
using namespace std;

Mat frame hsv, frame, mask;
MatND hist; //2D histogram

int conn = 4, val = 255, flags = conn + (val << 8) + CV_FLOODFILL MASK ONLY;

bool selected = false;

// hue and saturation histogram ranges
float hrange[] = {0, 179}, srange[] = {0, 255};
const float *ranges[] = {hrange, srange};

void on mouse (int event, int x, int y, int, void *) {
if (event != EVENT LBUTTONDOWN) return;

selected = true;

// floodFill
Point p(x, V);:
mask = Scalar::all(0);

floodFill (frame, mask, p, Scalar (255, 255, 255), 0, Scalar(10, 10, 10),

Scalar (10, 10, 10), flags);:
Mat mask = mask.rowRange (l, mask.rows-1).colRange(l, mask.cols-1);

// number of bins in the histogram for each channel
int histSize[] = {50, 50}, channels[] = {0, 1};

// calculate and normalize histogram
calcHist (&frame hsv, 1, channels, mask, hist, 2, histSize, ranges);
normalize (hist, hist, 0, 255, NORM MINMAX, -1, Mat());

}

int main () {
// Create a VideoCapture object to read from video file

// 0 is the ID of the built-in laptop camera, change if you want to use

camera
VideoCapture cap(0);

//check if the file was opened properly
if(!cap.isOpened()) {

other

https://www.ebooks-it.org/

eBooks-1T.org
recuril =4,

}

namedWindow ("Video") ;
namedWindow ("Backprojection") ;

setMouseCallback ("Video", on mouse);

while (char (waitKey (1)) != 'qg' && cap.isOpened()) {
cap >> frame;
if(!selected) mask.create (frame.rows+2,

// Check if the video is over

frame.cols+2, CV_8UCIL);

if (frame.empty ()) {
cout << "Video over" << endl;
break;

}
cvtColor (frame, frame hsv, CV_BGRZHSV);

// backproject on the HSV image
Mat frame backprojected = Mat::zeros(frame.size(), CV_8UCI);

if (selected) {
int channels[] = {0, 1};

calcBackProject (&frame hsv, 1, channels, hist, frame backprojected,

ranges) ;

}

imshow ("Video", frame);
imshow ("Backprojection", frame backprojected);

}

return O;

%t 4+ 8P FPFHAY

(A 528, vaRaS] ~B:ha5 G101 EeS

-n T4+ @8PFFPFHAY

Figure 7-16. Histogram backprojection

https://www.ebooks-it.org/

Me. eBooks-1T.org

Meanshift is an algorithm that finds an object in a backprojected histogram image. It takes an initial search window as input
and then iteratively shifts this search window such that the mass center of the backprojection inside this window is at the cen
of the window.

Camshift is a histogram backprojection—based object tracking algorithm that uses meanshift at its heart. It takes the
detection window output by meanshift and figures out the best size and rotation of that window to track the object. OpenCV
functions meanShift () and CamShift () implement these algorithms and you can see the OpenCV implementation of
camshift in the built-in demo.

=% §F 4 @BHELLHAST

| = = 4 $ @B L LB H S

D BET, wu K] = B0 G0 D

Figure 7-17. OpenCV camshift demo

Summary

This chapter will have made you aware of the segmentation algorithms that OpenCV provides. But what I really want you to
take away from this chapter is a sense of how you can combine your image-processing knowledge to put together your own
segmentation algorithm, as we did for the fruit counter application. This is because, as I said in the beginning of the chapter,
segmentation is differently defined for different problems, and it requires you to be creative. Histogram equalization and
backprojection can be important preprocessing steps for some higher-level algorithms, so don't forget them, too!

https://www.ebooks-it.org/

CH eBooks-1T.org

Basic Machine Learning and Object Detection Based on Keypoints

In this exciting chapter I plan to discuss the following:

e Some general terminology including definitions of keypoints and keypoint descriptors

e Some state-of-the-art keypoint extraction and description algorithms that OpenCV boasts, including SIFT, SURF,
FAST, BRIEF, and ORB

¢ Basic machine learning concepts and the working of the Support Vector Machine (SVM)

o We will use our knowledge to make a keypoint-based object detector app that uses machine learning to detect
multiple objects in real time using the bag-of-visual-words framework. This app will be robust to illumination
invariance and clutter in the scene

Keypoints and Keypoint Descriptors: Introduction and Terminology

The color-based object detector app we have been working on until now leaves a lot to be desired. There are two obvious
pitfalls of detecting objects based on color (or grayscale intensity):

e Works well only for single-colored objects. You can backproject a hue histogram of a textured object, but that is
likely to include a lot of colors and this will cause a very high amount of false positives

e Can be fooled by different objects of the same color

But color-based object detection is very fast. This makes it ideal for applications where the environment is strictly
controlled, but almost useless in unknown environments. I will give you an example from my work for the Robocup humanoic
soccer team of the University of Pennsylvania. The competition is about making a team of three humanoid robots play 100%
autonomous soccer against other similar robot teams. These robots require fast ball, field, field line, and goalpost detection i
order to play effectively, and since the rules mandate all these objects to be of a specific unique solid color, we use color-
based object detection verified by some logical checks (like ball height and goalpost height-to-width aspect ratio). The color
based object detection works nicely here, because the environment is controlled and the objects are all unique solid colors.
But if you want to design the vision system for a search-and-rescue robot, you should obviously not rely on color for detectin
objects, because you do not know what the working environment of your robot will look like, and the objects of your interest
can consist of arbitrarily many colors. With this motivation, let us learn what keypoints and keypoint descriptors mean!

General Terms

In object detection problems you usually have two sets of images. The training set will be used for showing the computer wh:
the desired object looks like. This can be done by calculating hue histograms (as you already know) or by computing keypoir
and keypoint descriptors (as you will learn soon). Obviously, it is preferable that training images are either annotated
(locations of objects of interest are specified by bounding boxes) or just contain the objects of interest and little else. The
testing set contains images on which your algorithm will be used—in short, the use case of your application.

How Does the Keypoint-Based Method Work?

The philosophy of this method is that one should not make the computer “learn” the characteristics of the whole object templz
(like calculating the histogram of flood-filled points) and look for similar instances in other images. Instead, one should find
certain “important” points (keypoints) in the object template and store information about the neighborhood of those keypoints

https://www.ebooks-it.org/

(keyy eBooks-1T.org ints it

the WIvIC gl dlid Uy W 1idicdl uIc two UCSULIPLIIL SCLW (VLIC UL UIC UDJCLL ICHPIale dlid ULIC 11O UIC OS5 1A gl) LlSlng
some notion of similarity, and see how many descriptors match. For test images that contain an instance of the object in the
object template, you will get a lot of matches and these matches will have a regular trend. Figure 8-1 will help you understan
this better. It shows a training and testing image, each with its SIFT (Scale Invariant Feature Transform—a famous algorithm
for keypoint extraction and description) keypoints, and the matching descriptors between the two images. See how all of the
matches follow a trend.

R RN NN

Lane)17, wa 35000 - BC180 028 B0

Figure 8-1. SIFT keypoint and feature matching

Looks cool? The next section describes how SIFT works.

SIFT Keypoints and Descriptors

SIFT is arguably the most famous and widely implemented keypoint detection and description algorithm out there today. That
why I chose to introduce it first, hoping to introduce some other concepts associated with keypoint detection and description
along the way. You can get a very detailed description of the algorithm in the classic paper “Distinctive Image Features from
Scale-Invariant Keypoints” by David G. Lowe. ! For all the other algorithms, I will limit discussion to salient points in the
method and provide reference to the papers on which they are based.

Keypoint descriptors are also often called features. Object detection using SIFT is scale and rotation invariant. This mea:
the algorithm will detect objects that:

e Have the same appearance but a bigger or smaller size in the test image compared with the training image(s)
(scale invariance)

e Are rotated (about a scale perpendicular to the image) compared to the training object(s)

e Exhibit a combination of these two conditions (rotation invariance)

This is because the keypoints extracted by SIFT have a scale and orientation associated with them. The term “scale”
requires some explanation, as it is widely used in computer vision literature. Scale refers to the notion of the size at which th
object is seen, or how far the camera is from the object. Scale is also almost always relative. A higher scale means the objec
looks smaller (because the camera moves further away) and vice versa. Higher scale is usually achieved by smoothing the
image using a Gaussian kernel (remember gaussianBlur () ?) and downsampling. Lower scale is achieved by a similar
process of smoothing and upsampling. That is why scale is also often specified by the variance of the Gaussian kernel used t
achieve it (with o = 1 for the current scale).

Keypoint Detection and Orientation Estimation

Keypoints can be something as simple as corners. However, because SIFT requires keypoints to have a scale and an
orientation associated with them, and also for some efficiency reasons that will be clear once you know how keypoint
descriptors are constructed, SIFT uses the following method to compute keypoint locations in the image:

e It convolves the image with Gaussians of successively increasing variance, thereby increasing the scale (and

https://www.ebooks-it.org/

eBooks-1T.org

LaCol UL 4). 1HUS, 4 SUAIC pyldlliu 15 C1CdlCu dd> SHUOWIL T T'IEgULC 6-4. NCHICHIVCTL Uldl da £=1J Jduddldll wiul d

variance o is given by:

—
Scale e
(next Zz _—
octave)

Scale
(first
octave)

Figure 8-2. Scale Pyramid (From “Distinctive Image Features from Scale-Invariant Keypoints,” David G. Lowe. Reprinted by permission of Springer
Science+Business Media.)

e Successive images in this pyramid are subtracted from each other. The resulting images are said to be the output of
the Difference of Gaussians (DoG) operator on the original image, as shown in Figure 8-3.

\J

\J

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

https://www.ebooks-it.org/

Figure
Spring

eBooks- I T.org pission ¢
e Lowe in his paper has shown mathematically (through the solution of the heat diffusion equation) that the output of
applying the DoG operator is directly proportional to a close approximation of the output of the Laplacian of
Gaussian operator applied to the image. The point of going through this whole process is that it has been shown in
the literature that the maxima and minima of the output of the Laplacian of Gaussians operator applied to the image
are more stable keypoints than those obtained by conventional gradient-based methods. Application of the
Laplacian of Gaussian operator to the image involves second order differentiation after convolution with Gaussian
kernels, whereas here we get a DoG pyramid (which is a close approximation to the LoG pyramid) using just
image differences after applying Gaussian kernels. Maxima and minima of the DoG pyramid are obtained by
comparing a pixel to its 26 neighbors in the pyramid as shown in Figure 8-4. A point is selected as a keypoint only
if it higher or lower than all its 26 neighbors. The cost of this check is reasonably low because most points will be
eliminated in the first few checks. The scale of the keypoint is the square rooted variance of the smaller of the two
Gaussians which were used to produce that particular level of the DoG pyramid.

A o T

——
L L S

Figure 8-4. Maxima and minima selection by comparison with 26 neighbors (From “Distinctive Image Features from Scale-Invariant Keypoints,” David G.
Lowe. Reprinted by permission of Springer Science+Business Media.)

e Keypoint locations (with scales) thus computed are further filtered by checking that they have sufficient contrast
and that they are not a part of an edge by using some ingenious math (which you can appreciate if you read section
4 of the paper)

e For assigning an orientation to the keypoints, their scale is used to select the Gaussian smoothed image with the
closest scale (all of which we have already computed and stored for constructing the DoG pyramid) so that all
calculations are performed in a scale-invariant manner. A square region around the keypoint corresponding to a
circle with a radius of 1.5 times the scale is selected in the image (Figure 8-5), and gradient orientation at every
point in this region is computed by the following equation (L is the Gaussian smoothed image)

L(x,y+l)—L(x,y—l)
L(x+1,y)—L(x—l,y)

6 (x,y)=tan™'()

https://www.ebooks-it.org/

eBooks-1T.org

N F 4
— b ¥ N oW
—
— .—-;‘.’, - —
) i il | -
-
i T w|™® k- o =
-

/[
14
&>
P
)
N

Image gradients

Figure 8-5. Square patch around a keypoint location and gradient orientations with gradient magnitudes (From “Distinctive Image Features from Scale-
Invariant Keypoints,” David G. Lowe. Reprinted by permission of Springer Science+Business Media.)

An orientation histogram with 36 10-degree bins is used to collect these orientations. Contributions of gradient orientatio
to the histogram are weighted according to a Gaussian kernel of ¢ equal to 1.5 times the scale of the keypoint. Peaks in the
histogram correspond to the orientation of the keypoints. If there are multiple peaks (values within 80% of the highest peak),
multiple keypoints are created at the same location with multiple orientations.

SIFT Keypoint Descriptors

Every SIFT keypoint has a 128-element descriptor associated with it. The square region shown in Figure 8-5 is divided into
equal blocks (the figure just shows four blocks). For each block, gradient orientations are histogrammed into eight bins, with
the contributions equal to the product of the gradient magnitudes and a Gaussian kernel with ¢ equal to half the width of the
square. In order to achieve rotation invariance, the coordinates of points in the square region and the gradient orientations at
those points are rotated relative to the orientation of the keypoint. Figure 8-6 shows four such eight-bin histograms (with leng
of the arrow indicating the value of the corresponding bin) for the four blocks. Thus, 16 eight-bin histograms make the 128-
element SIFT descriptor. Finally, the 128-element vector is normalized to unit length to provide illumination invariance.

T —

T']
AEI N B f'/\,\
B S) i e

— ol % » == ow
r,v-éﬂ"‘-""-r"'-""

nEEARTME
] S :/ *
"’:* " tle =~ -
'_‘__‘-_._._‘/
Image gradients Keypoint descriptor

Figure 8-6. Gradient orientation histograms for keypoint description in SIFT (From “Distinctive Image Features from Scale-Invariant Keypoints,” David G.
Lowe. Reprinted by permission of Springer Science+Business Media.)

Matching SIFT Descriptors

Two 128-element SIFT descriptors are considered to match if the Euclidean (a.k.a. L.2) distance between them is low. Lowe
also came up with a condition for filtering these matches to make the matching more robust. Suppose you have two sets of
descriptors, one from the training image and the other from a test image, and you want to find robust matches. Usually, specia
algorithms called “nearest neighbor searches” are used to find out the test descriptor closest in the Euclidean sense to each
train descriptor. Suppose that you used the nearest neighbor search to get 2 nearest neighbors to all the train descriptor. A
descriptor match is eliminated if the distance from the train descriptor to its 1st nearest neighbor is greater than a threshold

https://www.ebooks-it.org/

times eBooks-1T.org ses the

matchca LU UC UWNyue ald gy Jaisciiiniauve. 1HIS 1CHULICILICIIL Cdll DO 11aUC 11IUIT SUIZCLIL VDY 1CUULLLIE UIC Valud Ufthis
threshold.

OpenCV has a rich set of functions (that are implemented as classes) for all sorts of keypoint detection, descriptor
extraction and descriptor matching. The advantage is that you can extract keypoints using one algorithm and extract descriptor
around those keypoints using another algorithm, potentially tailoring the process to your needs.

FeatureDetector is the base class from which all specific keypoint detection classes (such as SIFT, SURF, ORB,
etc.) are inherited. The detect () method in this parent class takes in an image and detects keypoints, returning themina S’
vector of KeyPoint objects. KeyPoint is a generic class that has been designed to store keypoints (with location, orientatic
scale, filter response and some other information). SiftFeatureDetector is the class inherited from
FeatureDetector that extracts keypoints from a grayscale image using the algorithm I outlined earlier.

Similar to FeatureDetector, DescriptorExtractor is the base class for all kinds of descriptor extractors
implemented in OpenCV. It has a method called compute () that takes in the image and keypoints as input and gives a Mat -
which every row is the descriptor for the corresponding keypoint. For SIFT, youcanuse SiftDescriptorExtractor.

All descriptor matching algorithms are inherited from the DescriptorMatcher class, which has some really useful
methods. The typical flow is to put the train descriptors in the matcher object with the add () method, and initialize the near
neighbor search data structures with the train () method. Then, you can find closest matches or nearest neighbors for quer
test descriptors using the match () or knnMatch () method respectively. There are two ways to get nearest neighbors:
doing a brute force search (go through all train points for each test point, BFmatcher ()) or using the OpenCV wrapper for
Fast Library for Approximate Nearest Neighbors (FLANN) implemented in the FlannBasedMatcher () class. Listing 8-
is very simple: it uses SIFT keypoints, SIFT descriptors and gets nearest neighbors using the brute force approach. Be sure tc
go through it carefully for syntax details. Figure 8-7 shows our first keypoint-based object detector in action!

Listing 8-1. Program to illustrate SIFT keypoint and descriptor extraction, and matching using brute force

// Program to illustrate SIFT keypoint and descriptor extraction, and matching
using brute force
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>

#include <opencv2/highgui/highgui.hpp>
#include <opencv2/nonfree/features2d.hpp>
#include <opencv2/features2d/features2d.hpp>

using namespace Cv;
using namespace std;

int main () {
Mat train = imread("template.jpg"), train g;
cvtColor(train, train g, CV_BGR2ZGRAY) ;

//detect SIFT keypoints and extract descriptors in the train image
vector<KeyPoint> train kp;
Mat train desc;

SiftFeatureDetector featureDetector;
featureDetector.detect (train g, train kp);
SiftDescriptorExtractor featureExtractor;
featureExtractor.compute (train g, train kp, train desc);

// Brute Force based descriptor matcher object
BFMatcher matcher;

vector<Mat> train desc collection(l, train desc);
matcher.add (train desc collection);
matcher.train();

https://www.ebooks-it.org/

eBooks-1T.org
AFEEEREE S A g oo TTo Je<c

VideoCapture cap(0);
unsigned int frame count = 0;

while (char (waitKey (1)) != 'g') {
double t0 = getTickCount();
Mat test, test g;
cap >> test;
if (test.empty())
continue;

cvtColor (test, test g, CV_BGR2ZGRAY) ;

//detect SIFT keypoints and extract descriptors in the test image
vector<KeyPoint> test kp;

Mat test desc;

featureDetector.detect (test g, test kp);
featureExtractor.compute (test g, test kp, test desc);

// match train and test descriptors, getting 2 nearest neighbors for all
test descriptors

vector<vector<DMatch> > matches;

matcher.knnMatch (test desc, matches, 2);

// filter for good matches according to Lowe's algorithm
vector<DMatch> good matches;
for(int 1 = 0; i < matches.size(); i++) {
if (matches[1][0].distance < 0.6 * matches[i][1l].distance)
good matches.push back(matches[1i][0]);
}

Mat img show;
drawMatches (test, test kp, train, train kp, good matches, img show);
imshow ("Matches", img show);

cout << "Frame rate = " << getTickFrequency() / (getTickCount() - t0) <<
endl;

}

return 0;

https://www.ebooks-it.org/

Figure 8-7. SIFT keypoint based object detector using the Brute Force matcher

Note the use of the very convenient drawMatches () function to visualize the detection and the method I use to measur
the frame rate. You can see that we get a frame rate of around 2.1 fps when there is no instance of the object and 1.7 when the
is an instance, which is not that good if you have a real-time application in mind.

Listing 8-2 and Figure 8-8 show that the use of FLANN based matcher increases the frame rate to 2.2 fps and 1.8 fps.

Listing 8-2. Program to illustrate SIFT keypoint and descriptor extraction, and matching using FLANN

// Program to illustrate SIFT keypoint and descriptor extraction, and matching
using FLANN

// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>

#include <opencv2/highgui/highgui.hpp>
#include <opencv2/nonfree/features2d.hpp>
#include <opencv2/features2d/features2d.hpp>

using namespace cv;
using namespace std;

int main () {
Mat train = imread("template.jpg"), train g;
cvtColor(train, train g, CV_BGR2ZGRAY) ;

//detect SIFT keypoints and extract descriptors in the train image
vector<KeyPoint> train kp;
Mat train desc;

SiftFeatureDetector featureDetector;
featureDetector.detect (train g, train kp);
SiftDescriptorExtractor featureExtractor;
featureExtractor.compute (train g, train kp, train desc);

https://www.ebooks-it.org/

eBooks-1T.org

rldllllibdasealladaLcliler llldLcller ,

vector<Mat> train desc collection(l, train desc);
matcher.add(train desc collection);
matcher.train () ;

// VideoCapture object
VideoCapture cap (0);

unsigned int frame count = 0;

while (char (waitKey (1)) != 'g') {
double t0 = getTickCount () ;
Mat test, test g;
cap >> test;
if (test.empty())
continue;

cvtColor (test, test g, CV_BGR2GRAY) ;

//detect SIFT keypoints and extract descriptors in the test image
vector<KeyPoint> test kp;

Mat test desc;

featureDetector.detect (test g, test kp);
featureExtractor.compute (test g, test kp, test desc);

// match train and test descriptors, getting 2 nearest neighbors for all
test descriptors

vector<vector<DMatch> > matches;

matcher.knnMatch (test desc, matches, 2);

// filter for good matches according to Lowe's algorithm
vector<DMatch> good matches;
for(int i = 0; 1 < matches.size(); i++) {
if (matches[i] [0].distance < 0.6 * matches[i][1l].distance)
good matches.push back (matches[i] [0]);
}

Mat img show;
drawMatches (test, test kp, train, train kp, good matches, img show);
imshow ("Matches", img show) ;

cout << "Frame rate = " << getTickFrequency() / (getTickCount() - t0) <<
endl;

}

return O;

https://www.ebooks-it.org/

eBooks-1T.org

Figure 8-8. SIFT keypoint based object detector using the FLANN based matcher

SURF Keypoints and Descriptors

Herbert Bay et al., in their paper “SURF: Speeded Up Robust Features,” presented a keypoint detection and description
algorithm that is as robust and repeatable as SIFT, yet more than twice as fast. Here I will outline the salient points of this
algorithm. (Please refer to the paper if you want more detailed information.)

SURF Keypoint Detection

The reason why SURF is fast is because it uses rectangular discretized integer approximations for complicated continuous
real-valued functions. SURF uses maxima of the Hessian matrix determinant. Now the Hessian matrix is defined as:

H(x,0) =[

Where:

Lxx(x,6) ny(x,c}}
Lxy(x,0) Lyy(x,0)

Lxx(x,0) is the convolution of the Gaussian second-order derivative ad g (G) with the image T at point x.
ox’

Figure 8-9 shows how the second-order Gaussian derivatives look and their SURF rectangular integer approximations.

nee |
Figure 8-9. Second order Gaussian derivatives in the Y and XY direction (left); their box-filter approximations (right). (From “SURF: Speeded Up Robust
Features,” by Herbert Bay et al. Reprinted by permission of Springer Science+Business Media)

To understand why Hessian matrix determinant extrema represent corner-like keypoints, remember that convolution is
associative. So the elements of the Hessian matrix can also be thought of as second-order spatial derivatives of the image aft
smoothing it with a Gaussian filter. Second-order spatial derivatives of the image will have a peak if there are sudden intensi
changes. However, edges can also count as sudden intensity changes. The determinant of the matrix helps us to distinguish
edges from corners. Now, the determinant of the Hessian matrix is given by:

det(H) = Lxx(x,ﬁ)* Lyy(x,G)— Lxx(x,0)

From the construction of the filters it is clear that Lxx and Lyy respond to vertical and horizontal edges respectively,

https://www.ebooks-it.org/

wher eBooks-1T.org value

Wherl UICIT IS all I >Cl Uy pdll Ul 1HUL1Z011kdl alld velucdl CUZDS (1dKilEg 4 CULLICL), U1 WIICHL UICIT 15 d CULLICT 111aUC mom
diagonal edges. This is what we want.

The rectangular-looking approximations that SURF uses are also called box filters. The use of box filters enables the use
integral images, which is an ingenious construction to speed up the convolution operation by orders of magnitude.

The concept of integral images and its use in speeding up convolution with box filters merits discussion, as it is widely
used in image processing. So let us take a brief detour.

For any image, its integral image at a pixel is its cumulative sum until that pixel, starting from the origin (top-left corner).
Mathematically, if T is an image and H is the integral image, the pixel (x, vy) of His given by:

H(x,y) = 3, 1G.))

The integral image can be computed from the original image in linear time using the recursive equation:

H (,\'+ Ly+ l)= .’(,1'+ Ly+ 1)+ H (x,_v+ l)+ H (_r+ l,_}:)— H(x,v)
One of the most interesting properties of the integral image is that, once you have it, you can use it to get the sum of a box
any size of pixels in the original image using just 4 operations, using this equation (see Figure 8-10 also):

Sumof shaded region=H (i, j)— H (i—w, j)—- H (i, j—h)+ H(i—w, j—h)

(0,0)

(i-w, j-h)

—_—> i

Figure 8-10. Using integral image to sum up sum across a rectangular region

Convolution with a kernel is just element-wise multiplication of the pixel values with the kernel elements and then summi
up. Now if the kernel elements are constant, things become a lot simpler. We can just sum up the pixel value under the kernel
and multiply the sum by the constant kernel value. Now do you see why box filters (kernels with constant elements in
rectangular regions) and integral images (images that help you sum up pixel values in a rectangular region very fast) make su
a great pair?

To construct the scale-space pyramid, SURF increases the size of the Gaussian filter rather than reducing the size of the
image. After constructing that it finds the extrema of the Hessian matrix determinant values at different scales by comparing a
point with its 26 neighbors in the pyramid just like SIFT. This gives the SURF keypoints with their scales.

Keypoint orientationis decided by selecting a circular neighborhood of radius 6 times the scale of the keypoint around a
keypoint. At every point in this neighborhood, responses to horizontal and vertical box filters (called Haar wavelets, shown
Figure 8-11) are recorded.

https://www.ebooks-it.org/

eBooks-1T.org

Figure 8-11. Vertical (top) and horizontal (bottom) box filters used for orientation assignment

Once responses are weighted with a Gaussian (o = 2.5 times scale), they are represented as vectors in a space with
horizontal response strength along the x-axis and vertical response strength along the y-axis. A sliding arc with angle of 60
degrees sweeps a rotation through this space (Figure 8-12).

Vertical
b response

Vertical
A, respanse

Figure 8-12. Sliding orientation windows used in SURF

All the responses within the window are summed to give a new vector; there are as many of these vectors as there are
iterations of the sliding window. The largest of these vectors lends its orientation to the keypoint.

SURF Descriptor

The following steps are involved in calculating the SURF descriptor once you get oriented keypoints:

e Construct a square region around the keypoint, with side length equal to 20 times the scale of the keypoint and
oriented by the orientation of the keypoint, as shown in Figure 8-13.

https://www.ebooks-it.org/

Figure eBooks-1T.org

e This region is split up into 16 square subregions. In each of these subregions, a set of four features are calculated
at 5 x 5 regularly spaced grid points. These features include Harr wavelet response in the horizontal and vertical
directions and their absolute values

e These 4 features are summed up over each individual subregion and make up a four-element descriptor for each
subregion. Sixteen such subregions make up the 64-element descriptor for the keypoint

SURF descriptors are matched using the same nearest neighbor distance ratio strategy as SIFT.

SURF has been shown to be at least twice as fast as SIFT without sacrificing performance. Listing 8-3 shows the SURF
version of the keypoint-based object detector app, which uses the SurfFeatureDetector and SurfDescriptorExtractor classes.
Figure 8-14 shows that SURF is just as accurate as SIFT, while giving us frame rates of up to 6 fps.

Listing 8-3. Program to illustrate SURF keypoint and descriptor extraction, and matching using FLANN

// Program to illustrate SURF keypoint and descriptor extraction, and matching
using FLANN
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>

#include <opencv2/highgui/highgui.hpp>
#include <opencv2/nonfree/features2d.hpp>
#include <opencv2/features2d/features2d.hpp>

using namespace Cv;
using namespace std;

int main () {
Mat train = imread("template.jpg"), train g;
cvtColor(train, train g, CV_BGR2ZGRAY) ;

//detect SIFT keypoints and extract descriptors in the train image
vector<KeyPoint> train kp;
Mat train desc;

SurfFeatureDetector featureDetector (100) ;
featureDetector.detect (train g, train kp);
SurfDescriptorExtractor featureExtractor;
featureExtractor.compute (train g, train kp, train desc);

// FLANN based descriptor matcher object
FlannBasedMatcher matcher;

vector<Mat> train desc collection(l, train desc);
matcher.add (train desc collection);
matcher.train();

// VideoCapture object
VideoCapture cap(0);

unsigned int frame count = 0;

while (char (waitKey (1)) != "'g') {
double t0 = getTickCount();
Mat test, test g;
cap >> test;
if (test.empty())

https://www.ebooks-it.org/

eBooks-1T.org

cvtColor (test, test g, CV_BGR2GRAY) ;

//detect SIFT keypoints and extract descriptors in the test image
vector<KeyPoint> test kp;

Mat test desc;

featureDetector.detect (test g, test kp);
featureExtractor.compute (test g, test kp, test desc);

// match train and test descriptors, getting 2 nearest neighbors for all
test descriptors

vector<vector<DMatch> > matches;

matcher.knnMatch (test desc, matches, 2);

// filter for good matches according to Lowe's algorithm
vector<DMatch> good matches;
for(int i = 0; i < matches.size(); i++) {
if (matches[i][0].distance < 0.6 * matches[i][1l].distance)
good matches.push back (matches[1i][0]);
}

Mat img_ show;
drawMatches (test, test kp, train, train kp, good matches, img show);
imshow ("Matches", img show);

cout << "Frame rate = " << getTickFrequency() / (getTickCount() - t0) <<
endl;

}

return O;

Figure 8-14. SURF-based object detector using FLANN matching

Note that both SIFT and SURF algorithms are patented in the United States (and maybe some other countries as well), so
you will not be able to use them in a commercial application.

ORB (Oriented FAST and Rotated BRIEF)

ORB is a keypoint detection and description technique that is catching up fast in popularity with SIFT and SURF. Its claim to

https://www.ebooks-it.org/

fame eBooks-1T.org riant,

robuht LU HUIST dlld dllC U dlS10AaUOUlLS, dlid SUlLL Hidldged WU UCLIVOL d HalllC 14dlC U1 20 1PS.

The algorithm is actually a combination of the FAST (Features from Accelerated Segment Test) keypoint detection with
oriented added to the algorithm, and the BRIEF (Binary Robust Independent Elementary Features) keypoint descriptor
algorithm modified to handle oriented keypoints. Before going further into describing ORB, here are the papers you can read
get detailed information about these algorithms:

e “ORB: An efficient alternative to SIFT or SURF,” by Ethan Rublee et al.

e “Faster and better: A machine learning approach to corner detection,” by Edward Rosten et al.

e “BRIEF: Binary Robust Independent Elementary Features,” by Michael Colander et al.

Oriented FAST Keypoints

The original FAST keypoint detector tests for 16 pixels in a circle around a pixel. If the central pixel is darker or brighter tha
a threshold number of pixels out of 16, it is determined to be a corner. To make this procedure faster, a machine learning
approach is used to decide an efficient order of checking the 16 pixels. The adaptation of FAST in ORB detects corners at
multiple scales by making a scale pyramid of the image, and adds orientation to these corners by finding the intensity centroic
The intensity centroid of a patch of pixels is given by:

ml0 mOl1
C=(-)
m00 m00

where

mpq = Ex”_y"'f{x,y)

The orientation of the patch is the orientation of the vector connecting the patch center to the intensity centroid.
Specifically:

0 = atan2(m01,m10)

BRIEF Descriptors

BRIEF is based on the philosophy that a keypoint in an image can be described sufficiently by a series of binary pixel intensi
tests around the keypoint. This is done by picking pairs of pixels around the keypoint (according to a random or nonrandom
sampling pattern) and then comparing the two intensities. The test returns 1 if the intensity of the first pixel is higher than that
the second, and 0 otherwise. Since all these outputs are binary, one can just pack them into bytes for efficient memory storage
A big advantage is also that since the descriptors are binary, the distance measure between two descriptors is Hamming and
not Euclidean. Hamming distance between two binary strings of the same length is the number of bits that differ between then
Hamming distance can be very efficiently implemented by doing a bitwise XOR operation between the two descriptors and
then counting the number of Is.

The BRIEF implementation in ORB uses a machine learning algorithm to get a pair picking pattern to pick 256 pairs that
will capture the most information, and looks something like Figure 8-15.

https://www.ebooks-it.org/

— eBooks-1T.org

Figure 8-15. Typical pair-picking pattern for BRIEF

To compensate for the orientation of the keypoint, the coordinates of the patch around the keypoint are rotated by the
orientation before picking pairs and performing the 256 binary tests.

Listing 8-4 implements the keypoint-based object detector using the ORB keypoints and features, and Figure 8-16 shows
that the frame rate goes up to 28 fps, without the performance being compromised much. We have also used the locally
sensitive hashing (LSH) algorithm for performing the FLANN based search, which speeds up Hamming distance based neare
neighbor searches even further.

Listing 8-4. Program to illustrate ORB keypoint and descriptor extraction, and matching using FLANN-LSH

// Program to illustrate ORB keypoint and descriptor extraction, and matching usin
FLANN-LSH
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>

#include <opencv2/highgui/highgui.hpp>
#include <opencv2/nonfree/features2d.hpp>
#include <opencv2/features2d/features2d.hpp>

using namespace Cv;
using namespace std;

int main () {
Mat train = imread("template.jpg"), train g;
cvtColor(train, train g, CV_BGR2ZGRAY) ;

//detect SIFT keypoints and extract descriptors in the train image
vector<KeyPoint> train kp;
Mat train desc;

OrbFeatureDetector featureDetector;
featureDetector.detect (train g, train kp);
OrbDescriptorExtractor featureExtractor;
featureExtractor.compute (train g, train kp, train desc);

cout << "Descriptor depth " << train desc.depth() << endl;

https://www.ebooks-it.org/

eBooks-1T.org

Lldlllles o Llldex Llidllllllldex({LtLdlll desC, Lldllll. Lslllllgexrartdlls\{its, 29U, <4),

cvflann::FLANN DIST HAMMING) ;

// VideoCapture object
VideoCapture cap(0);

unsigned int frame count = 0;

while (char (waitKey (1)) != "'g") {

double t0 = getTickCount () ;
Mat test, test g;
cap >> test;
if (test.empty())
continue;

cvtColor (test, test g, CV_BGR2GRAY) ;

//detect SIFT keypoints and extract descriptors in the test image
vector<KeyPoint> test kp;

Mat test desc;

featureDetector.detect (test g, test kp);
featureExtractor.compute (test g, test kp, test desc);

// match train and test descriptors, getting 2 nearest neighbors for all

test descriptors

Mat match idx(test desc.rows, 2, CV_32SCl), match dist(test desc.rows, 2,

CV_32FC1);

flann::

endl;
}

flannIndex.knnSearch (test desc, match idx, match dist, 2,
SearchParams()) ;

// filter for good matches according to Lowe's algorithm
vector<DMatch> good matches;
for(int 1 = 0; 1 < match dist.rows; i++) {
if (match dist.at<float>(i, 0) < 0.6 * match dist.at<float>(i, 1)) {
DMatch dm(i, match idx.at<int>(i, 0), match dist.at<float>(i, 0));
good matches.push back (dm) ;

}

Mat img show;
drawMatches (test, test kp, train, train kp, good matches, img show);
imshow ("Matches", img show);

cout << "Frame rate = " << getTickFrequency() / (getTickCount() - t0) <<

return O;

https://www.ebooks-it.org/

eBooks-1T.org

Figure 8-16. ORB keypoint based object detecor

Basic Machine Learning

In this section we will discuss some entry-level machine learning concepts, which we will employ in the next section to mak
our ultimate object detector app! Machine Learning (ML) basically deals with techniques for making a machine (computer)
learn from experience. There are two types of problems the machine can learn to solve:

e (Classification: Predict which category a data sample belongs to. Hence the output of a classification algorithm is a
category, which is discrete—not continuous. For example, the machine learning problem we will deal with later
on in this chapter is to decide which object (from a range of different objects) is present in an image. This is a
classification problem, as the output is the object category, which is a discrete category number

e Regression: Predict the output of a function which is very difficult to express in an equation. For example, an
algorithm that learns to predict the price of a stock from previous data is a regression algorithm. Note that the
output is a continuous number—it can take any value

Training input to an ML algorithm consists of two parts:

e Features: The parameters one thinks are relevant to the problem at hand. As an example, for the object
categorization problem we discussed earlier, features can be SURF descriptors of the image. Typically, an ML
algorithm is given features from not one but many instances of data, to “teach” it many possible input conditions

e Labels: Each set of features associated with a data instance has a corresponding “correct response.” This is called
a label. For example, labels in the object classification problem can be the object category present in the training

image. Classification problems will have discrete labels, while regression algorithms will have continuous
labels.

Together, features and labels make up the “experience” required for the ML algorithm.

There is a plethora of ML algorithms out there. Naive Bayes classifiers, logistic regressors, support vector machines and
hidden Markov models are some examples. Each algorithm has its own pros and cons. We will briefly discuss the workings
the support vector machine (SVM) here, and then move on to using the OpenCV implementation of SVMs in our object detect
app.

SVMs

SVMs are the most widely used ML algorithms today because of their versatility and ease of use. The typical SVM is a
classification algorithm, but some researchers have modified it to perform regression too. Basically, given a set of data point
with labels, SVM tries to find a hyperplane that best separates the data correctly. A hyperplane is a linear structure in the giv
dimensionality. For example, it is a line if the data has two dimensions, a plane in three dimensions, a “four-dimensional
plane” in four dimensions, and so on. By “best separation,” I mean that the distance from the hyperplane to the nearest points

https://www.ebooks-it.org/

both eBooks-1T.org 1 the

Flgmc O0-1/, WIICIC UIC 11C IS UIC 11YPCIpldlIC.

Figure 8-17. SVM classifier hyperplane

The astute reader might argue that not all arrangements of data points are correctly separable by a hyperplane. For examp
if you have four points with labels as shown in Figure 8-18, no line can separate all of them correctly.

x[l’]

Figure 8-18. SVM XOR problem

To solve this problem, SVMs use the concept of kernels. A kernel is a function that maps data from one configuration to
another, possibly changing the dimensionality. For example, a kernel that could solve the problem in Figure 8-18 would be o
that could “fold” the plane about the x1 = x2 line (Figure 8-18). If you use a kernel, the SVM algorithm finds a hyperplane
for correct classification in the feature space transformed by the kernel. Then it transforms each test input by the kernel and
uses the trained hyperplane to classify. The hyperplane might not remain linear in the original feature space, but it is linear in
the transformed feature space.

In OpenCV, the CvSVM class withits train () and predict () methods can be used to train an SVM using different
kernels and predict using the trained SVM, respectively.

Object Categorization

In this section, we will develop an object detector app that uses SURF descriptors of keypoints as features, and SVMs to

https://www.ebooks-it.org/

pred;

eBooks-1T.org

igurin

code project ana 11NKing 1t 10 various [1praries a breeze. wWe will also Use e L1 lesystem component oT the BOOst C++
libraries to go through our data folders and the STL data structures map and multimap to store organize data in an easily
accessible manner. Comments in the code are written to make everything easily understandable, but you are encouraged to ge
some very basic knowledge of CMake and the STL data structures map and remap before going ahead.

Strategy

Here I outline the strategy we will use, which was proposed by Gabriella Csurka et al. in their paper “Visual Categorization

with

Bags of Keypoints,” and implemented wonderfully in the OpenCV features2d module.

Compute (SURF) descriptors at keypoints in all templates and pool all of them together

Group similar descriptors into an arbitrary number of clusters. Here, similarity is decided by Euclidean distance
between the 64-element SURF descriptors and grouping is done by the cluster () method of the
BOWKMeansTrainer class. These clusters are called “bags of keypoints” or “visual words” in the paper and
they collectively represent the “vocabulary” of the program. Each cluster has a cluster center, which can be
thought of as the representative descriptor of all the descriptors belonging to that cluster

Now, compute training data for the SVM classifiers. This is done by

Computing (SURF) descriptors for each training image

Associating each of these descriptors with one of the clusters in the vocabulary by Euclidean distance to cluster
center

Making a histogram from this association. This histogram has as many bins as there are clusters in the
vocabulary. Each bin counts how many descriptors in the training image are associated with the cluster
corresponding to that bin. Intuitively, this histogram describes the image in the “visual words” of the
“vocabulary,” and is called the “bag of visual words descriptor” of the image. This is done by using the
compute () method of the BOWImageDescriptorExtractor class

After that, train a one-vs-all SVM for each category of object using the training data. Details:

For each category, positive data examples are BOW descriptors of its training images, while negative examples
are BOW descriptors of training images of all other categories

Positive examples are labeled 1, while negative examples are labeled 0

Both of these are given to the train () method of the CvSVM class to train an SVM. We thus have an SVM for
every category

SVMs are also capable of multiclass classification but intuitively (and mathematically) it is easier for a
classifier to decide whether a data sample belongs to a class or not rather than decide which class a data
sample belongs to put of many classes

Now, classify by using the trained SVMs. Details:
Capture an image from the camera and calculate the BOW descriptor, again using the compute () method of
the BOWImageDescriptorExtractor class

Give this description to the SVMs to predict upon using the predict () method of the CvSVM class

For each category, the corresponding SVM will tell us whether the image described by the descriptor belongs
to the category or not, and also how confident it is in its decision. The smaller this measure, the more confident
the SVM is in its decision

Pick the category that has the smallest measure as the detected category

Organization

https://www.ebooks-it.org/

The eBooks-1T.org

Computar
i Home
K pesitop
i Documents " d ‘ ‘ =
il Downloads baild data inchude s1c Chaskel bsbs txe
o Music
i Pichires
B videos
| = FileSystem
= Trazh

Conffig hin

| Metwark

i Browse Network

Figure 8-19. Project root folder organization

Figure 8-20 shows the organization of the “data” folder. It contains two folders called “templates” and “train_images”. T
“templates” folder contains images showing the objects that we want to categorize, according to category names. As you can
see in Figure 8-20, my categories are called ”a,” “b,” and “c.” The “train_images” folder has as many folders as there are
templates, named again by object category. Each folder contains images for training SVMs for classification, and the names c
the images themselves do not matter.

templates

Computer terd codes5 data templates

a Home

K Deskiop &

4 Documents m -] a‘
) Davanloads ajpg by eipg
o Music

i Pictures

@ videas

L File Systemn

2 Trash

Helbwork

anl Drawse Hetwork

train_images

Computer daka traln_lmages

il Dowrioads
& Music

M Pictures

@ vigeas

— FileSystem
= Trash
Hebwark

&l Drawse Nebwork

Figure 8-20. Organization of the two folders in the “data” folder— “templates” and “train_images”

Figure 8-21 shows my templates and training images for the three categories. Note that the templates are cropped to show
just the object and nothing else.

Happy Holidays
EseE 5C

R CREATIVE |
| |m .I '_"__ -l-: L R

INTERACTIVE GESTURE CAMERA - for PCt

. goloborhon W Fils

https://www.ebooks-it.org/

eBooks-1T.org

Happy Hotiday,

Figure 8-21. (Top to bottom) Templates and training images for categories “a,” “b,” and “c”

Now for the files CmakeLists.txt and Config.h.in, which are shown in Listings 8-5 and 8-6, respectively.
CmakeLists.txt is the main file that is used my CMake to set all the properties of the project and locations of the linked
libraries (OpenCV and Boost) in our case. Config.h. in set our folder path configurations. This will automatically gener:
the file Config.h inthe “include” folder, which will be includable in our source CPP file and will define paths of folders
that store our templates and training images in variables TEMPLATE FOLDER and TRAIN FOLDER, respectively.

Listing 8-5: CmakeLists.txt

Minimum required CMake version
cmake minimum required(VERSION 2.8)

Project name
project (object categorization)

https://www.ebooks-it.org/

F. eBooks-1T.org

find pacCkdye (UpelllV REYULRLU)

Find the Boost installation, specifically the components 'system' and
'filesystem'
find package (Boost COMPONENTS system filesystem REQUIRED)

S${PROJECT SOURCE DIR} is the name of the root directory of the project

TO NATIVE PATH converts the path ${PROJECT SOURCE DIR}/data/ to a full path and
the file ()

command stores it in DATA FOLDER

file (TO NATIVE PATH "S{PROJECT SOURCE DIR}/data/" DATA FOLDER)

set TRAIN FOLDER to DATA FOLDER/train images - this is where we will put our
templates for

constructing the wvocabulary

set (TRAIN FOLDER "S${DATA FOLDER}train images/")

set TEMPLATE FOLDER to DATA FOLDER/templates - this is where we will put our
traininfg images,

in folders organized by category

set (TEMPLATE FOLDER "S{DATA FOLDER}templates/")

set the configuration input file to ${PROJECT SOURCE DIR}/Config.h.in and the
includable header file holding configuration information to

${PROJECT_ SOURCE_DIR}/include/Config.h
configure_file("${PROJECT_SOURCE_DIR}/Config.h.in"
"${PROJECT_SOURCE_DIR}/include/Config.h")

Other directories where header files for linked libraries can be found
include directories (${OpenCV_ INCLUDE DIRS} "${PROJECT SOURCE DIR}/include"
${Boost INCLUDE DIRS})

executable produced as a result of compilation

add executable (code8-5 src/code8-5.cpp)

libraries to be linked with this executable - OpenCV and Boost (system and
filesystem components)

target link libraries(code8-5 ${OpenCV_LIBS} ${Boost SYSTEM LIBRARY}
${Boost_FILESYSTEM_LIBRARY})

Listing 8-6: Configh.in

// Preprocessor directives to set variables from values in the CMakeLists.txt file
#define DATA FOLDER "Q@DATA FOLDER@"

#define TRAIN FOLDER "@TRAIN FOLDER@"

#define TEMPLATE FOLDER "Q@TEMPLATE FOLDER@"

This organization of the folders, combined by the configuration files, will allow us to automatically and efficiently manag
and read our dataset and make the whole algorithm scalable for any number of object categories, as you will find out when yz
read through the main code.

The main code, which should be put in the folder called “src¢” and named according the filename mentioned in the
add executable () command inthe CMakeLists. txt file, is shown in Listing 8-7. It is heavily commented to help
you understand what is going on. I will discuss some features of the code afterward but, as always, you are encouraged to loc
up functions in the online OpenCV documentation!

Listing 8-7. Program to illustrate BOW object categorization

https://www.ebooks-it.org/

/] eBooks-1T.org

// AUTNOr: pamarcn Manoj pranmolacct, UlllverslLly OL Frellllsylvdllld

#include <opencv2/opencv.hpp>

#include <opencv2/highgui/highgui.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/nonfree/features2d.hpp>
#include <opencv2/ml/ml.hpp>

#include <boost/filesystem.hpp>

#include "Config.h"

using namespace cv;
using namespace std;
using namespace boost::filesystem3;

class categorizer {
private:
map<string, Mat> templates, objects, positive data, negative data; //maps
from category names to data
multimap<string, Mat> train set; //training images, mapped by category name

map<string, CvSVM> svms; //trained SVMs, mapped by category name
vector<string> category names; //names of the categories found in
TRAIN FOLDER
int categories; //number of categories
int clusters; //number of clusters for SURF features to
build vocabulary
Mat vocab; //vocabulary

// Feature detectors and descriptor extractors
Ptr<FeatureDetector> featureDetector;
Ptr<DescriptorExtractor> descriptorExtractor;
Ptr<BOWKMeansTrainer> bowtrainer;
Ptr<BOWImgDescriptorExtractor> bowDescriptorExtractor;
Ptr<FlannBasedMatcher> descriptorMatcher;

void make train set(); //function to build the training set
multimap

void make pos neg(); //function to extract BOW features from
training images and organize them into positive and negative samples

string remove extension(string); //function to remove extension from file
name, used for organizing templates into categories

public:

categorizer (int) ; //constructor

void build vocab(); //function to build the BOW vocabulary

void train classifiers(); //function to train the one-vs-all SVM
classifiers for all categories

void categorize (VideoCapture) ; //function to perform real-time object

categorization on camera frames

}i

string categorizer::remove extension(string full) {
int last idx = full.find last of (".");
string name = full.substr (0, last idx);
return name;

https://www.ebooks-it.org/

eBooks-1T.org

Catbgeocrrrcrrrocacogorroos T o Sty —

clusters = clusters;

// Initialize pointers to all the feature detectors and descriptor extractors
featureDetector = (new SurfFeatureDetector()):;

descriptorExtractor = (new SurfDescriptorExtractor());

bowtrainer = (new BOWKMeansTrainer (clusters));

descriptorMatcher = (new FlannBasedMatcher()):

bowDescriptorExtractor = (new BOWImgDescriptorExtractor (descriptorExtractor,

descriptorMatcher));

}

// Organize the object templates by category
// Boost::filesystem directory iterator
for(directory iterator i (TEMPLATE FOLDER), end iter; 1 != end iter; i++) {
// Prepend full path to the file name so we can imread() it
string filename = string(TEMPLATE FOLDER) + i->path().filename () .string();
// Get category name by removing extension from name of file
string category = remove extension(i->path().filename () .string());
Mat im = imread(filename), templ im;
objects[category] = im;
cvtColor (im, templ im, CV_BGR2GRAY) ;
templates[category] = templ im;
}

cout << "Initialized" << endl;

// Organize training images by category
make train set();

void categorizer::make train set () {

string category;

// Boost::filesystem recursive directory iterator to go through all contents of

TRAIN FOLDER

for (recursive directory iterator i (TRAIN FOLDER), end iter; 1 != end iter; i++)

// Level 0 means a folder, since there are only folders in TRAIN FOLDER at

the zeroth level

if(i.level() == 0) {
// Get category name from name of the folder
category = (i -> path()).filename () .string();

category names.push back (category);

}
// Level 1 means a training image, map that by the current category
else {

// File name with path

string filename = string (TRAIN FOLDER) + category + string("/") + (1 ->

path()) .filename () .string() ;

// Make a pair of string and Mat to insert into multimap
pair<string, Mat> p(category, imread(filename, CV_LOAD IMAGE GRAYSCALE))

train set.insert (p);

}

// Number of categories
categories = category names.size();
cout << "Discovered " << categories << " categories of objects" << endl;

https://www.ebooks-it.org/

}

eBooks-1T.org

void categorizer::make pos neg() {
// Iterate through the whole training set of images
for (multimap<string, Mat>::iterator i = train set.begin(); 1 != train set.end()

i++)

}

{

// Category name is the first element of each entry in train set

string category = (*i).first;
// Training image is the second elemnt
Mat im = (*1i).second, feat;

// Detect keypoints, get the image BOW descriptor
vector<KeyPoint> kp;

featureDetector -> detect (im, kp);
bowDescriptorExtractor -> compute(im, kp, feat);

// Mats to hold the positive and negative training data for current categor
Mat pos, neg;
for(int cat index = 0; cat index < categories; cat index++) {
string check category = category names[cat index];
// Add BOW feature as positive sample for current category
if (check category.compare (category) == 0)
positive data[check category].push back(feat);
//... and negative sample for all other categories
else
negative data[check category].push back(feat);

// Debug message

for(int i = 0; i < categories; i++) {
string category = category names[i];
cout << "Category " << category << ": " << positive data[category].rows <<
Positives, " << negative data[category].rows << " Negatives" << endl;
}
}
void categorizer::build vocab () {

{

// Mat to hold SURF descriptors for all templates
Mat vocab descriptors;
// For each template, extract SURF descriptors and pool them into

vocab descriptors
for (map<string, Mat>::iterator i = templates.begin(); i != templates.end(); i+

}

vector<KeyPoint> kp; Mat templ = (*i).second, desc;
featureDetector -> detect (templ, kp):;
descriptorExtractor -> compute (templ, kp, desc);
vocab descriptors.push back(desc);

// Add the descriptors to the BOW trainer to cluster
bowtrainer -> add(vocab descriptors);

// cluster the SURF descriptors

vocab = bowtrainer->cluster();

https://www.ebooks-it.org/

eBooks-1T.org

rrieocLordgye Lo \Uﬁlﬁ_f VLULKR voCdpb . xllilL , rlleolLordye. .WRKL1IL) ,
fs << "vocabulary" << vocab;
fs.release();

cout << "Built vocabulary" << endl;

}

void categorizer::train classifiers() {
// Set the vocabulary for the BOW descriptor extractor
bowDescriptorExtractor -> setVocabulary(vocab);
// Extract BOW descriptors for all training images and organize them into
positive and negative samples for each category
make pos neg();

for(int i = 0; 1 < categories; i++) {
string category = category names([i];

// Postive training data has labels 1

Mat train data = positive data[category], train labels =
Mat::ones (train data.rows, 1, CV_328);

// Negative training data has labels 0

train data.push back(negative datal[category]);

Mat m = Mat::zeros (negative data[category].rows, 1, CV_32S);

train labels.push back(m);

// Train SVM!
svms [category] .train(train data, train labels);

// Save SVM to file for possible reuse
string svm filename = string(DATA FOLDER) + category + string("SVM.xml");
svms [category] .save (svm filename.c str());

cout << "Trained and saved SVM for category " << category << endl;

}

void categorizer::categorize (VideoCapture cap)
cout << "Starting to categorize objects" << endl;
namedWindow ("Image") ;

while (char (waitKey (1)) != "'g') {
Mat frame, frame g;
cap >> frame;
imshow ("Image", frame);

cvtColor (frame, frame g, CV_BGR2ZGRAY) ;

// Extract frame BOW descriptor

vector<KeyPoint> kp;

Mat test;

featureDetector -> detect (frame g, kp):;
bowDescriptorExtractor -> compute (frame g, kp, test);

// Predict using SVMs for all catgories, choose the prediction with the mos:
negative signed distance measure

https://www.ebooks-it.org/

eBooks-1T.org
SLLLNY pLleulcled cdleyoLlyy,
for(int i = 0; i < categories; i++) {
string category = category names[i];
float prediction = svms|[category].predict(test, true);
//cout << category << " " << prediction << " ";
if (prediction < best score) {
best score = prediction;
predicted category = category;

}
//cout << endl;

// Pull up the object template for the detected category and show it in a
separate window
imshow ("Detected object", objects|[predicted category]);

}

int main () {
// Number of clusters for building BOW vocabulary from SURF features
int clusters = 1000;
categorizer c(clusters);
c.build vocab();
c.train classifiers();

VideoCapture cap (0);
namedWindow ("Detected object");
c.categorize (cap);

return 0;

The only syntactic concept in the code that I want to emphasize is the use of the STL data structures map and multimap
They allow you to store data in the form of (key, value) pairs where key and value can be pretty much any data type. You can
access the value associated with key by indexing the map with the key. Here we set our keys to be the object category names
that we can access our category-specific templates, training images, and SVMs easily using the category name as index into tl
map. We have to use multimap for organizing the training images, because we can have more than one training image for a
single category. This trick allows the program to use any arbitrary number of object categories quite easily!

Summary

This is one of the main chapters of the book for two reasons. First, I hope, it showed you the full power of OpenCV, STL dat:
structures, and object-oriented programming approaches when used together. Second, you now have the tools of the trade to
able to accomplish any modest object detector application. SIFT, SURF, and ORB keypoint-based object detectors are very
common as base-level object detectors in a lot of robotics applications. We saw how SIFT is the slowest of the three (but al:
the most accurate in matching and able to extract the highest number of meaningful keypoints), whereas computing and matchi
ORB descriptors is very fast (but ORB tends to miss out on some keypoints). SURF falls somewhere in the middle, but tends
favor accuracy more than speed. An interesting fact is that because of the structure of OpenCV’s features2d module, you
can use one kind of keypoint extractor and another kind of descriptor extractor and matcher. For example, you can use SURF
keypoints for speed but then compute and match SIFT descriptors at those keypoints for matching accuracy.

I also discussed basic machine learning, which is a skill I think every computer vision scientist must have, because the
more automated and intelligent your vision program, the cooler your robot will be!

The CMake building system is also a standard in big projects for easy build management and you now know the basics of
using it!

https://www.ebooks-it.org/

betwee AZCS O1 dil ODJECL VIEWEU ITOII ULLIETEIL PEISPECLIVES.
to make beautiful seamless panoramas out of a bunch of images!

1http://www.cs.ubc.ca/“lowe/papers/ijcv04.pdf

https://www.ebooks-it.org/

CH eBooks-1T.org

Affine and Perspective Transformations and Their Applications to Image
Panoramas

In this chapter you will learn about two important classes of geometric image transformations—Affine and Perspective—and
how to represent and use them as matrices in your code. This will act as base knowledge for the next chapter, which deals w-
stereo vision and a lot of 3D image geometry.

Geometric image transformations are just transformations of images that follow geometric rules. The simplest of geometr
transformations are rotating and scaling an image. There can be other more complicated geometric transformations, too.
Another property of these transformations is that they are all linear and hence can be expressed as matrices and transformatio
of the image just amounts to matrix multiplication. As you can imagine, given two images (one original and the other
transformed), you can recover the transformation matrix if you have enough point correspondences between the two images.
You will learn how to recover Affine as well as Perspective transformations by using point correspondences between image
clicked by the user. Later, you will also learn how to automate the process of finding correspondences by matching descripto
at keypoints. Oh, and you will be able to put all this knowledge to use by learning how to make beautiful panoramas by
stitching together a bunch of images, using OpenCV's excellent stitching module!

Affine Transforms

An affine transform is any linear transform that preserves the “parallelness” of lines after transformation. It also preserves
points as points, straight lines as straight lines and the ratio of distances of points along straight lines. It does not preserve
angles between straight lines. Affine transforms include all types of rotation, translation, and mirroring of images. Let us now
see how affine transforms can be expressed as matrices.

Let (x, y) be the coordinates of a point in the original image and (x', y') be the coordinates of that point after
transformation, in the transformed image. Different transformations are:

e Scaling: x' = a*x, y' = b*y
e Flipping both X and Y coordinates: x' = -x, y' = -y
e Rotation counterclockwise about the origin by an angle 6: x' = x*cos (0)—y*sin(0), y' = x*sin (0)

+ y*cos (0)

Because all geometric transforms are linear, we canrelate (x', y') to (x, y) bya matrix multiplication with a 2x2
matrix M:

(x', y") =M* (%, V)

The matrix M takes the following forms for the three kinds of transformations outlined above:

a 0
0 b

e Scaling: , where a is the scaling factor for X coordinates and b is the scaling factor for Y

coordinates

-1 0O
0 -1

e Flipping both X and Y coordinates: A=

https://www.ebooks-it.org/

eBooks-1T.org
¢ ROMIUION COUNICTCIOCKWISC dDOUL tNC Or1gin DY an angic. u. i [T . fJ

sin(0) cos(B)

Except for the flipping matrix, the determinant of the 2 x 2 part of all Affine transform matrices must be +1.

Applying Affine Transforms

In OpenCV it is easy to construct an Affine transformation matrix and apply that transformation to an image. Let us first look
the function that applies an affine transform so that we can understand the structure of the OpenCV affine transform matrix
better. The function warpAffine () takes a source image and a 2x3 matrix M and gives a transformed output image. Suppo
M is of the form:

_ M1l M12 MI13
T OM21 M22 M23

warpAffine () applies the following transform:

dst{x, y)=sre(M11#x+ M12=y+ MI13, M21%x+ M22+y+ M23)

A potential source of bugs while hand-constructing the matrix to be given to warpAffine () is that OpenCV places the
origin at the top-left corner of the image. This fact does not affect scaling transforms, but it does affect flipping and rotation
transforms. Specifically, for a successful flip the M input to warpAffine () must be:

-1 0 im.cols

0 -1 imrows

The OpenCV function getRotationMatrix2D () gives outa 2 x 3 Affine transformation matrix that does a rotation. |
takes the angle of rotation (measured counter clockwise in degrees from the horizontal axis) and center of rotation as input. F
a normal rotation, you would want the center of rotation to be at the center of the image. Listing 9-1 shows how you can use
getRotationMatrix2D () to geta rotation matrix and use warpAffine () to apply it to an image. Figure 9-1 shows
the original and Affine transformed images.

% + @B LPH
B -_!'.i

* =t 4@ 0 PLHY

W

1K=251.U=531 =R: 14 G: 1-'1-5 B:l44 (x=0, y=135) ~ H'165 G 16 BI165
Figure 9-1. Applying simple Affine transforms
Listing 9-1. Program to illustrate a simple affine transform

//Program to illustrate a simple affine transform
//Author: Samarth Manoj Brahmbhatt, University of Pennsyalvania

#include <opencv2/opencv.hpp>
#include <opencv2/stitching/stitcher.hpp>

https://www.ebooks-it.org/

#1in eBooks-1T.org

#il’l(u.uub COINIL1g .1l

using namespace std;
using namespace Cv;

int main () {
Mat im = imread(DATA FOLDER 1 + string("/image.jpg")), im transformed;
imshow ("Original", im);

int rotation degrees = 30;

// Construct Affine rotation matrix
Mat M = getRotationMatrix2D(Point (im.cols/2, im.rows/2), rotation degrees, 1);
cout << M << endl;

// Apply Affine transform
warpAffine (im, im transformed, M, im.size (), INTER LINEAR);

imshow ("Transformed", im transformed);
while (char (waitKey (1)) != 'g') {}

return O;

Estimating Affine Transforms

Sometimes you know that one image is related to another by an Affine (or nearly Affine) transform and you want to get the
Affine transformation matrix for some other calculation (e.g., to estimate the rotation of the camera). The OpenCV function
getAffineTransform () is handy for such applications. The idea is that if you have three pairs of corresponding points
in the two images you can recover the Affine transform that relates them using simple math. This is because each pair gives y
two equations (one relating X coordinates and one relating Y coordinates). Hence you need three such pairs to solve for all s
elements of the 2 x 3 Affine transformation matrix. getAffineTransform () does the equation-solving for you by taking
in two vectors of three Point2f's each—one for original points and one for transformed points. In Listing 9-2, the user is aske:
to click corresponding points in the two images. These points are used to recover the Affine transform. To verify that the
transform recovered is correct, the user is also shown the difference between the original transformed image and the
untransformed image transformed by the recovered Affine transform. Figure 9-2 shows that the recovered Affine transform is
actually correct (the difference image is almost all zeros—black).

Listing 9-2. Program to illustrate affine transform recovery

//Program to illustrate affine transform recovery
//Author: Samarth Manoj Brahmbhatt, University of Pennsyalvania

#include <opencv2/opencv.hpp>

#include <opencv2/stitching/stitcher.hpp>
#include <opencv2/stitching/warpers.hpp>
#include <opencv2/highgui/highgui.hpp>
#include "Config.h"

using namespace std;
using namespace cv;

// Mouse callback function
void on mouse (int event, int x, int y, int, void* p) {

https://www.ebooks-it.org/

eBooks-1T.org

1Ll (evellt —— LV _LVENL LDULIUNULE) 1
p->x = x;
p->y = y;

}

class affine transformer
private:
Mat im, im transformed, im affine transformed, im show, im transformed show
vector<Point2f> points, points transformed;
Mat M; // Estimated Affine transformation matrix
Point2f get click(string, Mat);
public:
affine transformer(); //constructor
void estimate affine();
void show diff ();
};

affine transformer::affine transformer () {

im = imread (DATA FOLDER 2 + string("/image.jpg"));

im transformed = imread(DATA FOLDER 2 + string("/transformed.jpg"));
}

// Function to get location clicked by user on a specific window
Point2f affine transformer::get click(string window name, Mat im) {
Point2f p(-1, -1);
setMouseCallback (window name, on mouse, (void *)é&p);

while(p.x == -1 && p.y == -1) {
imshow (window name, im);
waitKey (20) ;

}

return p;

}

void affine transformer::estimate affine() {
imshow ("Original", im);
imshow ("Transformed", im transformed);

cout << "To estimate the Affine transform between the original and transformed
images you will have to click on 3 matching pairs of points" << endl;

im show = im.clone();
im transformed show
Point2f p;

I~

im transformed.clone();

// Get 3 pairs of matching points from user
for(int 1 = 0; i < 3; 1i++) {
cout << "Click on a distinguished point in the ORIGINAL image" << endl;
p = get click("Original", im show);
cout << p << endl;
points.push back(p);
circle (im_show, p, 2, Scalar(0, 0, 255), -1);
imshow ("Original", im_ show);

cout << "Click on a distinguished point in the TRANSFORMED image" << endl;

https://www.ebooks-it.org/

eBooks-1T.org

COUL <N p Ss elluly
points transformed.push back(p);

circle(im transformed show, p, 2, Scalar(0, 0, 255), -1);
imshow ("Transformed", im transformed show) ;

}

// Estimate Affine transform
M = getAffineTransform(points, points transformed);
cout << "Estimated Affine transform = " << M << endl;

// RApply estimates Affine transfrom to check its correctness
warpAffine (im, im affine transformed, M, im.size());
imshow ("Estimated Affine transform", im affine transformed);

}

void affine transformer::show diff () {
imshow ("Difference", im transformed - im affine transformed);

}

int main () {
affine transformer a;
a.estimate affine();
cout << "Press 'd' to show difference, 'gq' to end" << endl;
if (char (waitKey(-1)) == 'd") {
a.show diff ();
cout << "Press 'g' to end" << endl;
if (char (waitKey(-1)) == 'g') return 0;
}
else
return 0;

% + $EHBOPLPPHT e« ¢+ @B L PLPHY
: 5 .

.

(x=2. v=189) ~ R:0 G:0 B:0 (x=228, v=239) ~ R:0 G:0 B:0

Figure 9-2. Affine transform recovery using three pairs of matching points

https://www.ebooks-it.org/

Per eBooks-IT.org

Perspective transforms are more general than Affine transforms. They do not necessarily preserve the “parallelness” of lines.
But because they are more general, they are more practically useful, too—almost all transforms encountered in day-to-day
images are perspective transforms. Ever wondered why the two rails seem to meet at a distance? This is because the image
plane of your eyes views them at a perspective and perspective transforms do not necessarily keep parallel lines parallel. If
you view those rails from above, they will not seem to meet at all.

Given a 3 x 3 perspective transform matrixM, warpPerspective () applies the following transform:

a3 = _w[Mllsx+M12%y+ MI3 M21*x+M22%y+ Mza]
;i M3l#x+M32%y+M33 M31=x+M32=y+M33

Note that the determinant of the top-left 2 x 2 part of a perspective transform matrix does not need to be +1. Also, because
of the division in the transformation shown earlier, multiplying all elements of a perspective transform matrix by a constant
does not make any difference in the transform represented. Hence, it is common for perspective transform matrices to be
calculated so that M33 = 1. This leaves us with eight free numbers in M, and hence four pairs of corresponding points are
enough to recover a perspective transformation between two images. The OpenCV function f indHomography () does thi
for you. The interesting fact is that if you specify the flag CV_RANSAC while calling this function (see online documentatior
it can even take in more than four points and use the RANSAC algorithm to robustly estimate the transform from all those
points. RANSAC makes the transform estimation process immune to noisy “wrong” correspondences. Listing 9-3 reads two
images (related by a perspective transform), asks the user to click eight pairs of points, estimates the perspective transform
robustly using RANSAC, and shows the difference between the original and new perspectively transformed images to verify
the estimated transform. Again, the difference image is mostly black in the relevant area, which means that the estimated
transform is correct.

Listing 9-3. Program to illustrate a simple perspective transform recovery and application

//Program to illustrate a simple perspective transform recovery and application
//Author: Samarth Manoj Brahmbhatt, University of Pennsyalvania

#include <opencv2/opencv.hpp>

#include <opencv2/stitching/stitcher.hpp>
#include <opencv2/stitching/warpers.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include "Config.h"

using namespace std;
using namespace cv;

void on mouse (int event, int x, int y, int, void* p) {

Point2f* p = (Point2f *) p;

if (event == CV_EVENT_LBUTTONUP) {
pP->xX = X;
p->y = y;

}

class perspective transformer {
private:
Mat im, im transformed, im perspective transformed, im show,
im transformed show;
vector<Point2f> points, points transformed;
Mat M;

https://www.ebooks-it.org/

b

eBooks-1T.org

pupLiLcC.

perspective transformer () ;
voild estimate perspective();
void show diff ();

perspective transformer::perspective transformer () {

}

im = imread(DATA FOLDER 3 + string("/image.jpg"));
im transformed = imread(DATA FOLDER 3 + string("/transformed.jpg")):;
cout << DATA FOLDER 3 + string("/transformed.jpg") << endl;

Point2f perspective transformer::get click(string window name, Mat im) {

}

Point2f p(-1, -1);
setMouseCallback (window name, on mouse, (void *)&p);
while(p.x == -1 && p.y == -1) {
imshow (window name, im);
waitKey (20) ;
}

return p;

void perspective transformer::estimate perspective () {

imshow ("Original"™, im);
imshow ("Transformed", im transformed);

cout << "To estimate the Perspective transform between the original and

transformed images you will have to click on 8 matching pairs of points" << endl;

im show = im.clone();

im transformed show = im transformed.clone () ;
Point2f p;

for(int 1 = 0; i < 8; i++) {

cout << "POINT " << i << endl;

cout << "Click on a distinguished point in the ORIGINAL image" << endl;
p = get click("Original", im show);

cout << p << endl;

points.push back(p);

circle(im show, p, 2, Scalar(0, 0, 255), -1);

imshow ("Original"™, im show) ;

cout << "Click on a distinguished point in the TRANSFORMED image" << endl;
p = get click("Transformed", im transformed show);

cout << p << endl;

points transformed.push back(p);

circle (im transformed show, p, 2, Scalar(0, 0, 255), -1);

imshow ("Transformed", im transformed show) ;

}

// Estimate perspective transform
M = findHomography (points, points transformed, CV_RANSAC, 2);
cout << "Estimated Perspective transform = " << M << endl;

// RApply estimated perspecive trasnform

https://www.ebooks-it.org/

eBooks-1T.org

LisIIOwW { LsLlllildlea rerspectLtlve LLdllsiLoLrll , 1l perspecillve LLdllsLOoLlleu) ,

}

void perspective transformer::show diff () {
imshow ("Difference", im transformed - im perspective transformed);

}

int main () {
perspective transformer a;
a.estimate perspective();
cout << "Press 'd' to show difference, 'gq' to end" << endl;
if (char (waitKey(-1)) == 'd") {
a.show diff ();
cout << "Press 'g' to end" << endl;
if (char (waitKey(-1)) == 'g') return 0;
}
else
return 0;

T ek v S LA

Figure 9-3. Perspective transform recovery by clicking matching points

By now, you must have realized that this whole pair-finding process can also be automated by matching image features
between the two images with a high distance threshold. This is precisely what Listing 9-4 does. It computes ORB keypoints
and descriptors (we learned about this in Chapter §), matches them, and uses the matches to robustly estimate the perspective
transform between the images. Figure 9-4 shows the code in action. Note how the RANSAC makes the transform estimation
process robust to the wrong ORB feature match. The difference image is almost black, which means that the estimated
transform is correct.

Listing 9-4. Program to illustrate perspective transform recovery by matching ORB features

//Program to illustrate perspective transform recovery by matching ORB features
//Author: Samarth Manoj Brahmbhatt, University of Pennsyalvania

#include <opencv2/opencv.hpp>

#include <opencv2/stitching/stitcher.hpp>
#include <opencv2/stitching/warpers.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include "Config.h"

using namespace std;
using namespace cv;

class perspective transformer {

https://www.ebooks-it.org/

eBooks-1T.org

Mdauo LI, J_lll_l_Ld.lle_UI_lllEU., J_lll_pﬁl_bp@(;LJ.VE_LLdIJ.bJ.ULl[l@U.;
vector<Point2f> points, points transformed;
Mat M;
public:

perspective transformer () ;
voild estimate perspective();
void show diff ();

};

perspective transformer::perspective transformer () {

im = imread(DATA FOLDER 3 + string("/image.jpg"));

im transformed = imread(DATA FOLDER 3 + string("/transformed.jpg")):;
}

void perspective transformer::estimate perspective() {
// Match ORB features to point correspondences between the images
vector<KeyPoint> kp, t kp;
Mat desc, t desc, im g, t im g;

cvtColor (im, im g, CV_BGR2GRAY);
cvtColor (im transformed, t im g, CV_BGR2GRAY) ;

OrbFeatureDetector featureDetector;
OrbDescriptorExtractor featureExtractor;

featureDetector.detect (im g, kp);
featureDetector.detect (t _im g, t kp);

featureExtractor.compute (im g, kp, desc);
featureExtractor.compute (t im g, t kp, t desc);

flann::Index flannIndex(desc, flann::LshIndexParams (12, 20, 2),
Cvflann::FLANN_DIST_HAMMING);

Mat match idx(t desc.rows, 2, CV_32SCl), match dist(t desc.rows, 2, CV_32FCl);

flannIndex.knnSearch (t desc, match idx, match dist, 2, flann::SearchParams());

vector<DMatch> good matches;
for(int 1 = 0; 1 < match dist.rows; i++) {
if (match dist.at<float>(i, 0) < 0.6 * match dist.at<float>(i, 1)) {
DMatch dm(i, match idx.at<int>(i, 0), match dist.at<float>(i, 0));
good matches.push back (dm) ;
points.push back((kp[dm.trainIdx]) .pt);
points transformed.push back ((t kp[dm.queryIdx]) .pt);

}

Mat im show;
drawMatches (im transformed, t kp, im, kp, good matches, im show);
imshow ("ORB matches", im_ show) ;

M = findHomography (points, points transformed, CV_RANSAC, 2);
cout << "Estimated Perspective transform = " << M << endl;

warpPerspective (im, im perspective transformed, M, im.size());
imshow ("Estimated Perspective transform", im perspective transformed);

https://www.ebooks-it.org/

} eBooks-1T.org

void perspective transformer::show diff () {
imshow ("Difference", im transformed - im perspective transformed);

}

int main () {
perspective transformer a;
a.estimate perspective();
cout << "Press 'd' to show difference, 'gq' to end" << endl;
if (char (waitKey(-1)) == 'd") {
a.show diff ();
cout << "Press 'g' to end" << endl;
if (char (waitKey(-1)) == 'g') return 0;
}
else
return 0;

e

Figure 9-4. Perspective transform recovery by matching ORB features

Panoramas

Making panoramas is one of the main applications of automatically recovering perspective transforms. The techniques
discussed earlier can be used to estimate the perspective transforms between a set of images captured by a rotating/revolving
(but not translating) camera. One can then construct a panorama by “arranging” all these images on a big blank “canvas” imag
The arrangement is done according to the estimated perspective transforms. Although this is the high-level algorithm used mo
commonly to make panoramas, some minor details have to be taken care of in order to make seamless panoramas:

e The estimated perspective transforms are most likely to be not perfect. Hence, if one just goes by the estimated
transforms to arrange the images on the canvas, one observes small discontinuities in the regions where two
images overlap. Hence after the pair-wise transforms are estimated, a second “global” estimation has to be done,
which will perturb the individual transforms to make all the transforms agree well with each other

e Some form of seam blending has to be implemented to remove discontinuities in overlapping regions. Most
modern cameras have auto-exposure settings. Hence, different images might have been captures at different
exposures and therefore they may be darker or brighter than their neighboring image in the panorama. The
difference in exposure must be neutralized across all neighboring images

The OpenCV stitching module has all these facilities built in excellently. It uses the high-level algorithm outlined in
Figure 9-5 to stitch images into a visually correct panorama.

https://www.ebooks-it.org/

eBooks-1T.org

[I T e
. Find featires e | oo b parAmeters mugh
| | mane R s

Registration

Wave
— 1 commaction [
| £ Refine camera
| Rogstatan e ~ — o

/ 2 T~ [Felpe] — | oooay |
/ lI paiy B
Jlr' ra el

j \

¥ I [
nput | | ©
mages i m-amqul | otz e Bland images Final pang.
S \

L J

Figure 9-5. OpenCV image stitching pipeline, taken from OpenCV online documentation

The stitching module is really simple to use in the sense that to make a panorama one just has to create a stitchis
object and pass it a vector of Mat's containing the images you want to stitch. Listing 9-5 shows the simple code used to
generate the beautiful panorama out of six images shown in Figure 9-6. Note that this code requires the images to be present i
a location called DATA FOLDER 1 and defined inthe Config.h header file. It uses CMake to link the executable to the
Boost filesystem library. You can use the architecture and CMa ke organization explained towards the end of Chapter 8 to
compile the code.

Listing 9-5. Code to create a panorama from a collection of images

//Code to create a panorama from a collection of images
//Author: Samarth Manoj Brahmbhatt, University of Pennsyalvania

#include <opencv2/opencv.hpp>

#include <opencv2/stitching/stitcher.hpp>
#include <opencv2/stitching/warpers.hpp>
#include "Config.h"

#include <boost/filesystem.hpp>

using namespace std;
using namespace cv;
using namespace boost::filesystem;

int main () {
vector<Mat> images;

// Read images

for(directory iterator i (DATA FOLDER 5), end iter; i != end iter; i++) {
string im name = i->path().filename () .string();
string filename = string(DATA FOLDER 5) + im name;
Mat im = imread(filename) ;

if (!im.empty())
images.push back(im);

}

cout << "Read " << images.size() << " images" << endl << "Now making
panorama..." << endl;

Mat panorama;

https://www.ebooks-it.org/

eBooks-1T.org

sLitLCller . .sLtlLCll(llldyes, pdlilorLdlllda) ,

namedWindow ("Panorama", CV_WINDOW NORMAL) ;
imshow ("Panorama", panorama);

while (char (waitKey (1)) !'= "'g') {}

return 0;

Figure 9-6. 6 images (top) used to generate the Golden Gate panorama (bottom)

The panorama code scales up quite well too. Figure 9-7 shows the panorama generated from 23 images using the same
code.

https://www.ebooks-it.org/

eBooks-1T.org

Figure 9-7. Panorama made by stitching 23 images

The online documentation for the stitching module at
http://docs.opencv.org/modules/stitching/doc/stitching.html shows that there are a lot of optior
available for different parts of the pipeline. For example, you can:

e Use SURF or ORB as your choice of image features

e Planar, spherical, or cylindrical as the shape of your panorama (the shape of the canvas on which all the images
are arranged)

e Graph-cuts or Voronoi diagrams as a method of finding seam regions that need blending

Listing 9-6 shows how you can plug in and plug out different modules of the pipeline using various “setter” functions of
stitching class. It changes the shape of the panorama from the default planar to cylindrical. Figure 9-8 shows the
cylindrical panorama thus obtained.

Listing 9-6. Code to create a panorama with cylindrical warping from a collection of images

//Code to create a panorama with cylindrical warping from a collection of images
//Author: Samarth Manoj Brahmbhatt, University of Pennsyalvania

#include <opencv2/opencv.hpp>

#include <opencv2/stitching/stitcher.hpp>
#include <opencv2/stitching/warpers.hpp>
#include "Config.h"

#include <boost/filesystem.hpp>

using namespace std;
using namespace cv;
using namespace boost::filesystem;

int main() {
vector<Mat> images;

for (directory iterator i (DATA FOLDER 5), end iter; 1 != end iter; 1i++) {
string im name = i->path().filename().string();
string filename = string(DATA FOLDER 5) + im name;
Mat im = imread(filename);
if(!im.empty ())
images.push back(im);

}

cout << "Read " << images.size () << " images" << endl << "Now making

https://www.ebooks-it.org/

pan eBooks-1T.org

Mat panorama;

Stitcher stitcher = Stitcher::createDefault();
CylindricalWarper* warper = new CylindricalWarper ()
stitcher.setWarper (warper) ;

// Estimate perspective transforms between images
Stitcher::Status status = stitcher.estimateTransform(images) ;
if (status != Stitcher::0K) {
cout << "Can't stitch images, error code
return -1;

" << int(status) << endl;

}

// Make panorama
status = stitcher.composePanorama (panorama) ;
if (status != Stitcher::0K) {
cout << "Can't stitch images, error code
return -1;

" << int(status) << endl;

}

namedWindow ("Panorama", CV_WINDOW NORMAL) ;
imshow ("Panorama", panorama);

while (char (waitKey (1)) !'= "'g') {}

return 0;

= rd BB EEAA

Figure 9-8. Cylindrical panorama made from seven images

Summary

Geometric image transforms are an important part of all computer vision programs that deal with the real world, because the:
is always a perspective transform between the world and your camera's image plane as well as between the image planes in
two positions of the camera. They are also very cool, because they can be used to make panoramas! In this chapter, you learn
how to write code implementing perspective transforms and how to recover the transform between two given images, which
a useful skill to have in many practical computer vision projects. The next chapter is on stereo vision. We will use our
knowledge of perspective transform matrices to represent the transform between the left and right cameras of a stereo camerz
which will be an important step in learning how to calibrate a stereo camera.

https://www.ebooks-it.org/

CH eBooks-1T.org

3D Geometry and Stereo Vision

This chapter introduces you to the exciting world of the geometry involved behind computer vision using single and multiple
cameras. Knowledge of this geometry will enable you to translate image coordinates into actual 3D world coordinates—in
short, you will be able to relate position in your images to well-defined physical positions in the world.

The chapter is divided into two main sections—single cameras and stereo (two) cameras. For each section, we will first
discuss the associated mathematical concepts and then delve into OpenCV implementations of that math. The section on stere
cameras is especially exciting, since it will enable you to compute full 3D information from a pair of images. So let’s explor
camera models without further delay!

Single Camera Calibration

As you are probably aware, every sensor needs to be calibrated. Simply put, calibration is the process of relating the sensor’
measuring range with the real world quantity that it measures. A camera being a sensor, it needs to be calibrated to give us
information in physical units, too. Without calibration, we can only know about objects in their image coordinates, which is 1
that useful when one wants to use the vision system on a robot that interacts with the real world. For calibrating a camera, it i
necessary to first understand the mathematical model of a camera, as shown in Figure 10-1.

s p(x!ylz]
I -

-

Figure 10-1. A simple camera model

https://www.ebooks-it.org/

It eBooks-1T.org syster
OfleHSCS. A S Coordindle SysteI 1s Sfiowll, widl Ul CdIlcrd projecuoll CCIer di 1ts Origin. s 15 Cd11cd Ul CdIlcrd
coordinate system. Note that all information gained from the camera images will be in this camera coordinate system; if you
want to transform this information to any other coordinate frame on your robot, you need to know the rotation and translation
from that frame to the camera coordinate frame, and I will not discuss that in this book. The imaging plane of the camera is
situated at a distance equal to the focal length f"along the Z axis. The imaging plane has its own 2D coordinate system (u, v
and for the moment let us put its origin at the point (u,, v,) where the Z camera axis intersects the imaging plane. Using th
concept of similar triangles it is easy to observe that the relationship betweenthe (X, Y, Z) coordinates of an object in th
camera coordinate system and the (u, v) coordinates ofits image is:

Uy

B
X Z
. b
Y Z
However, in almost all imaging software the origin of an image is placed at the top left corner. Considering this, the
relationship becomes:

up—tg _f
X Z
Up=t _f
Y Z

Calibration of a single camera is the procedure of finding the focal length f'and the image (u,, v,) of the camera
coordinate system origin. From these equations, it should be apparent that even if you know f, u,, and v, by calibrating a
camera you cannot determine the Z coordinate of image points and you can only determine the X and Y coordinates up to a

scale (because Z 1s not known). What then, you might argue, is the point of these relations? The point is that these relations
(expressed in the form of matrices) allow you to find the camera parameters f, u,, and v, from a bunch of known
correspondences between 3D coordinates of an object in the object's own coordinate frame and the 2D 1image coordinates o
the points in the object’s image. This is done by some ingenious matrix math that I describe briefly later in this chapter.

The camera parameters can be arranged into a camera matrix K as follows:

Suppose (X, Y, Z) are the coordinates of the object points in the object’s own coordinate system. For calibration,

f 0 u
K=0 f v
0 0 1

one usually uses a planar checkerboard because it is relatively easy to detect the corners and hence automatically determine t
3D-2D point correspondences. Now, because the choice of the object’s coordinate system is in our hands, we will make muc
life much easier by choosing it such that the board is in the XY plane. Hence, the Z coordinates of all the object points will be
0. If we know the side length of the squares of the checkerboard, X and Y will be just a grid of points with that distance
between them. Suppose that R and T are the rotation matrix and translation between the object’s coordinate system and the
camera coordinate system. This means that once we transform the object coordinates by R and T, we will be able to use the
relations we derived from Figure 10-1. R and T are unknown. If we represent the object coordinates by the column vector [X

Y 2 117, thevector [ul, u2, u3] T we getfrom:
[wlu2u3]’ =K [RT][XY Z1]"

can be used to get the image coordinates in pixels. Specifically, pixel coordinates:

https://www.ebooks-it.org/

eBooks-1T.org

| RIS Bl ST e |

u3 u3

Now, if you had an algorithm to detect internal corners in the image of a checkerboard, you would have a set of 2D-3D
correspondences for each image of the checkerboard. Grouping all these correspondence gives you two equations—one for t
and one for v. The unknowns in these equations are R, T, and the camera parameters. If you have a large number of these
correspondences, you can solve a huge linear system of equations to get the camera parameters f, u,, and v0 and the R and T

for each image.

OpenCV Implementation of Single Camera Calibration

The OpenCV function findChessboardCorners () can find the internal corners in images of chessboards.

(x=36,v=210) ~ R:198 G:214 B:177

Figure 10-2. Chessboard corner extraction in OpenCV

It takes in the image and the size of the pattern (internal corners along width and height) as input and uses a sophisticated
algorithm to calculate and return the pixel locations of those corners. These are your 2D image points. You can make a vectos
of Point3f’s for the 3D object points yourself—the X and Y coordinates are a grid and the Z coordinates are all 0, as explaing
previously. The OpenCV function calibrateCamera () takes these object 3D points and corresponding image 2D points
and solves the equations to output the camera matrix, R, T and distortion coefficients. Yes, every camera has a lens distortior
which OpenCV models by using distortion coefficients. Although a discussion on the math behind determining these
coefficients is beyond the scope of this book, a good estimation of distortion coefficients can improve the camera calibration
lot. The good news is that if you have a good set of chessboard images with varied views, OpenCV usually does a very good
job determining the coefficients.

Listing 10-1 shows an object-oriented approach to read a set of images, find corners, and calibrate a camera. It uses the
same CMake build system we used in the previous chapter, and a similar folder organization. The images are assumed to be
present in a location IMAGE FOLDER. The program also stores the camera matrix and distortion coefficients to an XML file
for potential later use.

Listing 10-1. Program to illustrate single camera calibration

// Program illustrate single camera calibration
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>

https://www.ebooks-it.org/

#in
#inllude <DOOSL/ LllesysLell.lpp.r

#include "Config.h"

using namespace cv;
using namespace std;
using namespace boost::filesystem3;

class calibrator {
private:
string path;
chessboard images
vector<Mat> images;
Mat cameraMatrix, distCoeffs;
coefficients
bool show chess corners;
corners?
float side length;
in mm
int width, height;
chessboard along width and height
vector<vector<PointZ2f> > image points;
vector<vector<Point3f> > object points;

public:
calibrator (string,
void calibrate();
Mat get cameraMatrix();
Mat get distCoeffs();
void calc image points (bool) ;
chessboard image

b

float, int, int);

calibrator::calibrator(string path,
side length = side length;

width = width;
height = height;
path = path;

cout << path << endl;

// Read images

for (directory iterator i(path), end iter;
string filename =
images.push back (imread (filename)) ;

}

void calibrator::calc image points (bool show)

// Calculate the object points in the object co-ordinate system

left corner)
vector<Point3f> ob p;
for(int i = 0; 1 < height; i++) {
for(int j = 0; j < width; J++) {

ob p.push back(Point3f(j * side length,

float side length,

eBooks-1T.org

//path of folder containing

//chessboard images
//camera matrix and distortion

//visualize the extracted chessboar
//side length of a chessboard squar
//number of internal corners of the

//2D image points
//3D object points

//constructor, reads in the images

//function to calibrate the camera

//access the camera matrix

//access the distortion coefficient
//calculate internal corners of the

int width, int height)

!= end iter; i++) {

path + i->path().filename () .string()

{

(origin at top

1 * side length, 0.f));

https://www.ebooks-it.org/

eBooks-1T.org
J

1f (show) namedWindow ("Chessboard corners");

for(int i = 0; 1 < images.size(); i++) {
Mat im = images[i];
vector<Point2f> im p;
//find corners in the chessboard image
bool pattern found = findChessboardCorners (im, Size(width, height), im p,
CALIB CB ADAPTIVE THRESH + CALIB CB NORMALIZE IMAGE+ CALIB CB FAST CHECK) ;
if (pattern found) {
object points.push back(ob p);
Mat gray;
cvtColor (im, gray, CV_BGR2ZGRAY) ;
cornerSubPix (gray, im p, Size (5, 5), Size(-1, -1),
TermCriteria (CV_TERMCRIT EPS + CV_TERMCRIT ITER, 30, 0.1));
image points.push back(im p);
if (show) {
Mat im show = im.clone();
drawChessboardCorners (im show, Size(width, height), im p, true);
imshow ("Chessboard corners", im show);
while (char (waitKey (1)) != " ") {}

}

//if a valid pattern was not found, delete the entry from vector of images

else images.erase(images.begin() + 1i);
}
}
void calibrator::calibrate () {
vector<Mat> rvecs, tvecs;
float rms_error = calibrateCamera (object points, image points, images[0].size()

cameraMatrix, distCoeffs, rvecs, tvecs);
cout << "RMS reprojection error " << rms_error << endl;

}

Mat calibrator::get cameraMatrix() {
return cameraMatrix;

}

Mat calibrator::get distCoeffs() {
return distCoeffs;

}

int main () {
calibrator calib (IMAGE FOLDER, 25.f, 5, 4);

calib.calc image points(true);

cout << "Calibrating camera.." << endl;
calib.calibrate();

//save the calibration for future use

string filename = DATA FOLDER + string("cam calib.xml");
FileStorage fs(filename, FileStorage::WRITE) ;

fs << "cameraMatrix" << calib.get cameraMatrix();

https://www.ebooks-it.org/

eBooks-1T.org

ILSs.rLeltedse),
cout << "Saved calibration matrices to " << filename << endl;

return 0;

calibrateCamera () returns the RMS reprojection error, which should be less than 0.5 pixels for a good calibratior
The reprojection error for the camera and set of images [used was 0.0547194. Keep in mind that you must have a set of at le:
10 images with the chessboard at various positions and angles but always fully visible.

Stereo Vision

A stereo camera is like your eyes—two cameras separated horizontally by a fixed distance called the baseline. A stereo
camera setup allows you to compute even the physical depth of an image point using the concept of disparity. To understand
disparity, imagine you are viewing a 3D point through the two cameras of a stereo rig. If the two cameras are not pointing
towards each other (and they are usually not), the image of the point in the right image will have a lower horizontal coordinat
than the image of the point in the left image. This apparent shift in the image of the point in the two cameras is called disparit
Extending this logic also tells us that disparity is inversely proportional to the depth of the point.

Triangulation

Let us now discuss the relation between depth and disparity in a more mathematical setting, considering the stereo camera
model shown in Figure 10-3.

\ < T > P(x,y,2)
e e e e et e ?
\ FR
A} ;N
\ / \
\ J \
5\ / \
\ / \
\ / A\
\ : / \ ;
A I / \ |
(Eer ‘e—d @'\)\ } RIGHT
y 7
@y " %
Yo Nigke M
\ Xe Xg
+ T >

Figure 10-3. A stereo camera model
Observe the positions of the image of the point P in the two images. The disparity in this case is:
d=ul - ur

Using the concept of similar triangles, the depth of the point (Z coordinate of P in the left camera coordinate system) is
governed by the expression:

a_t
T E

and hence depth of the point:

https://www.ebooks-it.org/

eBooks-1T.org

£ — 1 b

d

Once you know Z you can calculate the X and Y coordinates of the point exactly by using the equations for single camera
model mentioned in the previous section. This whole process is termed “stereo triangulation.”

Calibration

To calibrate a stereo camera, you first have to calibrate the cameras individually. Calibration of the stereo rig entails finding
out the baseline T. Also notice that I made a strong assumption while drawing Figure 10-3—that the two image planes are
exactly aligned vertically and they are parallel to each other. This is usually not the case as a result of small manufacturing
defects and there is a definite rotation matrix R that aligns the two imaging planes. Calibration also computes R. T is also n
a single number, but a vector representing the translation from the left camera origin to the right camera origin. The OpenCV
function stereoCalibrate () takes in calculates R, T, and a couple of other matrices called E (essential matrix) and F
(fundamental matrix) by taking the following inputs:

¢ 3D Object points (same as in the single camera calibration case)
e Left and right 2D image points (computed by using findCameraCorners () inthe left and right images)

e Left and right camera matrices and distortion coefficients (optional)

Note that the left and right camera calibration information is optional and the function tries to compute it if not provided.
But it is highly recommended you provide it so that the function has to optimize less parameters.

If you have a stereo camera attached to your USB port, the port will usually not have enough bandwidth to transfer both I
and right 640 x 480 color frames at 30 fps. You can reduce the size of the frames by changing the properties of the
VideoCapture object associated with the camera as shown in Listing 10-2. Figure 10-4 shows 320 x 240 frames from my
stereo camera. For stereo applications, the left and right images must be captured at the same instant. This is possible with
hardware synchronization but if your stereo camera does not have that feature, you can first grab the raw frames quickly using
the grab () method of the VideoCapture class and then do the heavier demosaicing, decoding, and Mat storage tasks
afterward using the retrieve () method. This ensures that both frames are captured at almost the same time.

Listing 10-2. Program to illustrate frame capture from a USB stereo camera

// Program to illustrate frame capture from a USB stereo camera
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>

using namespace Cv;
using namespace std;

int main () {
VideoCapture capr(l), capl(2);
//reduce frame size
capl.set (CV_CAP PROP FRAME HEIGHT, 240);
capl.set (CV_CAP PROP FRAME WIDTH, 320);
capr.set (CV_CAP PROP FRAME HEIGHT, 240);
capr.set (CV_CAP PROP FRAME WIDTH, 320);

~ o~ o~ o~

namedWindow ("Left") ;
namedWindow ("Right") ;

while (char (waitKey (1)) != "'g') {
//grab raw frames first

https://www.ebooks-it.org/

eBooks-1T.org
cdpL.grdoit),
//decode later so the grabbed frames are less apart in time
Mat framel, framer;
capl.retrieve (framel) ;
capr.retrieve (framer);

if (framel.empty () || framer.empty()) break;

imshow ("Left", framel);
imshow ("Right", framer);

}
capl.release();
capr.release();
return 0;

(=185, y=134) - R:255 G:252 B:254 {x=7.v=136) = R:104 G:119 B9

Figure 10-4. Frames from a stereo camera

Listing 10-3 is an app that you can use to capture a set of checkerboard images to calibrate your stereo camera. It saves a
pair of images when you press “c” into separate folders (called LEFT FOLDER and RIGHT FOLDER). It uses the CMake
build system and a configuration file similar to the one we have been using in our CMake projects.

Listing 10-3. Program to collect stereo snapshots for calibration

// Program to collect stereo snapshots for calibration
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>

#include <opencv2/highgui/highgui.hpp>
#include "Config.h"

#include <iomanip>

using namespace Cv;
using namespace std;

int main () {
VideoCapture capr(l), capl(2);
//reduce frame size
capl.set (CV_CAP PROP FRAME HEIGHT, 240);
capl.set (CV_CAP PROP FRAME WIDTH, 320);
capr.set (CV_CAP PROP FRAME HEIGHT, 240);
capr.set (CV_CAP PROP FRAME WIDTH, 320);

~ o~ o~ o~

namedWindow ("Left") ;

https://www.ebooks-it.org/

eBooks-1T.org

cout << "Press 'c' to capture ..." << endl;

char choice = 'z';
int count = 0;
while (choice !'= 'g') {
//grab frames quickly in succession
capl.grab (),
capr.grab () ;
//execute the heavier decoding operations
Mat framel, framer;
capl.retrieve (framel);
capr.retrieve (framer);

if (framel.empty () || framer.empty()) break;

imshow ("Left", framel);
imshow ("Right", framer);
if (choice == 'c¢'") {
//save files at proper locations if user presses 'c'
stringstream 1 name, r name;
1 name << "left" << setw(4) << setfill('0') << count << ".jpg";
r name << "right" << setw(4) << setfill('0') << count << ".jpg";
imwrite (string (LEFT FOLDER) + 1 name.str(), framel);
imwrite (string (RIGHT FOLDER) + r name.str(), framer);
cout << "Saved set " << count << endl;
count++;
}
choice = char (waitKey (1))
}
capl.release();
capr.release();
return 0;

Listing 10-4 is an app that calibrates a stereo camera by reading in previously captured stereo images stored in
LEFT FOLDER and RIGHT FOLDER, and previously saved individual camera calibration information in DATA FOLDEI
My camera and set of images gave me a RMS reprojection error of 0.377848 pixels.

Listing 10-4. Program to illustrate stereo camera calibration

// Program illustrate stereo camera calibration
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>

#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <boost/filesystem.hpp>
#include "Config.h"

using namespace cv;
using namespace std;
using namespace boost::filesystem3;

class calibrator {

https://www.ebooks-it.org/

eBooks-1T.org

SLL1IlY J._L)d.l_ll, L_pd.l_ll,' //patll Lo 101derLs COllLdlllllly 1el L 4dllu L1yllt
checkerboard images

vector<Mat> 1 images, r images; //left and right checkerboard images

Mat 1 cameraMatrix, 1 distCoeffs, r cameraMatrix, r distCoeffs; //Mats for
holding individual camera calibration information

bool show chess corners; //visualize checkerboard corner detections?

float side length; //side length of checkerboard squares

int width, height; //number of internal corners in checkerboard along width
and height

vector<vector<Point2f> > 1 image points, r image points; //left and right
image points

vector<vector<Point3f> > object points; //object points (grid)

Mat R, T, E, F; //stereo calibration information

public:
calibrator (string, string, float, int, int); //constructor
bool calibrate(); //function to calibrate stereo camera
void calc image points (bool); //function to calculae image points by
detecting checkerboard corners

b

calibrator::calibrator(string 1 path, string r path, float side length, int
_width, int height) {

side length = side length;
width = width;

height = height;

1 path = 1 path;

r path = r path;

// Read images

for (directory iterator i(l path), end iter; i != end iter; i++) {
string im name = i->path().filename().string();
string 1 filename = 1 path + im name;
im name.replace (im name.begin(), im name.begin() + 4, string("right"));
string r filename = r path + im name;
Mat lim = imread(l filename), rim = imread(r filename);
if(!lim.empty () && !rim.empty()) {

1 images.push back(lim);
r images.push back(rim);

}

void calibrator::calc image points (bool show) ({
// Calculate the object points in the object co-ordinate system (origin at top
left corner)
vector<Point3f> ob p;
for(int i = 0; 1 < height; i++) {
for(int j = 0; j < width; J++) {
ob p.push back(Point3f(j * side length, 1 * side length, 0.f));

https://www.ebooks-it.org/

eBooks-1T.org

[idallleuw LIlaow { Lel L CllessbodrLu COLIleLs),
namedWindow ("Right Chessboard corners");

}

for(int 1 = 0; 1 < 1 images.size(); 1i++) {
Mat lim = 1 images[i], rim = r images[i];
vector<Point2f> 1 im p, r im p;
bool 1 pattern found = findChessboardCorners (lim, Size (width, height),
1 im p, CALIB CB ADAPTIVE THRESH + CALIB CB NORMALIZE IMAGE+ CALIB CB FAST CHECK);
bool r pattern found = findChessboardCorners (rim, Size (width, height),
r im p, CALIB CB ADAPTIVE THRESH + CALIB CB NORMALIZE IMAGE+ CALIB CB FAST CHECK);
if (1 pattern found && r pattern found) {
object points.push back(ob p);
Mat gray;
cvtColor (lim, gray, CV_BGR2GRAY) ;

cornerSubPix (gray, 1 im p, Size(5, 5), Size (-1, -1),
TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT ITER, 30, 0.1));

cvtColor (rim, gray, CV_BGR2GRAY) ;

cornerSubPix (gray, r im p, Size(5, 5), Size(-1, -1),
TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT ITER, 30, 0.1));

1 image points.push back(l im p);
r image points.push back(r im p);
if (show) {
Mat im show = lim.clone();
drawChessboardCorners (im show, Size(width, height), 1 im p, true);

imshow ("Left Chessboard corners", im show);
im show = rim.clone();
drawChessboardCorners (im show, Size(width, height), r im p, true);
imshow ("Right Chessboard corners", im show);
while (char (waitKey (1)) != " ") {}
}
}
else {
1 images.erase(l images.begin() + 1);
r images.erase(r images.begin() + 1);
}
}
}
bool calibrator::calibrate () {

string filename = DATA FOLDER + string("left cam calib.xml");
FileStorage fs(filename, FileStorage::READ);
fs["cameraMatrix"] >> 1 cameraMatrix;

fs["distCoeffs"] >> 1 distCoeffs;

fs.release();

filename = DATA FOLDER + string("right cam calib.xml");
fs.open(filename, FileStorage::READ);
fs["cameraMatrix"] >> r cameraMatrix;

fs["distCoeffs"] >> r distCoeffs;

fs.release();

if(!1 cameraMatrix.empty() && !1 distCoeffs.empty() && !r cameraMatrix.empty ()
&& !r distCoeffs.empty()) {

https://www.ebooks-it.org/

eBooks-1T.org 1ts,

l_CdllLELdl"ldLLJ_A, J._U.J_b LLocells, L_UdlllELleldl_LJ_A, L_U.J_é LLoells, J._J.llld.g@d LV] .olZzc (), R,
T, E, F);

cout << "Calibrated stereo camera with a RMS error of " << rms << endl;

filename = DATA FOLDER + string("stereo calib.xml");

fs.open(filename, FileStorage::WRITE) ;

fs << "1 cameraMatrix" << 1 cameraMatrix;

fs << "r cameraMatrix" << r cameraMatrix;

fs << "1 distCoeffs" << 1 distCoeffs;

fs << "r distCoeffs" << r distCoeffs;

fs << "R" << R;

fs << "T" KL T,

fs << "E" << E;

fs << "F" <K F;

cout << "Calibration parameters saved to " << filename << endl;

return true;

}

else return false;

}

int main () {
calibrator calib(LEFT_FOLDER, RIGHT FOLDER, 1.f, 5, 4);
calib.calc image points (true);
bool done = calib.calibrate();

if (!done) cout << "Stereo Calibration not successful because individial
calibration matrices could not be read" << endl;

return 0;

Rectification and Disparity by Matching

Recall from the discussion on stereo triangulation that you can determine the disparity of a pixel from a pair of stereo images
by finding out which pixel in the right image matches a pixel in the left image, and then taking the difference of their horizonta
coordinates. But it is prohibitively difficult to search for pixel matches in the entire right image. How could one optimize the
search for the matching pixel?

Theoretically, the matching right pixel for a left pixel will be at the same vertical coordinate as the left pixel (but shifted
along the horizontal coordinate inversely proportional to depth). This is because the theoretical stereo camera has its
individual cameras offset only horizontally. This greatly simplifies the search—you only have to search the right image in the
same row as the row of the left pixel! Practically the two cameras in a stereo rig are not vertically aligned exactly due to
manufacturing defects. Calibration solves this problem for us—it computes the rotation R and translation T from left camera
right camera. If we transform our right image by R and T, the two images can be exactly aligned and the single-line search
becomes valid.

In OpenCV, the process of aligning the two images (called stereo rectification) is accomplished by functions
—stereoRectify (), initUndistortRectifyMap(),and remap (). stereoRectify () takes inthe
calibration information of the individual cameras as well as the stereo rig and gives the following outputs (names of matrices
match the online documentation):

e R1—Rotation matrix to be applied to left camera image to align it

e R2—Rotation matrix to be applied to right camera image to align it

e P1—The apparent camera matrix of the aligned left camera appended with a column for the translation to origin of
the calibrated coordinate system (coordinate system of the left camera). For the left camera, this is [0 0 0]T

https://www.ebooks-it.org/

d eBooks-1T.org
O1 UIC CallDIdlCd COOTULIAIC SYSICIIL (COOIUALC SYSICIT O1 UIC IC1L CAllICId). 'Ol UIC TTEIL CAlllCTd, UllS 1S

approximately [-T 0 O]T where T is the distance between two camera origins
e Q—disparity-to-depth mapping matrix (see documentation of function reprojectimageTo3d() for formula)

Once you get these transformations you have to apply them to the corresponding image. An efficient way to do this is pixe
map. Here is how a pixel map works—imagine that the rectified image is a blank canvas of the appropriate size that we want
to fill with appropriate pixels from the unrectified image. The pixel map is a matrix of the same size as the rectified image an
acts as a lookup table from position in rectified image to position in unrectified image. To know which pixel in the unrectifie
image one must take to fill in a blank pixel in the rectified image, one just looks up the corresponding entry in the pixel map.
Because matrix lookups are very efficient compared to floating point multiplications, pixel maps make the process of alignin
images very fast. The OpenCV function initUndistortRectifyMap () computes pixels maps by taking the matrices
output by stereoRectify () as input. The function remap () applies the pixel map to an unrectified image to rectify it.

Listing 10-5 shows usage examples of all these functions; you are also encouraged to look up their online documentation
explore various options. Figure 10-5 shows stereo rectification in action—notice how visually corresponding pixels in the tv
images are now at the same horizontal level.

Listing 10-5. Program to illustrate stereo camera rectification

// Program illustrate stereo camera rectification
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>

#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <boost/filesystem.hpp>
#include "Config.h"

using namespace cv;
using namespace std;
using namespace boost::filesystem3;

class calibrator {
private:

string 1 path, r path;
vector<Mat> 1 images, r_ images;
Mat 1 cameraMatrix, 1 distCoeffs, r cameraMatrix, r distCoeffs;
bool show chess corners;
float side length;
int width, height;
vector<vector<Point2f> > 1 image points, r image points;
vector<vector<Point3f> > object points;
Mat R, T, E, F;

public:
calibrator (string, string, float, int, int);
void calc image points (bool);
bool calibrate();
void save info(string);
Size get image size();

}i

class rectifier {
private:

https://www.ebooks-it.org/

eBooks-1T.org

SsLL 1y pdLlll,

public:
rectifier (string, Size); //constructor
void show rectified(Size); //function to show live rectified feed from

stereo camera

}i

calibrator::calibrator(string 1 path, string r path, float side length, int
width, int height) {

side length = side length;
width = width;

height = height;

1 path = 1 path;

r path = r path;

// Read images

for(directory iterator i(l path), end iter; i != end iter; i++) {
string im name = i->path().filename () .string();
string 1 filename = 1 path + im name;
im name.replace (im name.begin(), im name.begin() + 4, string("right"));
string r filename = r path + im name;
Mat lim = imread(l filename), rim = imread(r_ filename);
if(!lim.empty () && !rim.empty()) {

1 images.push back(lim);
r images.push back(rim);

}

void calibrator::calc image points (bool show) {
// Calculate the object points in the object co-ordinate system (origin at top
left corner)
vector<Point3f> ob p;
for(int i = 0; 1 < height; i++) {
for(int j = 0; j < width; J++) {
ob p.push back(Point3f(j * side length, 1 * side length, 0.f));

}

1f (show) {
namedWindow ("Left Chessboard corners");
namedWindow ("Right Chessboard corners");

}

for(int 1 = 0; 1 < 1 images.size(); 1i++) {
Mat lim = 1 images[i], rim = r images([i];
vector<Point2f> 1 im p, r im p;
bool 1 pattern found = findChessboardCorners(lim, Size(width, height),
1 im p, CALIB CB ADAPTIVE THRESH + CALIB CB NORMALIZE IMAGE+ CALIB CB FAST CHECK) ;
bool r pattern found = findChessboardCorners(rim, Size(width, height),
r im p, CALIB CB ADAPTIVE THRESH + CALIB CB NORMALIZE IMAGE+ CALIB CB FAST CHECK);
if (1 pattern found && r pattern found) {
object points.push back(ob p);

https://www.ebooks-it.org/

eBooks-1T.org

cvieceoltor (L1, ygrady, LV DOURZLGRAL) ,

cornerSubPix (gray, 1 im p, Size(5, 5), Size(-1, -1),
TermCriteria (CV_TERMCRIT EPS + CV_TERMCRIT ITER, 30, 0.1));

cvtColor (rim, gray, CV_BGR2ZGRAY) ;

cornerSubPix (gray, r im p, Size(5, 5), Size(-1, -1),
TermCriteria (CV_TERMCRIT EPS + CV_TERMCRIT ITER, 30, 0.1));

1 image points.push back(l im p);

r image points.push back(r im p);

if (show) {
Mat im show = lim.clone();
drawChessboardCorners (im show, Size(width, height), 1 im p, true);
imshow ("Left Chessboard corners", im show);
im show = rim.clone () ;
drawChessboardCorners (im show, Size(width, height), r im p, true);
imshow ("Right Chessboard corners", im show);

while (char (waitKey (1)) != " ") {}
}
}
else {
1 images.erase(l images.begin() + 1);
r images.erase(r images.begin() + 1);
}
}
}
bool calibrator::calibrate () {

string filename = DATA FOLDER + string("left cam calib.xml");
FileStorage fs(filename, FileStorage::READ);
fs["cameraMatrix"] >> 1 cameraMatrix;

fs["distCoeffs"] >> 1 distCoeffs;

fs.release();

filename = DATA FOLDER + string("right cam calib.xml");
fs.open(filename, FileStorage::READ);
fs["cameraMatrix"] >> r cameraMatrix;

fs["distCoeffs"] >> r distCoeffs;

fs.release();

if(!1 cameraMatrix.empty () && !1 distCoeffs.empty() && !r cameraMatrix.empty ()
&& !r distCoeffs.empty()) {
double rms = stereoCalibrate (object points, 1 image points, r image points,

1 cameraMatrix, 1 distCoeffs, r cameraMatrix, r distCoeffs, 1 images[0].size(), R,
T, E, F);
cout << "Calibrated stereo camera with a RMS error of " << rms << endl;
return true;
}

else return false;

}

void calibrator::save info(string filename) ({
FileStorage fs(filename, FileStorage::WRITE)
fs << "1 cameraMatrix" << 1 cameraMatrix;
fs << "r cameraMatrix" << r cameraMatrix;
fs << "1 distCoeffs" << 1 distCoeffs;

https://www.ebooks-it.org/

eBooks-1T.org

LS <N TR Ky

fs << "T" K T,

fs << "E" <K< E;

fs << "F" <K F;

fs.release();

cout << "Calibration parameters saved to " << filename << endl;

}

Size calibrator::get image size() {
return 1 images[0].size();

}

rectifier::rectifier(string filename, Size image size) {
// Read individal camera calibration information from saved XML file
Mat 1 cameraMatrix, 1 distCoeffs, r cameraMatrix, r distCoeffs, R, T;
FileStorage fs(filename, FileStorage::READ);

fs["1l cameraMatrix"] >> 1 cameraMatrix;
fs["1l distCoeffs"] >> 1 distCoeffs;
fs["r cameraMatrix"] >> r cameraMatrix;
fs["r distCoeffs"] >> r distCoeffs;
fs["R"] >> R;

fs["T"] >> T;

fs.release();

if (1 cameraMatrix.empty () || r cameraMatrix.empty() || 1 distCoeffs.empty() ||
r distCoeffs.empty() || R.empty() || T.empty())
cout << "Rectifier: Loading of files not successful" << endl;

// Calculate transforms for rectifying images

Mat R1, Rxr, P1l, Pr, Q;

stereoRectify (1l cameraMatrix, 1 distCoeffs, r cameraMatrix, r distCoeffs,
image size, R, T, Rl, Rr, Pl, Pr, Q);

// Calculate pixel maps for efficient rectification of images via lookup tables

initUndistortRectifyMap (1 cameraMatrix, 1 distCoeffs, R1l, Pl, image size,
Cv_16SC2, map 11, map 12);

initUndistortRectifyMap (r cameraMatrix, r distCoeffs, Rr, Pr, image size,
CVv_16SC2, map rl, map r2);

fs.open(filename, FileStorage::APPEND);
fs << "R1" << RI1;

fs << "Rr" << Rr;

fs << "P1" << P1;

fs << "Pr" << Pr;

fs << "Q" << Q;

fs << "map 11" << map 11;
fs << "map 12" << map 12;
fs << "map rl" << map rl;
fs << "map r2" << map r2;
fs.release();

}

void rectifier::show rectified(Size image size) {
VideoCapture capr(l), capl(2);

https://www.ebooks-it.org/

eBooks-1T.org
Cdpl.cclL LV _LAFP PRUP TRAMEL nL1isnlt, llildye sls4c.lclyglity),
capl.set (CV_CAP PROP FRAME WIDTH, image size.width);
capr.set (CV_CAP PROP FRAME HEIGHT, image size.height);
capr.set (CV_CAP PROP FRAME WIDTH, image size.width);

destroyAllWindows () ;

namedWindow ("Combo") ;

while (char (waitKey (1)) != 'g') {
//grab raw frames first
capl.grab();

capr.grab () ;

//decode later so the grabbed frames are less apart in time
Mat framel, framel rect, framer, framer rect;

capl.retrieve (framel) ;

capr.retrieve (framer) ;

if (framel.empty () || framer.empty()) break;

// Remap images by pixel maps to rectify
remap (framel, framel rect, map 11, map 12, INTER LINEAR);
remap (framer, framer rect, map rl, map r2Z2, INTER LINEAR);

// Make a larger image containing the left and right rectified images side-

by-side

Mat combo (image size.height, 2 * image size.width, CV_8UC3);
framel rect.copyTo (combo (Range::all(), Range (0, image size.width)));
framer rect.copyTo (combo (Range::all(), Range(image size.width,

2*image size.width)));

}

// Draw horizontal red lines in the combo image to make comparison easier
for(int y = 0; y < combo.rows; y += 20)
line (combo, Point (0, y), Point(combo.cols, y), Scalar(0, 0, 255));

imshow ("Combo", combo) ;

}

capl.release();
capr.release();

int main () {

string filename = DATA FOLDER + string("stereo calib.xml");

/*

calibrator calib(LEFT_FOLDER, RIGHT_FOLDER, 25.f, 5, 4);
calib.calc image points(true);

bool done = calib.calibrate();

if (!done) cout << "Stereo Calibration not successful because individial

calibration matrices could not be read" << endl;

calib.save info (filename);
Size image size = calib.get image size();

*/

Size image size (320, 240);
rectifier rec(filename, image size);
rec.show rectified(image size);

https://www.ebooks-it.org/

eBooks-1T.org

=% ¢+ $ @B P LHLS

Ry i o
] N - z] 3
l_JF i o -
. L ed_] | E
P : : = :—1
" A = I

1

=i o
s

= —-

[T
(x=320, v=199) ~ R:0 G:0 B:0

Figure 10-5. Stereo rectification

Now it becomes quite easy to get matching pixels in the two images and calculate the disparity. OpenCV implements the
Semi-Global Block Matching (SGBM) algorithm in the StereoSGBM class. This algorithm uses a technique called dynamic
programming to make the matching more robust. The algorithm has a bunch of parameters associated with it, chiefly:

e SADWindowSize: The size of block to match (must be an odd number)

P1 and P2: Parameters controlling the smoothness of the calculated disparity. They are ‘penalties’ incurred by the
dynamic programming matching algorithm if disparity changes between two neighboring pixels by +/- 1 or more
than 1 respectively

speckleWindowSize and speckleRange: Disparities often have speckles. These parameters control the
disparity speckle filter. speckleWindowSize indicates the maximum size of a smooth disparity region for it to
be considered as a speckle, while speckleRange indicates

e minDisparity and numberOfDisparities: Together, these parameters control the ‘range’ of your stereo
setup. As mentioned before, the location of a matching pixel in the right image is to the left of the location of the
corresponding pixel in the left image. f minDisparity is 0 the algorithm starts to search in the right image for
matching pixels from location of the pixel in the left image and proceeds left. f minDisparity is positive, the
algorithm starts searching in the right image from left of the location in the left image (by minDisparity
pixels) and then proceeds left. You would want this when the two cameras are pointing away from each other.
Youcanalso setminDisparity to be negative for when the two cameras are pointing towards each other.
Thus the start location of the search is determined by minDisparity. However, the search always proceeds
left in the right image from its starting position. How far does it go? This is decided by
numberOfDisparities. Note that numberOfDisparities mustbe a multiple of 16 for OpenCV
implementation

Listing 10-6 shows how to calculate disparities from two rectified images using the StereoSGBM class. It also allows
you to experiment with the values of minDisparity and numberOfDisparities using sliders. Note the conversion ¢
disparity computed by StereoSGBM to a visible form, since the original disparity output by StereoSGBM is scaled by 16
(read online documentation of StereoSGBM). The program uses values of some of the parameters of the stereo algorithm
from the OpenCV stereo match demo code. Figure 10-6 shows disparity for a particular scene.

Listing 10-6. Program to illustrate disparity calculation from a calibrated stereo camera

// Program illustrate disparity calculation from a calibrated stereo camera
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>

https://www.ebooks-it.org/

#1in eBooks-1T.org

using namespace Cv;
using namespace std;

class disparity {
private:
Mat map 11, map 12, map rl, map r2; // rectification pixel maps

StereoSGBM stereo; // stereo matching object for disparity
computation
int min disp, num disp; // parameters of StereoSGBM
public:
disparity(string, Size); //constructor
void set minDisp(int minDisp) { stereo.minDisparity = minDisp; }
void set numDisp (int numDisp) { stereo.numberOfDisparities = numDisp;

void show disparity(Size); // show live disparity by processing

stereo camera feed

}i

// Callback functions for minDisparity and numberOfDisparities trackbars
void on minDisp (int min disp, void * disp obj) {

disparity * disp obj = (disparity *) _disp obj;

disp obj -> set minDisp(min disp - 30);
}

void on numDisp (int num disp, void * disp obj) {
disparity * disp obj = (disparity *) disp obj;
num disp = (num disp / 16) * 16;
setTrackbarPos ("numDisparity", "Disparity", num disp);
disp obj -> set numDisp (num disp);

}

disparity::disparity(string filename, Size image size) {
// Read pixel maps from XML file
FileStorage fs(filename, FileStorage::READ);
fs["map 11"] >> map 11;
fs["map 12"] >> map 12;
fs["map rl"] >> map rl;
fs["map r2"] >> map r2;

if(map ll.empty () || map 1l2.empty() || map rl.empty() || map r2.empty())
cout << "WARNING: Loading of mapping matrices not successful" << endl;

// Set SGBM parameters (from OpenCV stereo match.cpp demo)
stereo.preFilterCap = 63;
stereo.SADWindowSize = 3;

stereo.Pl = 8 * 3 * stereo.SADWindowSize * stereo.SADWindowSize;
stereo.P2 = 32 * 3 * stereo.SADWindowSize * stereo.SADWindowSize;
stereo.uniquenessRatio = 10;

stereo.speckleWindowSize = 100;

stereo.speckleRange = 32;

stereo.displ2MaxDiff = 1;
stereo.fullDP = true;

}

void disparity::show disparity(Size image size) {

https://www.ebooks-it.org/

eBooks-1T.org

// Leuuce Lridlle Ssl1l4c

capl.set (CV_CAP PROP FRAME HEIGHT, image size.height);
capl.set (CV_CAP PROP FRAME WIDTH, image size.width);
capr.set (CV_CAP PROP FRAME HEIGHT, image size.height);
capr.set (CV_CAP PROP FRAME WIDTH, image size.width);

min disp = 30;
num disp = ((image size.width / 8) + 15) & -16;

namedWindow ("Disparity", CV_WINDOW NORMAL) ;

namedWindow ("Left", CV_WINDOW NORMAL) ;

createTrackbar ("minDisparity + 30", "Disparity", &min disp, 60, on minDisp,
(void *)this);

createTrackbar ("numDisparity", "Disparity", &num disp, 150, on numDisp, (void
*)this) ;

on minDisp (min disp, this);
on numDisp (num disp, this);

while (char (waitKey (1)) != "'g') {
//grab raw frames first
capl.grab (),
capr.grab () ;
//decode later so the grabbed frames are less apart in time
Mat framel, framel rect, framer, framer rect;
capl.retrieve (framel) ;
capr.retrieve (framer);

if (framel.empty () || framer.empty()) break;

remap (framel, framel rect, map 11, map 12, INTER LINEAR);
remap (framer, framer rect, map rl, map r2Z2, INTER LINEAR);

// Calculate disparity
Mat disp, disp_ show;
stereo (framel rect, framer rect, disp);
// Convert disparity to a form easy for visualization
disp.convertTo (disp show, CV 8U, 255/ (stereo.numberOfDisparities * 16.));
imshow ("Disparity", disp_ show);
imshow ("Left", framel);
}
capl.release();
capr.release();

}

int main () {
string filename = DATA FOLDER + string("stereo calib.xml");

Size image size (320, 240);
disparity disp(filename, image size);

disp.show disparity(image size);

return O;

https://www.ebooks-it.org/

= eBooks-1T.org

minDéspa

nismDispart (04811500 J——

[x=303, y=211) =

Figure 10-6. Stereo disparity

How do you get depth from disparity? The function reprojectImageTo3d () does this by taking the disparity and th
disparity-to-depth mapping matrix Q generated by stereoRectify (). Listing 10-7 shows a simple proof-of-concept app
that calculates 3D coordinates from disparity and prints out the mean of the depths of points inside a rectangle at the center of
the image. As you can see from Figure 10-7, the computed distance jumps around a bit, but is quite near the correct value of
400 mm most of the times. Recall that the disparity output by StereoSGBM is scaled by 16, so we must divide it by 16 to ge
the true disparity.

Listing 10-7. Program to illustrate distance measurement using a stereo camera

// Program illustrate distance measurement using a stereo camera
// Author: Samarth Manoj Brahmbhatt, University of Pennsylvania

#include <opencv2/opencv.hpp>

#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include "Config.h"

using namespace cv;
using namespace std;

class disparity {

private:
Mat map 11, map 12, map rl, map r2, Q;
StereoSGBM stereo;
int min disp, num disp;

public:
disparity(string, Size);
void set minDisp (int minDisp) { stereo.minDisparity = minDisp; }
void set numDisp (int numDisp) { stereo.numberOfDisparities = numDisp; }
void show disparity(Size);

b

void on minDisp(int min disp, void * disp obj) {
disparity * disp obj = (disparity *) disp obj;
disp obj -> set minDisp(min disp - 30);

}

void on numDisp (int num disp, void * disp obj) {
disparity * disp obj = (disparity *) _disp obj;
num disp = (num disp / 16) * 16;
setTrackbarPos ("numDisparity", "Disparity", num disp);
disp obj -> set numDisp (num disp);

https://www.ebooks-it.org/

disj

eBooks-1T.org

rrieocLordgye Ls (Lllelldllle, rrieocLordyce. .RLAD) 4
fs["map 11"] >> map 11;
"map 12"] >> map 12;

s |

["map ri"
["map 2"
s |

" " :|

if (map

Q.empty ())

] >> map rl;
] >> map r2;
> Q;

1ll.empty () || map 1Z2.empty() || map rl.empty() || map r2.empty()

cout << "WARNING: Loading of mapping matrices not successful" << endl;

stereo.
stereo.
stereo.
stereo.
stereo.
stereo.
stereo.
stereo.
stereo.

}

preFilterCap = 63;
SADWindowSize = 3;

Pl = 8 * 3 * stereo.SADWindowSize * stereo.SADWindowSize;
P2 = 32 * 3 * stereo.SADWindowSize * stereo.SADWindowSize;
unigquenessRatio = 10;

speckleWindowSize = 100;

speckleRange = 32;
displ2MaxDiff = 1;
fullDP = true;

void disparity::show disparity(Size image size) {
VideoCapture capr(l), capl(2);
//reduce frame size

capl.set
capl.set

CV_CAP_ PROP FRAME HEIGHT, image size.height);
CvV_CAP PROP FRAME WIDTH, image size.width);

(
(

capr.set (CV_CAP PROP FRAME HEIGHT, image size.height);
(

capr.set

CVv_CAP PROP FRAME WIDTH, image size.width);

min disp = 30;
num disp = ((image size.width / 8) + 15) & -16;

namedWindow ("Disparity", CV_WINDOW NORMAL) ;
namedWindow ("Left", CV_WINDOW_NORMAL);

createTrackbar ("minDisparity + 30", "Disparity", é&min disp, 60, on minDisp,
(void *)this);

createTrackbar ("numDisparity", "Disparity", &num disp, 150, on numDisp, (void
*)this) ;

on minDisp (min disp, this);
on numDisp (num disp, this);

while (char (waitKey (1)) != 'g') {
//grab raw frames first
capl.grab ()
capr.grab () ;
//decode later so the grabbed frames are less apart in time

Mat

framel, framel rect, framer, framer rect;

capl.retrieve (framel);
capr.retrieve (framer) ;

if (framel.empty () || framer.empty()) break;

remap (framel, framel rect, map 11, map 12, INTER LINEAR);

https://www.ebooks-it.org/

eBooks-1T.org

Mat disp, disp show, disp compute, pointcloud;

stereo (framel rect, framer rect, disp);

disp.convertTo (disp show, CV _8U, 255/ (stereo.numberOfDisparities * 16.));
disp.convertTo (disp compute, CV _32F, 1.f/16.f);

// Calculate 3D co-ordinates from disparity image
reprojectImageTo3D (disp compute, pointcloud, Q, true);

// Draw red rectangle around 40 px wide square area im image

int xmin = framel.cols/2 - 20, xmax = framel.cols/2 + 20, ymin =
framel.rows/2 - 20, ymax = framel.rows/2 + 20;
rectangle (framel rect, Point(xmin, ymin), Point (xmax, ymax), Scalar(0, O,

255));

// Extract depth of 40 px rectangle and print out their mean
pointcloud = pointcloud(Range (ymin, ymax), Range (xmin, xmax)):;
Mat z roi(pointcloud.size (), CV_32FCl);

int from to[] = {2, 0};

mixChannels (&pointcloud, 1, &z roi, 1, from to, 1);

cout << "Depth: " << mean(z _roi) << " mm" << endl;

imshow ("Disparity", disp show);
imshow ("Left", framel rect);

}
capl.release();
capr.release();

}

int main () {
string filename = DATA FOLDER + string("stereo calib.xml");

Size image size (320, 240);
disparity disp(filename, image size);
disp.show disparity(image size);

return 0;

https://www.ebooks-it.org/

po— eBooks-1T.org
Depth:

Depth: [419.69, 0, 0, 8] " |qu wp 4+ $ @ I 2 P H o

Depth: [389.231, &, &, 8] mn
Depth: [383.326, 06, 0, 8] mm
Depth: [382.844, 6, &, 8] mm
Depth: [486.998, ®, 6, @] mm
Depth: [466.988, 6, 6, 8] mm
Depth: [383.047, 6, 6, 8] mm
Depth: [389.068, 6, 6, @] mm

Depth: [382.6, @, 8, 8] Am
Depth: [383.25, @, 8, @] mn
Depth: [418.716, ©, @, 8]
Depth: [382.889, 6, @, 8]
Depth: [569.128, 8, @, 8]
bepth: [425.331, 8, 8]
Depth: [395.165, 0, 8, 8]
Depth: [382.728, 6, 6, 8]
Depth: [382.83, @, 8, 0] m
Depth: [437.278, 8, 0, 8]
Depth: [419.165, 8, @, 8]
Depth: [382.978, 6, 6, 8]
Depth: [383.687, 8, 8, 8]
Depth: [436.999, 8, @, 8]
Depth: [460.938, 8, 6, @]
Depth: [382.981, 8, @, 8)
Depth: [382.826, 6, 8, 8]
Depth: [382.804, 0, 8, 0]
bDepth: [4e1.1, @, 6, 8] mm
Depth: [481.267, O,

oD

b

(x=269, y=193) ~ R:255 G:255 Bi255

|--Ptiﬁbiﬂﬁ'l-‘l*>‘

§53d343494-333833%

3

Depth: [382.796, @, 6, 8] mn
Depth: [635.448, 0, @] mm
Depth: [383.131, @, 8] mm

minDispari (31/60) N |

DD

¥
Depth: [419.259, @, 6, 8] mm
Depth: [382.978, 8 8] mm : =
» 8, D 080/150)
pepth: [487.482. ©, 8, @] mm | "UMPispar (080/150)
Depth: [382.762, ©, 8, 8] mm |(x=252,v=0) - L'

EMLYY LI

s 0 A
. g B ,
r 2 1 a - @ 7 " s u
—u - e e pme p e abe b e R R
— %
b

l

Figure 10-7. Depth measurement using stereo vision

Summary

Isn’t 3D geometry exciting? If, like me, you are fascinated by how a bunch of matrices can empower you to measure actual
distances in physical images from a pair of photographs you should read Multiple View Geometry in Computer Vision by
Richard Hartley and Andrew Zisserman (Cambridge University Press, 2004), a classic on this subject. Stereo vision opens u
a lot of possibilities for you—and most important, it allows you to establish a direct relationship between the output of your
other computer vision algorithms and the real world! For example, you could combine stereo vision with the object detector
app to reliably know the distance in physical units to the detected object.

The next chapter will take you one step closer to deploying your computer vision algorithms on actual mobile robots—it
discusses details of running OpenCV apps on Raspberry Pi, which is a versatile little (but powerful) microcontroller that is
becoming increasingly famous for embedded applications.

https://www.ebooks-it.org/

CH eBooks-1T.org

Embedded Computer Vision: Running OpenCYV Programs on the Raspberry Pi

Embedded computer vision is a very practical branch of computer vision that concerns itself with developing or modifying
vision algorithms to run on embedded systems—small mobile computers like smartphone processors or hobby boards. The ts
main considerations in an embedded computer vision system are judicious use of processing power and low battery
consumption. As an example of an embedded computing system, we will consider the Raspberry Pi (Figure 11-1), an ARM
processor—based small open-source computer that is rapidly gaining popularity among hobbyists and researchers alike for its
ease of use, versatile capabilities, and surprisingly low cost in spite of good build and support quality.

Figure 11-1. The Raspberry Pi board

Raspberry Pi

The Raspberry Pi is a small computer that can run a Linux-based operating system from a SD memory card. It has a 700 MHz
ARM processor and a small Broadcom VideoCore IV 250 MHz GPU. The CPU and GPU share 512 MB of SDRAM memory
and you can change the sharing of memory between each according to your use pattern. As shown in Figure 11-1, the Pi has o
Ethernet, one HDMI, two USB 2.0 ports, 8 general-purpose input/output pins, and a UART to interact with other devices. A :
MP camera board has also been recently released to promote the use of Pi in small-scale computer vision applications. This
camera board has its own special parallel connector to the board; hence, it is expected to support higher frame-rates than a
web camera attached to one of the USB ports. The Pi is quite power-efficient, too—it can run off a powered USB port of you
computer or your iPhone’s USB wall charger!

Setting Up Your New Raspberry Pi

Because the Pi is just a processor with various communication ports and pins on it, if you are planning to buy one make sure
you order it with all the required accessories. These mainly include connector cables:

e Ethernet cable for connection to the Internet

e USB-A to USB-B converter cable for power supply from a powered USB port

e HDMI cable for connection to a monitor

https://www.ebooks-it.org/

d eBooks-1T.org
e USB expander hub if you plan to connect more than two USB devices to the Pi

¢ SD memory card with a capacity of at least 4 GB for installing the OS and other programs

Although several Linux-based operating systems can be installed on the Pi, Raspbian (latest version “wheezy” as of
writing), which is a flavor of Debian optimized for the Pi, is recommended for beginners. The rest of this chapter will assum
that you installed Raspbian on your Pi, because it works nicely out-of-the-box and has a large amount community support. On
you install the OS and connect a monitor, keyboard, and mouse to the P1i, it becomes a fully functional computer! A typical
GUI-based setup is shown in Figure 11-2.

Figure 11-2. Raspberry Pi connected to keyboard, mouse, and monitor—a complete computer!

Installing Raspbian on the Pi

You will need a blank SD card with a capacity of at least 4 GB and access to a computer for this straightforward process. If
you are a first-time user, it is recommended that you use the specially packaged New Out Of Box Software (NOOBS) at
www.raspberrypi.org/downloads. Detailed instructions for using it can be found at the quick-start guide at
www.raspberrypi.org/wp-content/uploads/2012/04/quick-start-guide-v2 1.pdf. Inessence,
you:

Download the NOOBS software to your computer

Unzip it on the SD card

Insert the SD card into the Pi and boot it up with a keyboard and monitor attached to USB and HDMI, respectively

Follow the simple on-screen instructions, making sure that you choose Raspbian as the operating system that you
want to install

https://www.ebooks-it.org/

h eBooks-1T.org e sam
password.

Initial Settings

After you install Raspbian, reboot and hold “Shift” to enter the raspi-config settings screen, which is shown in Figure 1
3.

Raspi-config
info Information about this tool
xpand_rootfs Expand root partition to fill 35D card
ouerscan Change overscan
configure_keyboard Set keyboard layout
change_pass Change password for "pi' user
change_locale Set locale
change_t imezone Set timezone
menory_split Change nemory split
ssh Enable or disable ssh server

boot_behaviour Start desktop on boot?
update Try to upgrade raspi-config

<Select> <Finish>

Figure 11-3. The raspi-config screen

e First, you should use the 'expand rootfs' optionto enable the Pi to use your entire memory card.

e You can also change the RAM memory sharing settings using the 'memory split' option. My
recommendation is to allocate as much as possible to the CPU, because OpenCV does not support the VideoCore
GPU yet, so we will end up using the ARM CPU for all our computations.

e Youcanalso use the 'boot behavior' optionin raspi-config specify whether the Pi boots up into the
GUI or a command line. Obviously, maintaining the GUI takes up processing power, so I recommend that you get
comfortable with the Linux terminal and switch off the GUI. The typical method of access to a Pi that has been set
to boot into the command line is by SSH-ing into it with X-forwarding. This essentially means that you connect to
the Pi using Ethernet and have access to the Pi’s terminal from a terminal on your computer. The X-forwarding
means that the Pi will your computer’s screen to render any windows (for example, OpenCV imshow ()
windows). Adafruit has a great guide for first-time SSH users at
http://learn.adafruit.com/downloads/pdf/adafruits-raspberry-pi-lesson-6-
using-ssh.pdf.

Installing OpenCV

Because Raspbian is a Linux flavor with Debian as its package-management system, the process to install OpenCV remains
exactly the same as that for installing on 64-bit systems, as outlined in Chapter 2. Once you install OpenCV you should be abl
to run the demo programs just as you were able to on your computer. The demos that require live feed from a camera will als
work if you attach a USB web camera to the Pi.

Figure 11-4 shows the OpenCV video homography estimation demo (cpp-example-video homography) running
from a USB camera on the Pi. As you might recall, this function tracks corners in frames and then finds a transformation (sho
by the green lines) with reference to a frame that the user can choose. If you will run this demo yourself, you will observe tha
the 700 MHz processor in the Pi is quite inadequate to process 640x480 frames in such demos—the frame rate is very low.

https://www.ebooks-it.org/

eBooks-1T.org

-
[(x=638, y=179) ~ R:102 G:07 B:77

Figure 11-4. OpenCV built-in video homography demo being run on the Raspberry Pi

Figure 11-5 shows the OpenCV convex hull demo (cpp-example-convexhull) that chooses a random set of points
and computes the smallest convex hull around them being executed on the Pi.

Linux samarthPi 3.6.11

The programs included |[qu wp § & & B £ P HY

the exact distribution|
individual files in /fu

Debian GNU/Linux comes)
permitted by applicabl
Last login: Mon Sep 16

samarth@samarthPi - $
cpp-example-connected_
samarth@samarthPi - §

cpp-example-connected
samarth@samar thPi s
cpp-example-connected
samarth#ésamar thfi 1
This sample program de
Call:

. feonvexhull
init done
_o.pengl support availabj{k=4B86, y=30) ~ A:0 G:0 B:

Figure 11-5. OpenCV convex hull demo being run on the Pi
Camera board
The makers of the Raspberry Pi also released a custom camera board recently to encourage image processing and computer

vision applications of the Pi. The board is small and weighs just 3 grams, but it boasts a 5 Mega pixel CMOS sensor. It
connects to the Pi using a ribbon cable and looks like Figure 11-6.

https://www.ebooks-it.org/

eBooks-1T.org

TRy R

Figure 11-6. The Raspberry Pi with the camera board attached to it

Once you connect it by following the instructional video at www . raspberrypi .org/camera, youneed to enable it
fromthe raspi-config screen (which can be brought up by pressing and holding “Shift” at boot-up or typing sudo
raspi-config ataterminal). The preinstalled utilities raspistill and raspivid canbe used to capture still image
and videos, respectively. They offer a lot of capture options that you can tweak. You can learn more about them by going
through the documentation at
https://github.com/raspberrypi/userland/blob/master/host applications/linux/apps/r
The source code for these applications is open source, so we will see how to use it to get the board to interact with OpenCV.

Camera Board vs. USB Camera

You might ask, why use a camera board when you can use a simple USB camera like the ones you use on desktop computers?
Two reasons:

1. The Raspberry Pi camera board connects to the Pi using a special connector that is designed to transfer data in
parallel. This makes is faster than a USB camera

2. The camera board has a better sensor than a lot of other USB cameras that cost the same (or even more)

The only concern is that because the board is not a USB device, OpenCV does not recognize it out-of-the-box. I made a
small C++ wrapper program that grabs the bytes from the camera buffer and puts them into an OpenCV Mat by reusing some
code that I found on Raspberry Pi forums. This code makes use of the open-sourced code released by developers of the came
drivers. This program allows you to specify the size of the frame that you want to capture and a boolean flag that indicates
whether the captured frame should be colored or grayscale. The camera returns image information in the form of the Y chann
and subsampled U and V channels of the (YUV color space). To get a grayscale image, the wrapper program just has to set th
Y channel as the data source of an OpenCV Mat. Things get complicated (and slow) if you want color. To get a color image,
the following steps have to be executed by the wrapper program:

e Copy the Y, U, and V channels into OpenCV Mats
e Resize the U and V channels because the U and V returned by the camera are subsampled
e Performa YUV to RGB conversion

These operations are time-consuming, and hence frame rates drop if you want to stream color images from the camera
board.

By contrast, a USB camera captures in color by default, and you will have to spend extra time converting it to grayscale.
Hence, unless you know how to set the capture mode of the camera to grayscale, grayscale images from USB cameras are

https://www.ebooks-it.org/

costl eBooks-1T.org

As we have seen SO 1ar, most Computer vision applications operate on 1nensity and, nence, Just require a grayscale imagg
This is one more reason the use the camera board than a USB camera. Let us see how to use the wrapper code to grab frames
from the Pi camera board. Note that this process requires OpenCV to be installed on the Pi.

e If'you enabled your camera from raspi-config, youshould already have the source code and libraries for
interfacing with the camera board in /opt/vc/ . Confirm this by seeing if the commands raspistill and
raspivid work as expected.

e Clone the official MMAL Github repository to get the required header files by navigating to any directory in your
home folder in a terminal and running the following command. Note that this directory will be referenced as
USERLAND DIR in the CMakeLists.txt file in Listing 11-1, so make sure that you replace USERLAND_DIR in
that file with the full path to this directory. If you do not have Git installed on your Raspberry Pi you can install it
by typing sudo apt-get install git ina terminal.)

git clonehttps://github.com/raspberrypi/userland.git

e The wrapper program will work with the CMake build environment. In a separate folder (called DIR further on)
make folders called “sr¢” and “include.” Put Picam. cpp and cap.h files from code 10-1 into the “src” and
“include” folders, respectively. These constitute the wrapper code

e To use the wrapper code, make a simple file like main.cpp shown in code 10-1 to grab frames from the camera
board, show them in a window and measure the frame-rate. Put the file in the “src¢” folder

e The idea is to make an executable that uses functions and classes from both the main . cpp and
PiCapture.cpp files. This can be done by using a CMakeLists. txt file like the one shown in code 10-1
and saving it in DIR

e To compile and build the executable, run in DIR

mkdir build
cd build
cmake

make

A little explanation about the wrapper code follows. As you might have realized, the wrapper code makes a class called
PiCapture with a constructor that takes in the width, height, and boolean flag (true means color images are grabbed). The
class also defines a method called grab () that returns an OpenCV Mat containing the grabbed image of the appropriate siz
and type.

Listing 11-1. Simple CMake project illustrating the wrapper code to capture frames from the Raspberry Pi camera board

main.cpp:
//Code to check the OpenCV installation on Raspberry Pi and measure frame rate
//Author: Samarth Manoj Brahmbhatt, University of Pennsyalvania

#include "cap.h"
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>

using namespace cv;
using namespace std;

int main () {
namedWindow ("Hello") ;

PiCapture cap (320, 240, false);

Mat im;

https://www.ebooks-it.org/

}

cap.h:

eBooks-1T.org

ulls tglieu 1Ilt Lrdlles — Uy,
while (char (waitKey (1)) != 'g') {
double t0 = getTickCount();
im = cap.grab():
frames++;
if (!im.empty()) imshow ("Hello", im);

}

else cout << "Frame dropped" << endl;

time += (getTickCount () - t0) / getTickFrequency();
cout << frames / time << " fps" << endl;

return O;

#include <opencv2/opencv.hpp>

#include "interface/mmal/mmal.h"

#include "interface/mmal/util/mmal default components.h"
#include "interface/mmal/util/mmal connection.h"
#include "interface/mmal/util/mmal util.h"

#include "interface/mmal/util/mmal util params.h"

class PiCapture {

b

private:

MMAL COMPONENT T *camera;

MMAL COMPONENT T *preview;

MMAL ES FORMAT T *format;

MMAL STATUS T status;

MMAL PORT T *camera preview port, *camera video port,
MMAL PORT T *preview input port;

MMAL CONNECTION T *camera preview connection;

bool color;

public:

static cv::Mat image;
static int width, height;
static MMAL POOL T *camera video port pool;

*camera still port;

static void set image(cv::Mat image) {image = image;}

PiCapture (int, int, bool);
cv::Mat grab() {return image;}

static void color callback (MMAL PORT T *, MMAL BUFFER HEADER T *);
static void gray callback (MMAL PORT T *, MMAL BUFFER HEADER T *);

PiCapture.cpp:

/*
*
*

*

*

*/

File: opencv_demo.cC
Author: Tasanakorn

Created on May 22, 2013, 1:52 PM

// OpenCV 2.x C++ wrapper written by Samarth Manoj Brahmbhatt, University of
Pennsylvania

https://www.ebooks-it.org/

eBooks-1T.org

#inCioac Ul o i
#include <stdlib.h>

#include <opencv2/opencv.hpp>
#include "bcm host.h"

#include "interface/mmal/mmal.h"

#include "interface/mmal/util/mmal default components.h"
#include "interface/mmal/util/mmal connection.h"
#include "interface/mmal/util/mmal util.h"

#include "interface/mmal/util/mmal util params.h"

#include "cap.h"

#define MMAL CAMERA PREVIEW PORT 0
#define MMAL CAMERA VIDEO PORT 1
#define MMAL CAMERA CAPTURE PORT 2

using namespace cv;
using namespace std;

int PiCapture::width = 0;

int PiCapture::height = 0;

MMAL POOL T * PiCapture::camera video port pool = NULL;
Mat PiCapture::image = Mat () ;

static void color callback (MMAL PORT T *port, MMAL BUFFER HEADER T *buffer)
MMAL BUFFER HEADER T *new buffer;

mmal buffer header mem lock (buffer);

unsigned char* pointer = (unsigned char *) (buffer -> data);
int w = PiCapture::width, h = PiCapture::height;

Mat y(h, w, CV_8UCl, pointer);

pointer = pointer + (h*w);

Mat u(h/2, w/2, CV_8UCl, pointer);

pointer = pointer + (h*w/4);

Mat v(h/2, w/2, CV_8UCl, pointer);

mmal buffer header mem unlock (buffer);

mmal buffer header release (buffer);

if (port->is enabled) {
MMAL STATUS T status;

new buffer = mmal gqueue get (PiCapture::camera video port pool->queue) ;

if (new buffer)
status = mmal port send buffer (port, new buffer);

if (!new buffer || status != MMAL SUCCESS)
printf ("Unable to return a buffer to the video port\n");
}

Mat image (h, w, CV_8UC3);

resize(u, u, Size(), 2, 2, INTER LINEAR);

https://www.ebooks-it.org/

}

eBooks-1T.org

e rrom Lol = {yu, Ujy
mixChannels(&y, 1, &image, 1, from to, 1);
from to[l] = 1;

mixChannels (&v, 1, &image, 1, from to, 1);
from to[l] = 2;

mixChannels (&u, 1, &image, 1, from to, 1);
cvtColor (image, image, CV_YCrCb2BGR) ;

PiCapture::set image (image);

static void gray callback (MMAL PORT T *port, MMAL BUFFER HEADER T *buffer)

MMAL BUFFER HEADER T *new buffer;

mmal buffer header mem lock (buffer);
unsigned char* pointer = (unsigned char *) (buffer -> data);
PiCapture::set image (Mat (PiCapture::height, PiCapture::width, CV_8UCI,

pointer));

}

mmal buffer header release (buffer);

if (port->is enabled) {
MMAL STATUS T status;

new buffer = mmal gqueue get (PiCapture::camera video port pool->queue) ;

if (new buffer)
status = mmal port send buffer (port, new buffer);

if (!new buffer || status != MMAL SUCCESS)
printf ("Unable to return a buffer to the video port\n");

PiCapture::PiCapture (int w, int h, bool color) ({

color = color;
width = w;
height = h;
camera = 0;
preview = 0;

camera preview port = NULL;
camera video port = NULL;
camera still port = NULL;
preview input port = NULL;
camera preview connection = 0;

bcm host init () ;

status = mmal component create (MMAL COMPONENT DEFAULT CAMERA, &camera);
if (status != MMAL SUCCESS) {
printf ("Error: create camera %x\n", status);

}

camera preview port = camera->output[MMAL CAMERA PREVIEW PORT];
camera video port = camera->output[MMAL CAMERA VIDEO PORT];

{

https://www.ebooks-it.org/

eBooks-1T.org

MMAL PARAMETER CAMERA CONFIG T cam config = ({
{ MMAL PARAMETER CAMERA CONFIG, sizeof (cam config)}, width, height, 0,
0, width, height, 3, 0, 1, MMAL PARAM TIMESTAMP MODE RESET STC };
mmal port parameter set (camera->control, &cam config.hdr);

}

format = camera video port->format;

format->encoding = MMAL ENCODING I420;
format->encoding variant = MMAL ENCODING I420;

format->es->video.width = width;
format->es->video.height = height;

format->es->video.crop.x = 0;
format->es->video.crop.y = 0;
format->es->video.crop.width = width;
format->es->video.crop.height = height;
format->es->video.frame rate.num = 30;

format->es->video.frame rate.den 1;
camera video port->buffer size = width * height * 3 / 2;
camera video port->buffer num = 1;

status = mmal port format commit (camera video port);

if (status != MMAL SUCCESS) {
printf ("Error: unable to commit camera video port format (%u)\n", status);

}

// create pool form camera video port

camera video port pool = (MMAL POOL T *)
mmal port pool create(camera video port, camera video port->buffer num,
camera video port->buffer size);

if(color) {
status = mmal port enable(camera video port, color callback);
if (status != MMAL SUCCESS)
printf ("Error: unable to enable camera video port (%u)\n", status);
else
cout << "Attached color callback" << endl;
}

else {
status = mmal port enable(camera video port, gray callback);
if (status != MMAL SUCCESS)
printf ("Error: unable to enable camera video port (%u)\n", status);
else

cout << "Attached gray callback" << endl;
}

status = mmal component enable (camera);

// Send all the buffers to the camera video port
int num = mmal queue length (camera video port pool->queue);

https://www.ebooks-it.org/

eBooks-1T.org

for (g = 0; g < num; g++) {
MMAL BUFFER HEADER T *buffer = mmal queue get (camera video port pool-
>queue) ;

if ('buffer) {
printf ("Unable to get a required buffer %d from pool queue\n", q);
}

if (mmal port send buffer (camera video port, buffer) != MMAL SUCCESS) ({

o)

printf ("Unable to send a buffer to encoder output port (%d)\n", q);

}

if (mmal port parameter set boolean(camera video port, MMAL PARAMETER CAPTURE,
1) != MMAL SUCCESS) {
printf ("%$s: Failed to start capture\n", func);

}

cout << "Capture started" << endl;

}

CMakeLists. txt:
cmake minimum required(VERSION 2.8)

project (PiCapture)
SET (COMPILE DEFINITIONS -Werror)
find package (OpenCV REQUIRED)

include directories (/opt/vc/include)

include directories (/opt/vc/include/interface/vcos/pthreads)
include directories (/opt/vc/include/interface/vmcs host)
include directories (/opt/vc/include/interface/vmcs host/linux)
include directories (USERLAND DIR)

include directories ("${PROJECT SOURCE DIR}/include")

link directories (/opt/vc/1lib)
link directories(/opt/vc/src/hello pi/libs/vgfont)

add executable (main src/main.cpp src/PiCapture.cpp)

target link libraries (main mmal core mmal util mmal vc client bcm host
${OpenCV_LIBS})

From now on you can use the same strategy to grab frames from the camera board—include cam. h in your source file, a
make an executable that uses both your source file and PiCapture. cpp.

Frame-Rate Comparisons

Figure 11-7 shows frame-rate comparisons for a USB camera versus the camera board. The programs used are simple; they
just grab frames and show them using imshow () in a loop. In case of the camera board, the boolean flag in the argument list
the PiCapture constructor is used to switch from color to grayscale. For the USB camera, grayscale images are obtained t
using cvtColor () onthe color images.

https://www.ebooks-it.org/

N
16.7926 1 eBooks-1T.org
18. 7512 1

16,7863 o el
6. TEdd
|6 TEIS
16, B154
|6.8182
16,829 fps
16.827% fps
16.8641 fps

202,688 f95 T [} T . >t O v
204,011 fps
204,366 fps
204.731 fps
205,189 fps
B 205.57 fps
205,646 fps
205.8 fps

168521 fps S 20% . 988 fpa
16,8486 fps . . 206.342 fps
168463 fps) 206.615 fps g
18,8442 fps : . W 204,248 fps
16.8427 fps ; i 1 202.357 fps [N

-

16,8409 fps . 20279 fps
168392 fps _— 5 203.32 fps Fr fez
16.8472 fps o= T 203,384 Tps [fumd08, y=B1] = 50

18,0033 1P

131.233 fps

18,6239 fps I

18,6321 fps 131.623 fps T
18,6250 fps harses tps == T & H £ P HA
18,6344 fps 132.236 fps

18,6428 fps : 132,564 fps

18,6349 fps . 132,907 fps

18,6299 fps 130,923 fps

18,6236 fps v 131,283 fps

18.6315 fps s 131,638 fps [N

18,6394 fps Mli3z.0n1 fps

18.6753 fps 132.349 fps

156678 Tps 131.526 fps

18,6633 fps 131.833 fps

18.8566 fps 132,12 fps
18.6507 fps ; 132.426 fps
16,6589 fps P & 132,754 fps
18,6533 fps] - 133.087 fps

12,661 fps (=Sl y=ug) - A0y (.00 634 133,446 fps [le=L, y=

Figure 11-7. Frame-rate tests. Clockwise from top left: Grayscale from USB camera, grayscale from camera board, color from camera board, and color fron
USB camera

The frame-rate calculations are done as before using the OpenCV functions getTickCount () and
getTickFrequency (). However, sometimes the parallel processes going onin PiCapture.cpp seemto be messing
up the tick counts, and the frame rates measured for the camera board are reported to be quite higher than they actually are.
When you run the programs yourself, you will find that both approaches give almost the same frame rate (visually) for color
images, but grabbing from the camera board is much faster than using a USB camera for grayscale images.

Usage Examples

Once you set everything up everything on your P1i, it acts pretty much like your normal computer and you should be able to rur
all the OpenCV code that you ran on your normal computer, except that it will run slower. As usage examples, we will check
frame rates of the two types of object detectors we have developed in this book, color-based and ORB keypoint-based.

Color-based Object Detector

Remember the color-based object detector that we perfected in Chapter 5 (Listing 5-7)? Let us see how it runs for USB came
versus color images grabbed using the wrapper code. Figure 11-8 shows that for frames of size 320 x 240, the detector runs
about 50 percent faster if we grab frames using the wrapper code!

https://www.ebooks-it.org/

xerowe eBooks-1T.org
- w f ou__ﬁ_-"f__t"l__:Jv-wr S EDBPLPLH

12,6722 fps |
= o

12.7009 fps |
12.707 fps
12.7058 fps §B
12.7042 fps
12.7029 fps
12.7014 fps §

12.7 fps

12.6089 fps
12.6978 fps
12.6962 fps
12.701% fps
12,7005 fps
12.6993 fps
12.6982 fps

E

s

12,6971 fps IS T
12,7025 fps ,'{u-_slu. ymd7] — R4 oR

12.7295 fps 1,6 |

12.7279 fps (o2

12.7336 fps Low thresh (105/255) (G |

ey :::: High thies (Z55/255) (e |
12.7299 fps [Tx=250, y=ao) = 10

19,1644 TR

19.1468 fps ' Segmentation

i et AP RPPHT et SE DL OHY
. : —

19.0995 fps
19,1204 fps
19.1387 fps
19.0627 fps
19.0457 fps
19,0623 fps
19.0832 fps
19,1026 fps
19.120% fps
19.138 fps
19.1562 fps
19. 2014 fps
19,2234 fps
::::3?[?;5 =313 y=110) = 214 G176 89" [an .
19.2371 fps Y6 C
19.2164 fps
19.2311 fps Low thresh {030/255) G T
}E'iﬁ’z,;? High thres (100/255) (S |
19,3354 fps [fomZ ye121] =

Figure 11-8. Color-based object detector using color frames from USB camera (top) and camera board (bottom)

ORB Keypoint-based Object Detector

The ORB keypoint-based object detector that we developed in Chapter 8 (Listing 8-4) requires a lot more computation than
computing histogram back-projections, and so it is a good idea to see how the two methods perform when the bottleneck is n
frame-grabbing speed but frame-processing speed. Figure 11-9 shows that grabbing 320 x 240 grayscale frames (remember,
ORB keypoint detection and description requires just a grayscale image) using the wrapper code runs about 14 percent faster
than grabbing color frames from the USB camera and manually converting them to grayscale images.

https://www.ebooks-it.org/

eBooks-1T.org

CREATIVE 1

NI LT AT

.:
INTERACTIVE GEETURE CAMERA - 1o e

1 cotgbormtion wiil e

CREATIVE

iy CrVil e an

i B d0H, = IWA] =W (S SRR

Figure 11-9. ORB-based object detector using frames grabbed from a USB camera (top) and camera board (bottom)

Summary

With this chapter, I conclude our introduction to the fascinating field of embedded computer vision. This chapter gave you a
detailed insight into running your own vision algorithms on the ubiquitous Raspberry Pi, including the use of its swanky new
camera board. Feel free to let your mind wander and come up with some awesome use-cases! You will find that knowing hov
to make a Raspberry Pi understand what it sees is a very powerful tool, and its applications know no bounds.

There are lots of embedded systems other than the Pi out there in the market that can run OpenCV. My advice is to pick o
that best suits your application and budget, and get really good at using it effectively rather than knowing something about eve
embedded vision product out there. At the end of the day, these platforms are just a means to an end; it is the algorithm and id
that makes the difference.

https://www.ebooks-it.org/

e emksdTog

A

Affine transforms
application to image transformation
estimation
flipping X, Y coordinates
getAffineTransform() function
getRotationMatrix2D() function
matrix multiplication
recovery
rotation transformation
scaling transformation
warpAffine() function

B

Bag of visual words descriptor

Bags of keypoints

Blurring images
GaussianBlur() function
Gaussian kernel
pyrDown() function
resize() function
setTrackbarPos() function

Box filters

C

Calibration, stereo camera
Camera board
features
Frame-rate tests
imshow() function
PiCapture constructor
raspistill, raspivid
vs. USB Camera
Camera coordinate system
Cameras
single camera calibration
camera coordinate system
camera matrix
mathematical model
OpenCV implementation
planar checkerboard
projection center
stereo camera
stereo camera calibration
stereo camera triangulation model
Camshift tracking algorithm
Classification problem
Color-based object detector
using color frames
wrapper code
Computer vision
in OpenCV
alpha version
definition
modules
objectives
Contours
drawContours() function
findContours() function
hierarchy levels
OpenCV’s contour extraction
pointPolygonTest()

https://www.ebooks-it.org/

Demos
camshift tracking algorithm
hough transform
circle detection
line detection
Image painting
meanshift algorithm, image segmentation
minarea demo
stereo_matching demo
video_homography demo
Disparity
stereo

E

Embedded computer vision
Raspberry Pi“/t” (see Raspberry Pi, 201)

F

Feature matching
Features
floodFill() function

G

Gaussian kernel
Geometric image transformations
3D geometry
single camera calibration
camera coordinate system
camera matrix
mathematical model
OpenCV implementation
planar checkerboard
projection center
getStructuralElement() function
GrabCut segmentation
GUI windows
callback functions
color-space converter
global variable declaration
track-bar function

H

Histograms

backprojection

equalizeHist() function

MeanShift() and CamShift() functions
Hough transform

circle detection

lines detection

LJ

Image Filters

blurring images
GaussianBlur() function
Gaussian kernel
pyrDown() function
resize() function
setTrackbarPos() function

corners
circle() function
goodFeaturesToTrack() function
STL library

Dilating image

Edges
Canny edges

https://www.ebooks-it.org/

. cEmeves

filter2D() function
horizontal and vertical edges
kernel matrix
morphologyEX() function
object detector program
split() function
temperature fluctuation
Image panoramas. See Panoramas
Images
cv\\:Mat’s at() attribute
cv\\:imat structure
Access elements
creation
definition
expressions
cvtColor() function
highgui module’s
imread() function
RGB triplets
ROIS (see Regions of Interest(ROIs))
videos (see Videos)
waitKey().function
Image segmentation
definition
floodFill() function
foreground extraction and counting objects
GrbCut
histograms
threshold() function
color-based object detection
watershed algorithm
challenges
drawContours()
working principle
imshow() function
Integrated Development Environment(IDE)

K L

Kernel function
Keypoint-based object detection method
feature matching
keypoint descriptors
keypoints
ORB
BRIEF descriptors
oriented FAST keypoints
SIFT
descriptor matching
higher scale
keypoint descriptors
keypoint detection and orientation estimation
lower scale
scale and rotation invariance
SURF
descriptor
keypoint detection
Keypoint descriptors
gradient orientation histograms
illumination invariance
rotation invariance
Keypoint detection
Difference of Gaussians Pyramid
gradient orientation computation
maxima and minima selection
orientation histogram
scale pyramid
Keypoint orientation
Keypoints

https://www.ebooks-it.org/

Machine learning (ML)
classification
features
labels
regression
SVM
classification algorithm
classifier hyperplane
XOR problem
Mac OSX

(0]

Object categorization
organization
BOW object categorization
CmakeLists.txt
Config.h.in
data folder
project root folder
templates and training images
strategy
bag of visual words descriptor
bags of keypoints/visual words
multiclass classification
Object detection. See Keypoint-based object detection method
OpenCV, computer
demos (see Demos)
Mac OSX
Ubuntu operating systems
flags
hello_opencv.cpp
IDE
installation
without superuser privileges
windows
OpenCV, single camera calibration
ORB Keypoint-based Object Detector
Orientation estimation
gradient orientation computation
orientation histogram
Oriented FAST and Rotated BRIEF (ORB)
BRIEF descriptors
binary pixel intensity tests
extraction and matching, FLANN-LSH
Hamming distance
machine learning algorithm
ORB keypoint based object detecor
pair-picking pattern
oriented FAST keypoints

P,Q

Panoramas
creation of
cylindrical panorama
cylindrical warping
global estimation
Golden Gate panorama
image stitching
OpenCV stitching module
seam blending
Perspective transforms
clicking matching points
findHomography() function
matrix
recovery and application
recovery by matching ORB features
Pixel map
Projection center

https://www.ebooks-it.org/

RANdom Sample Consensus (RANSAC)
Raspberry Pi
camera board
features
Frame-rate tests
imshow() function
PiCapture constructor
raspistill, raspivid
vs. USB Camera
color-based object detector
using color frames
wrapper code
features
installation
ORB keypoint-based object detector
power-efficient
Raspberry Piboard
Setting Up
‘boot_behavior’ option
built-in video homography demo
convex hull demo
Ethernet cable
HDMI cable
‘memory_split” option
raspi-config screen
USB-A to USB-B converter cable
USB expander hub
Regions of Interest (ROIs)
cropping, rectangular image
mouse_callback function
point structure
rect structure
Regression problem

S

Scale
higher scale
lower scale
Scale Invariant Feature Transform (SIFT)
descriptor matching
brute force approach
DescriptorExtractor class
DescriptorMatcher class
drawMatches() function
FeatureDetector class
FLANN based matcher
nearest neighbor searches
OpenCV
higher scale
keypoint descriptors
gradient orientation histograms
illumination invariance
rotation invariance
keypoint detection and orientation estimation
Difference of Gaussians Pyramid
gradient orientation computation
maxima and minima selection
orientation histogram
scale pyramid
lower scale
scale and rotation invariance
Semi-Global Block Matching (SGBM) algorithm
setTrackbarPos() function
Shapes
bounding boxes and circles
contours
convexHull() function
generalized Hough transform
Hough transform

https://www.ebooks-it.org/

findEllipse
object oriented strategy
parameters
Single camera calibration
camera coordinate system
camera matrix
mathematical model
OpenCV implementation
planar checkerboard
projection center
Speeded Up Robust Features (SURF)
descriptor
extraction and matching, FLANN
FLANN matching
frame rates
oriented square patches
keypoint detection
box-filter approximations
box filters
Hessian matrix
Hessian matrix determinant
integral image
keypoint orientation
orientation assignment
scale-space pyramid
second-order Gaussian derivatives
siding orientation windows
split() function
Stereo camera
Stereo camera calibration
Stereo_matching demo
Stereo rectification
Stereo vision
disparity
pixel map
pixel matching
Semi-Global Block Matching (SGBM) algorithm
stereo camera
stereo camera calibration
stereo rectification
triangulation
Support vector machine (SVM)
classification algorithm
classifier hyperplane
kernel
XOR problem

T

Triangulation, stereo camera model

U

Ubuntu operating systems
flags
hello_opencv.cpp
installation
without superuser privileges
USB Camera/File

\%

Video_homography demo
Videos

get() function

USB Camera/File

VideoWriter object
Visual words

https://www.ebooks-it.org/

v emekslTog
waitKey().function

Watershed segmentation

Windows

Wrapper code

https://www.ebooks-it.org/

