
Page 1 of 6 
 

One and Two-Dimensional Arrays and Pointers in C 

http://cs-fundamentals.com/c-programming/arrays-in-c.php 

Arrays in C Programming 

Arrays in C or in any other programming language are container types that contain a 

finite number of homogeneous elements. Elements of an array are stored sequentially 

in memory and are accessed by their indices. Arrays in C language are static type and 

thence the size of array cannot be altered at runtime, but modern languages like Java, 

implement arrays as objects and give programmers facility to resize them at runtime. 

Arrays become useful storage containers when the size of the list is known 

beforehand.  

One Dimensional Arrays in C 

Array name in C language behaves like a constant pointer and represents the base 

address of the array. It points to the first element of the array which is located at 0
th

 

index. As array name serves like a constant pointer, it cannot be changed during the 

course of program execution. To demonstrate how arrays in C are defined, and 

accessed by the item index? How they are accessed by the help of pointers? Let's go 

through the following program and the description.  

/* Program: arrayDemo.c */ 

#include <stdio.h> 

int main () 

{ 

  int arr[5] = {1, 2, 3, 4, 5}; // array of 5 integers  

  for (int i = 0; i < 5; i++) 

  { 

    printf("value at %d location is: %d\n", i, arr[i]); 

  } 

  return 0; 

} 

Array arr defined in above program contains 5 integer values stored at indices from 0 

to 4. Array index starts from zero that's why index of the last element will be size of 

array minus one, that is, arr[4] in this case. Below is the pictorial representation of 

arr, where the array arr points to first element at location 0. This element has 

address 1024 that is the base address of the array and represented by the array name.  

  

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html


Page 2 of 6 
 

Pictorial representation of array arr  

 

Elements stored in an array are accessed by following the syntax "arrayName[index]" 

e.g., arr[3] yields 4 in above example. This strategy computes the base address of 

the desired element by combining the base address of the array with the index of 

desired element. Every array element takes a fixed number of bytes, which is known 

at compile time and this is decided by the type of array. In above example array is of 

type integer thus consumes 4 bytes (size of integer) per element. So the address of any 

n
th

 element in the array using 0 based indexing will be at an offset of (n * 

element_size) bytes from the base address of the array. You can devise the following 

formula to compute n
th

 element address.  
nth element address = base address of array + (n * size of element in 

bytes)  

The square bracket ([]) syntax to access array elements deals with address 

computation at its own. It takes the index that you wish to access, multiplies it with 

the element size, adds this resulting offset to the base address of the array, and finally 

dereferences the resulting pointer to get the desired element.  

Now that you understand the computation of offset and then address of the element 

you want to access. Any element in the valid range of array can also be accessed by 

adding the index of that element to the base address and it computes the same offset 

as it was computed by square bracket syntax. But it leaves the result as a pointer and 

you have to dereference it at your own.  

It should be clear from above passage of text that (arr + 3) is a pointer to the 

integer arr[3], (arr + 3) is of type int* while arr[3] is of type int. The two 

expressions only differ by whether the pointer is dereferenced or not. Thus the 

expression (arr + 3) is exactly equivalent to the expression &arr[3]. In fact those 

two probably compile to exactly the same code. They both represent a pointer to the 

element at index 3. Any square bracket ([]) syntax expression can be written with the 

+ syntax instead. We just need to add in the pointer dereference. Conclusively, 

arr[3] is exactly equivalent to *(arr + 3).  



Page 3 of 6 
 

Pay attention to the following lines to understand correct syntax of dereferencing.  

You can also write *(arr + 3) to *(3 + arr), this is perfectly right and acceptable 

as addition is commutative. Likewise, can you write arr[3] to 3[arr]? Yes, you can. 

But on the contrary [arr]3 or [3]arr is not correct and will result into syntax error, 

as (arr + 3)* and (3 + arr)* are not valid expressions. The reason is dereference 

operator should be placed before the address yielded by the expression not after the 

address.  

Why Array Index in C Starts From Zero? 

The short answer is, it depends on language design whether the start index should be 

zero or any other positive integer of your choice. in Fortran, when an array is declared 

with integer a(10) (an array of 10 integer elements), the index starts from 1 and 

ends at 10. However, this behavior can be overridden using a statement like, integer 

a(0:9), declaring an array with indices from 0 to 9.  

But In C language we do not have the freedom to start the array index from any other 

number than zero, and language strictly sticks to zero as start index of array. It is 

because in C the name of an array is a pointer, which is a reference to a memory 

location. Therefore, an expression *(arr + n) or arr[n] locates an element n-

locations away from the starting location because the index is used as an offset. 

Likewise, the first element of the array is exactly contained by the memory location 

that array refers (0 elements away), so it should be denoted as *(arr + 0) or *(arr) 

or arr[0].  

C programming language has been designed this way, so indexing from 0 is inherent 

to the language.  

Two-Dimensional Arrays in C 

A two dimensional array (will be written 2-D hereafter) can be imagined as a matrix 

or table of rows and columns or as an array of one dimensional arrays. Following is a 

small program twoDimArrayDemo.c that declares a 2-D array of 4x3 ( 4 rows and 3 

columns) and prints its elements.  

/* Program: twoDimArrayDemo.c */ 

#include <stdio.h> 

#define ROWS 4 

#define COLS 3 

int main () 

{ 

    // declare 4x3 array 

    int matrix[ROWS][COLS] = {{1, 2, 3},  

                              {4, 5, 6},  

                              {7, 8, 9},  

                              {10, 11, 12}};  

  

    for (int i = 0; i < ROWS; i++) 

    { 

        for (int j = 0; j < COLS; j++) 

        { 

            printf("%d\t", matrix[i][j]); 

        } 

        printf("\n"); 

    } 

    return 0; 

} 

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html


Page 4 of 6 
 

The array elements in above program are stored in memory row after row 

sequentially; assuming array is stored in row major order. As you know array name 

behaves like a constant pointer and points to the very first element of the array. The 

same is true for 2-D arrays, array name matrix serves as a constant pointer, and points 

to the first element of the first row. Array elements within valid range of matrix can 

be accessed by following different syntaxes. 

matrix[0][0] = *(*(matrix)) 

matrix[i][j] = *((*(matrix)) + (i * COLS + j)) 

matrix[i][j] = *(*(matrix + i) + j) 

matrix[i][j] = *(matrix[i] + j) 

matrix[i][j] = (*(matrix + i))[j] 

&matrix[i][j] = ((*(matrix)) + (i * COLS + j)) 

Passing Two-Dimensional Array to a Function in C 

Passing 2-D array to a function seems tricky when you think it to pass as a pointer 

because a pointer to an array and pointer to a pointer (double pointer) are two 

different things. If you are passing a two dimensional array to a function, you should 

either use square bracket syntax or pointer to an array syntax but not double pointer. 

Why should not you use double pointer to access array elements will be described in 

next section. Let's rewrite twoDimArrayDemo.c as twoDimArrayDemoPtrVer.c and 

demonstrate passing 2-D array to function for printing array.  

* Program: twoDimArrayDemoPtrVer.c */ 

#include <stdio.h> 

#define ROWS 4 

#define COLS 3 

  

void array_of_arrays_ver(int arr[][COLS]); /* prototype */ 

void ptr_to_array_ver(int (*arr)[COLS]); /* prototype */ 

  

int main () 

{ 
    // declare 4x3 array 

    int matrix[ROWS][COLS] = {{1, 2, 3}, 

                              {4, 5, 6}, 

                              {7, 8, 9}, 

                              {10, 11, 12}}; 

 

    printf("Printing Array Elements by Array of Arrays Version Function: \n"); 

   array_of_arrays_ver(matrix); 
     

    printf("Printing Array Elements by Pointer to Array Version Function: \n"); 

   ptr_to_array_ver(matrix); 
   return 0; 

} 

  

void array_of_arrays_ver(int arr[][COLS]) 

{ 

    int i, j; 

    for (i = 0; i < ROWS; i++) 

    { 

        for (j = 0; j < COLS; j++) 

        { 

            printf("%d\t", arr[i][j]); 

        } 

        printf("\n"); 

    } 

} 

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html


Page 5 of 6 
 

  

  

void ptr_to_array_ver(int (*arr)[COLS]) 

{ 

    int i, j; 

    for (i = 0; i < ROWS; i++) 

    { 

        for (j = 0; j < COLS; j++) 

        { 

            printf("%d\t", (*arr)[j]); 

        } 

        arr++; 

        printf("\n"); 

    } 

} 

  

OUTPUT 

====== 

Printing Array Elements by Array of Arrays Version Function: 

1       2       3 

4       5       6 

7       8       9 

10      11      12 

Printing Array Elements by Pointer to Array Version Function: 

1       2       3 

4       5       6 

7       8       9 

10      11      12 

In twoDimArrayDemoPtrVer.c you see two ways of passing 2-D array to a function. 

In first function array_of_arrays_ver array of arrays approach is used, while is 

second function ptr_to_array_ver pointer to array approach is used.  

Another very important point to note is the called function does not allocate space for 

the array and it does not need to know the overall size, so the number of rows can be 

omitted. Space is not allocated because called function does not create a local copy of 

the array rather it uses the original one that has been passed to it. The width of the 

array is still important because number of elements contained by one row has to be 

told to compiler in order to increment the pointer to point the next row. So the column 

dimension COLS must be specified.  

Double Pointer and Two Dimensional Arrays in C 

While trying to access a 2-D array by a double pointer compiler may not prevent you 

from doing so but you would not get expected results in some situations. Let's have a 

look at the following program twoDimArrayDblPtrVer.c and its generated output.  

  

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html


Page 6 of 6 
 

/* Program: twoDimArrayDblPtrVer.c */ 

#include <stdio.h> 

#define ROWS 4 

#define COLS 3 

int main () 

{ 

    // matrix of 4 rows and 3 columns 

    int matrix[ROWS][COLS] = {{1, 2, 3},  

                              {4, 5, 6},  

                              {7, 8, 9},  

                              {10, 11, 12}};  

    int** pmat = (int **)matrix; 

  

    printf("&matrix[0][0] = %u\n", &matrix[0][0]); 

    printf("&pmat[0][0] = %u\n", &pmat[0][0]); 

    return 0; 

} 

  

OUTPUT 

====== 

&matrix[0][0] = 1245016 

&pmat[0][0] = 1 

It happens because two dimensional array matrix and double pointer pmat are different 

types and using them in similar fashion points to different locations in memory. The 

following piece of code aborts the program with a "memory access violation" error. 

printf("pmat[0][0] = %u\n", pmat[0][0]); 

And, you might have guessed why this access violation error is? Because the same 

memory location is being dereferenced two times, that's why this access violation 

error. To conclude, arrays in C are containers for homogeneous elements. Array 

elements can be accessed and modified with help of the pointers.  

Last Word 

In this tutorial we talked of one dimensional arrays in C, why array index in C starts 

from zero, two dimensional arrays, passing 2-D array to a function, and double 

pointer and two dimensional arrays. Hope you have enjoyed reading this tutorial. 

Please do write us if you have any suggestion/comment or come across any error on 

this page. Thanks for reading!  

 

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://cs-fundamentals.com/contact-us.php

