One and Two-Dimensional Arrays and Pointers in C
http://cs-fundamentals.com/c-programming/arrays-in-c.php
Arrays in C Programming

Arrays in C or in any other programming language are container types that contain a
finite number of homogeneous elements. Elements of an array are stored sequentially
in memory and are accessed by their indices. Arrays in C language are static type and
thence the size of array cannot be altered at runtime, but modern languages like Java,
implement arrays as objects and give programmers facility to resize them at runtime.
Arrays become useful storage containers when the size of the list is known
beforehand.

One Dimensional Arrays in C

Array name in C language behaves like a constant pointer and represents the base
address of the array. It points to the first element of the array which is located at 0"
index. As array name serves like a constant pointer, it cannot be changed during the
course of program execution. To demonstrate how arrays in C are defined, and
accessed by the item index? How they are accessed by the help of pointers? Let's go
through the following program and the description.

/

/* Program: arrayDemo.c */

#include <stdio.h>

int main ()

{

int arr[5]
(int 1

{1, 2, 3, 4, 5}; // array of 5 integers
0; 1 < 5; i++)

{
printf ("value at %d location is: %d\n", i, arr[i]);
}
0;
}

Array arr defined in above program contains 5 integer values stored at indices from 0
to 4. Array index starts from zero that's why index of the last element will be size of
array minus one, that is, arr (4] in this case. Below is the pictorial representation of
arr, Where the array arr points to first element at location 0. This element has
address 1024 that is the base address of the array and represented by the array name.

Page 1 of 6


http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Pictorial representation of array arr

Elements stored in an array are accessed by following the syntax "arrayName[index]"
e.g., arr[3] Yyields 4 in above example. This strategy computes the base address of
the desired element by combining the base address of the array with the index of
desired element. Every array element takes a fixed number of bytes, which is known
at compile time and this is decided by the type of array. In above example array is of
type integer thus consumes 4 bytes (size of integer) per element. So the address of any
n™ element in the array using 0 based indexing will be at an offset of (n *
element_size) bytes from the base address of the array. You can devise the following
formula to compute n™ element address.

n*" element address = base address of array + (n * size of element in

bytes)

The square bracket ([]) syntax to access array elements deals with address
computation at its own. It takes the index that you wish to access, multiplies it with
the element size, adds this resulting offset to the base address of the array, and finally
dereferences the resulting pointer to get the desired element.

Now that you understand the computation of offset and then address of the element
you want to access. Any element in the valid range of array can also be accessed by
adding the index of that element to the base address and it computes the same offset
as it was computed by square bracket syntax. But it leaves the result as a pointer and
you have to dereference it at your own.

It should be clear from above passage of text that (arr + 3) is a pointer to the
integer arr (31, (arr + 3) IS Of type int* while arr (37 is of type int. The two
expressions only differ by whether the pointer is dereferenced or not. Thus the
expression (arr + 3) IS exactly equivalent to the expression sarr[3]. In fact those
two probably compile to exactly the same code. They both represent a pointer to the
element at index 3. Any square bracket ([]) syntax expression can be written with the
+ syntax instead. We just need to add in the pointer dereference. Conclusively,
arr[3] Is exactly equivalent to » (arr + 3).

Page 2 of 6



Pay attention to the following lines to understand correct syntax of dereferencing.
You can also write * (arr + 3) to * (3 + arr), thisis perfectly right and acceptable
as addition is commutative. Likewise, can you write arr (3] t0 3[arr]? Yes, you can.
But on the contrary [arr]3 0Or [3]arr iS not correct and will result into syntax error,
as (arr + 3)*and (3 + arr)* are not valid expressions. The reason is dereference
operator should be placed before the address yielded by the expression not after the
address.

Why Array Index in C Starts From Zero?

The short answer is, it depends on language design whether the start index should be
zero or any other positive integer of your choice. in Fortran, when an array is declared
with integer a(10) (an array of 10 integer elements), the index starts from 1 and
ends at 10. However, this behavior can be overridden using a statement like, integer
a (0:9), declaring an array with indices from 0 to 9.

But In C language we do not have the freedom to start the array index from any other
number than zero, and language strictly sticks to zero as start index of array. It is
because in C the name of an array is a pointer, which is a reference to a memory
location. Therefore, an expression * (arr + n) Or arr[n] locates an element n-
locations away from the starting location because the index is used as an offset.
Likewise, the first element of the array is exactly contained by the memory location
that array refers (0 elements away), so it should be denoted as * (arr + 0) Or * (arr)
Orarr([0].

C programming language has been designed this way, so indexing from 0 is inherent
to the language.

Two-Dimensional Arrays in C

A two dimensional array (will be written 2-D hereafter) can be imagined as a matrix
or table of rows and columns or as an array of one dimensional arrays. Following is a
small program twopimaArraybemo. c that declares a 2-D array of 4x3 (4 rows and 3
columns) and prints its elements.

/* Program: twoDimArrayDemo.c */
#include <stdio.h>
#define ROWS 4
#define COLS 3
int main ()
{
// declare 4x3 array
int matrix[ROWS] [COLS] = {{1, 2, 3},
{4, 5, 6},
{71 8/ 9}1
{10, 11, 12}};

(int 1 = 0; 1 < ROWS; 1i++)
(int j = 0; j < COLS; J++)
{
printf ("$d\t", matrix[i][]J]);
}
printf ("\n") ;

0;

Page 3 of 6


http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

The array elements in above program are stored in memory row after row
sequentially; assuming array is stored in row major order. As you know array name
behaves like a constant pointer and points to the very first element of the array. The
same is true for 2-D arrays, array name matrix serves as a constant pointer, and points
to the first element of the first row. Array elements within valid range of matrix can
be accessed by following different syntaxes.

matrix[0] [0] = *(* (matrix))

matrix[i][j] = *((* (matrix)) + (i * COLS + 7J))
matrix[i][j] = *(* (matrix + 1) + 3J)
matrix[i][j] = *(matrix[i] + 7J)

matrix[i][j] = (*(matrix + 1)) [7]
sgmatrix[i] [J] = ((*(matrix)) + (1 * COLS + 7J))

Passing Two-Dimensional Array to a Function in C

Passing 2-D array to a function seems tricky when you think it to pass as a pointer
because a pointer to an array and pointer to a pointer (double pointer) are two
different things. If you are passing a two dimensional array to a function, you should
either use square bracket syntax or pointer to an array syntax but not double pointer.
Why should not you use double pointer to access array elements will be described in
next section. Let's rewrite twoDimArrayDemo.c @S twoDimArrayDemoPtrVer.c and
demonstrate passing 2-D array to function for printing array.

* Program: twoDimArrayDemoPtrVer.c */
#include <stdio.h>

#define ROWS 4

#define COLS 3

void array of arrays ver (int arr[] [COLS]) ; /* prototype */
void ptr to array ver (int (*arr) [COLS]); /* prototype */

int main ()

{

// declare 4x3 array

int matrix[ROWS] [COLS] = {{1, 2, 3},
{4, 5, 6},
{7, 8, 9},
{10, 11, 12}};

printf ("Printing Array Elements by Array of Arrays Version Function: \n");
array of arrays ver (matrix);

printf ("Printing Array Elements by Pointer to Array Version Function: \n");
ptr_to_array_ver(matrix);
0;

}

void array of arrays ver (int arr[] [COLS])
{
int 1, j;
(1 = 0; 1 < ROWS; 1i++)
{
(3 = 0; J < COLS; j++)
{
printf ("$d\t", arr([il[j]);
}
printf ("\n");

Page 4 of 6


http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

void ptr to_array ver (int (*arr) [COLS])
{
int i, Jj;
(1 = 0; 1 < ROWS; i++)
{
(J = 0; j < COLS; J++)
{
printf ("$d\t", (*arr)[Jj]);
}
arr++;
printf ("\n") ;

}

OUTPUT

Printing Array Elements by Array of Arrays Version Function:

1 2 3
4 5 6
7 8 9
10 11 12

Printing Array Elements by Pointer to Array Version Function:

1 2 3
4 5 6
7 8 9
10 11 12

In twoDimArrayDemoPtrver.c YOU See two ways of passing 2-D array to a function.
In first function array of arrays ver array of arrays approach is used, while is
second function ptr to array ver pointer to array approach is used.

Another very important point to note is the called function does not allocate space for
the array and it does not need to know the overall size, so the number of rows can be
omitted. Space is not allocated because called function does not create a local copy of
the array rather it uses the original one that has been passed to it. The width of the
array is still important because number of elements contained by one row has to be
told to compiler in order to increment the pointer to point the next row. So the column
dimension cors must be specified.

Double Pointer and Two Dimensional Arrays in C

While trying to access a 2-D array by a double pointer compiler may not prevent you
from doing so but you would not get expected results in some situations. Let's have a
look at the following program twobimArrayDblPtrver.c and its generated output.

Page 5 of 6


http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

/* Program: twoDimArrayDblPtrVer.c */
#include <stdio.h>

#define ROWS 4

#define COLS 3

int main ()

{

// matrix of 4 rows and 3 columns

int matrix[ROWS] [COLS] = {{1, 2, 3},
{4, 5, 6},
{71 8/ 9}1
{10, 11, 12}};
int** pmat = (int **)matrix;
printf ("e&matrix[0][0] = %u\n", matrix[0][0]);
printf ("&pmat[0][0] = %u\n", &pmat[0][0]);
0;
}
OUTPUT
smatrix [0] [0] 1245016

spmat[0] [0] =1
It happens because two dimensional array matrix and double pointer pmat are different
types and using them in similar fashion points to different locations in memory. The
following piece of code aborts the program with a "memory access violation" error.

printf ("pmat[0] [0] = %u\n", pmat[0][0]);

And, you might have guessed why this access violation error is? Because the same
memory location is being dereferenced two times, that's why this access violation
error. To conclude, arrays in C are containers for homogeneous elements. Array
elements can be accessed and modified with help of the pointers.

Last Word

In this tutorial we talked of one dimensional arrays in C, why array index in C starts
from zero, two dimensional arrays, passing 2-D array to a function, and double
pointer and two dimensional arrays. Hope you have enjoyed reading this tutorial.
Please do write us if you have any suggestion/comment or come across any error on
this page. Thanks for reading!

Page 6 of 6


http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://cs-fundamentals.com/contact-us.php

