How to dynamically allocate a 2D array
in C?

http://www.geeksforgeeks.org/dynamically-allocate-2d-array-c

Following are different ways to create a 2D array on heap (or dynamically allocate a
2D array).

In the following examples, we have considered ‘r‘ as number of rows, ‘C* as number
of columns and we created a 2D array with r = 3, ¢ = 4 and following values

1 2 3 4
5 6 7 8
9 10 11 12

1) Using a single pointer:
A simple way is to allocate memory block of size r*c and access elements using
simple pointer arithmetic.

#include <stdio.h>
#include <stdlib.h>

int main ()
{
intr = 3, ¢ = 4;
int *arr = (int *)malloc(r * ¢ * sizeof(int));
int i, j, count = 0;
for (1 = 0; 1 < «r; 1++4)
for (j = 0; 7 < c; j++)
*(arr + i*c + j) = ++count;
for (1 = 0; 1 < «r; 1i++)
for (3 = 0; 7 < c; J++)

printf ("%d ", *(arr + i*c + J));

/* Code for further processing and free the
dynamically allocated memory */

return 0;

Output:

12345678910 11 12

http://www.geeksforgeeks.org/dynamically-allocate-2d-array-c

2) Using an array of pointers

We can create an array of pointers of size r. Note that from C99, C language allows
variable sized arrays. After creating an array of pointers, we can dynamically allocate
memory for every row.

#include <stdio.h>
#include <stdlib.h>

int main ()
{

intr = 3, ¢ =4, i, j, count;

int *arr[r];
for (1i=0; i<r; i++)
arr[i] = (int *)malloc(c * sizeof (int));

// Note that arr[i][Jj] is same as * (* (arr+i)+j)
count = 0;
for (1 = 0; 1 < «r; 1++)
for (3 = 0; 37 < c; J++)
arr[i][j] = ++count; // Or *(* (arr+i)+j) = ++count

-

for (i = 0; 1 < r; i++)
for (j = 0; J < c; j++)
printf("sd ", arr([i][j]);

/* Code for further processing and free the
dynamically allocated memory */

return 0;

Output:

12345678910 11 12

3) Using pointer to a pointer

We can create an array of pointers also dynamically using a double pointer. Once we
have an array pointers allocated dynamically, we can dynamically allocate memory
and for every row like method 2.

#include <stdio.h>
#include <stdlib.h>

int main ()
{
intr = 3, ¢ =4, i, j, count;
int **arr = (int **)malloc(r * sizeof (int *));
for (i=0; i<r; i++)
arr[i] = (int *)malloc(c * sizeof (int));

// Note that arr[i][Jj] is same as * (* (arr+i)+j)
count = 0;
for (1 = 0; 1 < «r; 1++)
for (j = 0; J < c; j++)
arr[i] [j] = ++count; // OR *(*(arr+i)+]j) = ++count

-

for (i = 0; 1 < r; i++)
for (j = 0; J < c; j++)
printf("sd ", arr([i][j]);

/* Code for further processing and free the
dynamically allocated memory */

return 0;

Output:

12345678910 11 12

4) Using double pointer and one malloc call for all rows

#include<stdio.h>
#include<stdlib.h>

int main ()

{
int r=3, c=4;
int **arr;

int count = 0,1,73;
arr = (int **)malloc(sizeof (int *) * r);
arr[0] = (int *)malloc(sizeof(int) * ¢ * r);
for(i = 0; 1 < r; i++)

arr[i] = (*arr + ¢ * 1);
for (1 = 0; 1 < r; 1i++)

for (jJ = 0; J < c; Jj++)

arr([i] [j] = ++count; // OR *(*(arr+i)+]j) = ++count

for (1 = 0; 1 < «r; i++)

for (j = 0; J < c; j++)
printf("sd ", arr([i][j]);

return 0;

Output:

12345678910 11 12

