
How to dynamically allocate a 2D array

in C?

http://www.geeksforgeeks.org/dynamically-allocate-2d-array-c

Following are different ways to create a 2D array on heap (or dynamically allocate a

2D array).

In the following examples, we have considered ‘r‘ as number of rows, ‘c‘ as number

of columns and we created a 2D array with r = 3, c = 4 and following values

 1 2 3 4

 5 6 7 8

 9 10 11 12

1) Using a single pointer:
A simple way is to allocate memory block of size r*c and access elements using

simple pointer arithmetic.

#include <stdio.h>
#include <stdlib.h>

int main()
{
 int r = 3, c = 4;
 int *arr = (int *)malloc(r * c * sizeof(int));

 int i, j, count = 0;
 for (i = 0; i < r; i++)
 for (j = 0; j < c; j++)
 *(arr + i*c + j) = ++count;

 for (i = 0; i < r; i++)
 for (j = 0; j < c; j++)
 printf("%d ", *(arr + i*c + j));

 /* Code for further processing and free the
 dynamically allocated memory */

 return 0;
}

Output:

1 2 3 4 5 6 7 8 9 10 11 12

http://www.geeksforgeeks.org/dynamically-allocate-2d-array-c

2) Using an array of pointers
We can create an array of pointers of size r. Note that from C99, C language allows

variable sized arrays. After creating an array of pointers, we can dynamically allocate

memory for every row.

#include <stdio.h>
#include <stdlib.h>

int main()
{
 int r = 3, c = 4, i, j, count;

 int *arr[r];
 for (i=0; i<r; i++)
 arr[i] = (int *)malloc(c * sizeof(int));

 // Note that arr[i][j] is same as *(*(arr+i)+j)
 count = 0;
 for (i = 0; i < r; i++)
 for (j = 0; j < c; j++)
 arr[i][j] = ++count; // Or *(*(arr+i)+j) = ++count

 for (i = 0; i < r; i++)
 for (j = 0; j < c; j++)
 printf("%d ", arr[i][j]);

 /* Code for further processing and free the
 dynamically allocated memory */

 return 0;
}

Output:

1 2 3 4 5 6 7 8 9 10 11 12

3) Using pointer to a pointer
We can create an array of pointers also dynamically using a double pointer. Once we

have an array pointers allocated dynamically, we can dynamically allocate memory

and for every row like method 2.

#include <stdio.h>
#include <stdlib.h>

int main()
{
 int r = 3, c = 4, i, j, count;

 int **arr = (int **)malloc(r * sizeof(int *));
 for (i=0; i<r; i++)
 arr[i] = (int *)malloc(c * sizeof(int));

 // Note that arr[i][j] is same as *(*(arr+i)+j)
 count = 0;
 for (i = 0; i < r; i++)
 for (j = 0; j < c; j++)
 arr[i][j] = ++count; // OR *(*(arr+i)+j) = ++count

 for (i = 0; i < r; i++)
 for (j = 0; j < c; j++)
 printf("%d ", arr[i][j]);

 /* Code for further processing and free the
 dynamically allocated memory */

 return 0;
}

Output:

1 2 3 4 5 6 7 8 9 10 11 12

4) Using double pointer and one malloc call for all rows

#include<stdio.h>
#include<stdlib.h>

int main()
{
 int r=3, c=4;
 int **arr;
 int count = 0,i,j;

 arr = (int **)malloc(sizeof(int *) * r);
 arr[0] = (int *)malloc(sizeof(int) * c * r);

 for(i = 0; i < r; i++)
 arr[i] = (*arr + c * i);

 for (i = 0; i < r; i++)
 for (j = 0; j < c; j++)
 arr[i][j] = ++count; // OR *(*(arr+i)+j) = ++count

 for (i = 0; i < r; i++)
 for (j = 0; j < c; j++)
 printf("%d ", arr[i][j]);

 return 0;
}

Output:

1 2 3 4 5 6 7 8 9 10 11 12

