
 

 Arrays and pointers in C 

 ======================== 

 (Thanks a lot to Steve Summit for the very illuminating comments, 

  thanks to Ilana Zommer for the excellent comments) 

 

 This is a short text on arrays and pointers in C with an emphasis 

 on using multi-dimensional arrays. The seemingly unrelated C rules  

 are explained as an attempt to unify arrays and pointers, replacing 

 arrays and the basic array equation by a new notation and special  

 rules (see below). 

 

 The purpose of the following text is threefold:  

 

   1) Help those who mix C modules in their programs to 

      understand the pointer notation of C and pass arrays 

      between FORTRAN and C. 

 

   2) Show possible workarounds for the lack of adjustable  

      arrays, one of C technical shortcomings. 

       

   3) Show an interesting method of array implementation. 

 

 

 The C language as a "portable assembler" 

 ---------------------------------------- 

 Older operating systems and other system software were written  

 in assembly language. CPUs were slow and memories very small,  

 and only assembly language could generate the tight code needed. 

 

 However, assembly is difficult to maintain and by definition not  

 portable, so the advantages of a High Level Language designed 

 for system programming were clear. Improvements in hardware and  

 compiler technology made C a success. 

 

 

 Pointers and pointer operators 

 ------------------------------ 

 FORTRAN imposes a major restriction on the programmer, you can 

 reference only named memory locations, i.e. Fortran variables.  

 Pointers make it possible, like in assembly, to reference in  

 a useful way any memory location.  

 

 A pointer is a variable suitable for keeping memory addresses  

 of other variables, the values you assign to a pointer are  

 memory addresses of other variables (or other pointers). 

 

 How useful are pointers for scientific programming?  Probably  

 much less than C fans think, few algorithms used in scientific  

 require pointers.  It is well-known that having unrestricted  

 pointers in a programming language makes it difficult for the  

 compiler to generate efficient code.  

 

 C pointers are characterized by their value and data-type. 

 The value is the address of the memory location the pointer  

 points to, the type determines how the pointer will be  

 incremented/decremented in pointer (or subscript) arithmetic  

 (see below). 

 

 

 Arrays in C and the array equation 



 ---------------------------------- 

 We will use 2D arrays in the following text instead of general  

 N-dimensional arrays, they can illustrate the subtle points  

 involved with using arrays and pointers in C, and the arithmetic  

 will be more manageable.  

 

 A 2D array in C is treated as a 1D array whose elements are 1D  

 arrays (the rows).  

 

 For example, a 4x3 array of T (where "T" is some data type) may  

 be declared by:  "T  mat[4][3]",  and described by the following  

 scheme:  

 

                           +-----+-----+-----+ 

      mat == mat[0]   ---> | a00 | a01 | a02 | 

                           +-----+-----+-----+ 

                           +-----+-----+-----+ 

             mat[1]   ---> | a10 | a11 | a12 | 

                           +-----+-----+-----+ 

                           +-----+-----+-----+ 

             mat[2]   ---> | a20 | a21 | a22 | 

                           +-----+-----+-----+ 

                           +-----+-----+-----+ 

             mat[3]   ---> | a30 | a31 | a32 | 

                           +-----+-----+-----+ 

 

 The array elements are stored in memory row after row, so the  

 array equation for element "mat[m][n]" of type T is:  

 

    address(mat[i][j]) = address(mat[0][0]) + (i * n + j) * size(T) 

 

    address(mat[i][j]) = address(mat[0][0]) +  

                         i * n * size(T)    +  

                         j * size(T) 

 

    address(mat[i][j]) = address(mat[0][0]) +  

                         i * size(row of T) +  

                         j * size(T) 

 

 A few remarks: 

 

   1) The array equation is important, it is the connection between the  

      abstract data-type and its implementation. In Fortran (and other  

      languages) it is "hidden" from the programmer, the compiler  

      automatically "plants" the necessary code whenever an array  

      reference is made. 

 

   2) For higher-dimensional arrays the equation gets more and more  

      complicated. In some programming languages an arbitrary limit on  

      the dimension is imposed, e.g. Fortran arrays can be 7D at most. 

 

   3) Note that it's more efficient to compute the array equation  

      "iteratively" - not using the distributive law to eliminate the  

      parentheses (just count the arithmetical operations in the first  

      two versions of the array equation above). The K&R method  

      (see below) works iteratively.  

 

      It reminds one of Horner's Rule for computing a polynomial  

      iterativly, e.g.  

 

         a * x**2 + b * x + c = (a * x + b) * x + c 



 

      computing the powers of x is eliminated in this way.  

 

   4) The number of rows doesn't enter into the array equation, you don't  

      need it to compute the address of an element. That is the reason  

      you don't have to specify the first dimension in a routine that is  

      being passed a 2D array, just like in Fortran's assumed-size arrays. 

 

 

 The K&R method of reducing arrays to pointers 

 --------------------------------------------- 

 K&R tried to create a unified treatment of arrays and pointers, one that  

 would expose rather than hide the array equation in the compiler's code.  

 They found an elegant solution, albeit a bit complicated. The "ugly"  

 array equation is replaced in their formulation by four rules: 

 

    1) An array of dimension N is a 1D array with 

       elements that are arrays of dimension N-1. 

 

    2) Pointer addition is defined by: 

 

          ptr # n = ptr + n * size(type-pointed-into) 

 

       "#" denotes here pointer addition to avoid  

       confusion with ordinary addition. 

       The function "size()" returns object's sizes. 

 

    3) The famous "decay convention": an array is  

       treated as a pointer that points to the  

       first element of the array. 

 

       The decay convention shouldn't be applied 

       more than once to the same object. 

 

    4) Taking a subscript with value i is equivalent  

       to the operation: "pointer-add i and then  

       type-dereference the sum", i.e. 

 

          xxx[i] = *(xxx # i) 

 

 

        When rule #4 + rule #3 are applied recursively  

        (this is the case of a multi-dimensional array),  

        only the data type is dereferenced and not the  

        pointer's value, except on the last step. 

 

 

 

 K&R rules imply the array equation 

 ---------------------------------- 

 We will show now that the array equation is a consequence of the above  

 rules (applied recursively) in the case of a 2D array: 

 

    mat[i] = *(mat # i)                     (rule 4) 

 

    mat[i][j] = *(*(mat # i) # j)           (rule 4) 

 

 "mat" is clearly a  "2D array of T"  and decays by rule #3 into a  

 "pointer to a row of T". So we get the first two terms of the array  

 equation. 

 



    mat[i][j] = *(*(mat + i * sizeof(row)) # j) 

                    ^^^^^^^^^^^^^^^^^^^^^ 

                     Pointer to row of T 

 

 Dereferencing the type of "(mat # i)" we get a "row of T".  

 

    mat[i][j] = *((mat + i * sizeof(row)) # j) 

                  ^^^^^^^^^^^^^^^^^^^^^^^ 

                         Row of T  

 

 We have now one pointer addition left, using again the "decay convention",  

 the 1D array "row of T" becomes a pointer to its first element, i.e.  

 "pointer to T". We perform the pointer addition, and get the third term  

 of the array equation:  

 

    mat[i][j] = *(mat + i * sizeof(row) + j * sizeof(T)) 

                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

                              Pointer to T 

 

    address(mat[i][j]) = mat + i * sizeof(row) + j * sizeof(T) 

 

 Remember that "mat" actually points to the first element of the array,  

 so we can write: 

 

    address(mat[i][j]) = address(mat[0][0]) + 

                         i * sizeof(row)    + 

                         j * sizeof(T) 

 

 This is exactly the array equation. QED 

 

 

 

 Why a double pointer can't be used as a 2D array? 

 ------------------------------------------------- 

 This is a good example, although the compiler may not complain,  

 it is wrong to declare:  "int **mat" and then use "mat" as a 2D array.  

 These are two very different data-types and using them you access  

 different locations in memory. On a good machine (e.g. VAX/VMS) this  

 mistake aborts the program with a "memory access violation" error. 

 

 This mistake is common because it is easy to forget that the decay  

 convention mustn't be applied recursively (more than once) to the  

 same array, so a 2D array is NOT equivalent to a double pointer. 

  

 A "pointer to pointer of T" can't serve as a "2D array of T".  

 The 2D array is "equivalent" to a "pointer to row of T", and this  

 is very different from "pointer to pointer of T". 

 

 When a double pointer that points to the first element of an array,  

 is used with subscript notation "ptr[0][0]", it is fully dereferenced  

 two times (see rule #5). After two full dereferencings the resulting  

 object will have an address equal to whatever value was found INSIDE  

 the first element of the array. Since the first element contains  

 our data, we would have wild memory accesses.  

 

 We could take care of the extra dereferencing by having an intermediary  

 "pointer to T": 

 

    type   mat[m][n], *ptr1, **ptr2; 

 

    ptr2 = &ptr1; 



    ptr1 = (type *)mat; 

 

 but that wouldn't work either, the information on the array "width" (n),  

 is lost, and we would get right only the first row, then we will have  

 again wild memory accesses. 

 

 A possible way to make a double pointer work with a 2D array notation  

 is having an auxiliary array of pointers, each of them points to a  

 row of the original matrix. 

 

    type   mat[m][n], *aux[m], **ptr2; 

 

    ptr2 = (type **)aux; 

    for (i = 0 ; i < m ; i++) 

        aux[i] = (type *)mat + i * n; 

 

 Of course the auxiliary array could be dynamic. 

 

 An example program: 

 

#include <stdio.h> 

#include <stdlib.h> 

 

main() 

 { 

 long mat[5][5], **ptr; 

 

 mat[0][0] = 3; 

 ptr = (long **)mat; 

 

 printf("  mat          %p \n",  mat); 

 printf("  ptr          %p \n",  ptr); 

 printf("  mat[0][0]    %d \n",  mat[0][0]); 

 printf(" &mat[0][0]    %p \n", &mat[0][0]); 

 printf(" &ptr[0][0]    %p \n", &ptr[0][0]); 

 

        return;  

 } 

 

 

   The output on VAX/VMS is: 

 

         mat          7FDF6310 

         ptr          7FDF6310 

         mat[0][0]    3 

        &mat[0][0]    7FDF6310 

        &ptr[0][0]    3 

 

 We can see that "mat[0][0]" and "ptr[0][0]" are different objects  

 (they have different addresses), although  "mat"  and  "ptr" have  

 the same value. 

 

 

 

 What methods for passing a 2D array to a subroutine are allowed? 

 ---------------------------------------------------------------- 

 Following are 5 alternative ways to handle in C an array passed from  

 a Fortran procedure or another c routine.  

 

 Various ways to declare and use such an array are presented by examples  

 with an array made of 3x3 shorts (INTEGER*2). All 5 methods work on  



 a VAX/VMS machine with DECC. 

 

#include <stdio.h> 

#include <stdlib.h> 

 

int func1(); 

int func2(); 

int func3(); 

int func4(); 

int func5(); 

 

main() 

{ 

 short mat[3][3],i,j; 

 

 for(i = 0 ; i < 3 ; i++) 

  for(j = 0 ; j < 3 ; j++) 

  { 

   mat[i][j] = i*10 + j; 

  } 

 

 printf(" Initialized data to: "); 

 for(i = 0 ; i < 3 ; i++) 

 { 

  printf("\n"); 

  for(j = 0 ; j < 3 ; j++) 

  { 

   printf("%5.2d", mat[i][j]); 

  } 

 } 

 printf("\n"); 

 

 func1(mat); 

 func2(mat); 

 func3(mat); 

 func4(mat); 

 func5(mat); 

} 

 

 /*  

 Method #1 (No tricks, just an array with empty first dimension) 

 =============================================================== 

 You don't have to specify the first dimension!  

 */ 

 

int func1(short mat[][3])    

{ 

        register short i, j; 

 

        printf(" Declare as matrix, explicitly specify second dimension: "); 

        for(i = 0 ; i < 3 ; i++) 

                { 

                printf("\n"); 

                for(j = 0 ; j < 3 ; j++) 

                { 

                 printf("%5.2d", mat[i][j]); 

                } 

        } 

        printf("\n"); 

 

        return; 



} 

 

 /* 

 Method #2 (pointer to array, second dimension is explicitly specified) 

 ====================================================================== 

 */ 

 

int func2(short (*mat)[3]) 

        { 

        register short i, j; 

 

        printf(" Declare as pointer to column, explicitly specify 2nd dim: "); 

        for(i = 0 ; i < 3 ; i++) 

                { 

                printf("\n"); 

                for(j = 0 ; j < 3 ; j++) 

                { 

                 printf("%5.2d", mat[i][j]); 

                } 

        } 

        printf("\n"); 

 

        return; 

} 

 

 /* 

 Method #3 (Using a single pointer, the array is "flattened") 

 ============================================================ 

 With this method you can create general-purpose routines. 

 The dimensions doesn't appear in any declaration, so you  

 can add them to the formal argument list.  

 

 The manual array indexing will probably slow down execution. 

 */ 

 

int func3(short *mat)  

        { 

        register short i, j; 

 

        printf(" Declare as single-pointer, manual offset computation: "); 

        for(i = 0 ; i < 3 ; i++) 

                { 

                printf("\n"); 

                for(j = 0 ; j < 3 ; j++) 

                { 

                 printf("%5.2d", *(mat + 3*i + j)); 

                } 

        } 

        printf("\n"); 

 

        return; 

} 

 

 /* 

 Method #4 (double pointer, using an auxiliary array of pointers) 

 ================================================================ 

 With this method you can create general-purpose routines, 

 if you allocate "index" at run-time.  

 

 Add the dimensions to the formal argument list. 

 */ 



 

int func4(short **mat) 

        { 

        short    i, j, *index[3]; 

 

        for (i = 0 ; i < 3 ; i++) 

                index[i] = (short *)mat + 3*i; 

 

        printf(" Declare as double-pointer, use auxiliary pointer array: "); 

        for(i = 0 ; i < 3 ; i++) 

                { 

                printf("\n"); 

                for(j = 0 ; j < 3 ; j++) 

                { 

                 printf("%5.2d", index[i][j]); 

                } 

        } 

        printf("\n"); 

 

        return; 

} 

 

 /* 

 Method #5 (single pointer, using an auxiliary array of pointers) 

 ================================================================ 

 */ 

 

int func5(short *mat[3]) 

        { 

        short i, j, *index[3]; 

        for (i = 0 ; i < 3 ; i++) 

                index[i] = (short *)mat + 3*i; 

 

        printf(" Declare as single-pointer, use auxiliary pointer array: "); 

        for(i = 0 ; i < 3 ; i++) 

                { 

                printf("\n"); 

                for(j = 0 ; j < 3 ; j++) 

                { 

                 printf("%5.2d", index[i][j]); 

                } 

        } 

        printf("\n"); 

        return; 

} 

 

 


