
ΕΠΙΣΚΟΠΗΣΗ Tα προβλήματα που επιλύονται με την ολοκλήρωση
συναρτήσεων δύο και τριών μεταβλητών αποτελούν γενικεύσεις
παρόμοιων προβλημάτων που επιλύονται με την ολοκλήρωση συ-
ναρτήσεων μίας μεταβλητής. Για τους σχετικούς υπολογισμούς, θα
αξιοποιήσουμε την εμπειρία μας από τις συναρτήσεις αυτές.
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υπολογισμό όγκων • Tο Θεώρημα του Fubini για τον υπολογισμό

διπλών ολοκληρωμάτων • Διπλά ολοκληρώματα ορισμένα σε

φραγμένα μη ορθογώνια χωρία • Eύρεση ορίων ολοκλήρωσης

Θα δείξουμε τώρα πώς ολοκληρώνουμε μια συνεχή συνάρτηση  f (x y)
σε ένα φραγμένο χωρίο του επιπέδου  xy. Yπάρχουν αρκετές ομοιότη-
τες μεταξύ των «διπλών» ολοκληρωμάτων που θα ορίσουμε εδώ και
των «απλών» ολοκληρωμάτων που είδαμε στο Kεφάλαιο 4. Ένα διπλό
ολοκλήρωμα μπορεί να υπολογιστεί σταδιακά, κάνοντας χρήση των
μεθόδων ολοκλήρωσης συναρτήσεων μίας μεταβλητής.

Διπλά ολοκληρώματα ορισμένα σε ορθογώνια χωρία
Έστω ότι η  f(x y)  είναι ορισμένη σε ένα ορθογώνιο χωρίο  R που δί-
νεται από τις σχέσεις

R : a � x � b c � y � d

Aς φανταστούμε ότι το  R σαρώνεται από ένα πλέγμα ευθειών παράλ-
ληλων στους άξονες  x και  y (Σχήμα 12.1). Oι ευθείες αυτές διαμερί-
ζουν το  R σε μικρά ορθογώνια υποχωρία εμβαδού  �A � �x �y, τα
οποία ονομάζουμε  �A1, �A2, . . . , �An. Σε κάθε  �Ak επιλέγουμε ένα
σημείο (xk yk)  και σχηματίζουμε το άθροισμα

Sn � f (xk yk)  �Ak (1)

Aν η  f είναι συνεχής σε κάθε σημείο του  R τότε καθώς «πυκνώνου-
με» το πλέγμα ώστε τα  �x και  �y να τείνουν στο μηδέν, τα αθροί-
σματα της Eξίσωσης (1) τείνουν σε όριο που καλούμε διπλό ολοκλή-
ρωμα της  f στο  R Συμβολίζουμε το ολοκλήρωμα αυτό ως εξής:

Έτσι,
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12.1 Διπλά ολοκληρώματα
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ΣΧΗΜΑ 12.1 Tο ορθογώνιο πλέγμα
διαχωρίζει την περιοχή  R σε
μικρά ορθογώνια εμβαδού
�Ak � �xk �yk .



(2)

Όπως ίσχυε για απλά ολοκληρώματα, έτσι και εδώ, τα αθροίσματα τεί-
νουν στο παραπάνω όριο ανεξάρτητα του τρόπου διαμέρισης των δια-
στημάτων  [a b]  και  [c d]  που ορίζουν το χωρίο  R, αρκεί οι λεπτό-
τητες των διαμερίσεων να τείνουν στο μηδέν. Eπίσης, το όριο της Eξί-
σωσης (2) είναι ανεξάρτητο της σειράς με την οποία αριθμούμε τα εμ-
βαδά  �Ak, καθώς και της επιλογής του σημείου  (xk yk)  σε κάθε  �Ak

Oι τιμές των επιμέρους προσεγγιστικών αθροισμάτων  Sn εξαρτώνται
από τις παραπάνω επιλογές, αλλά εν τέλει τα αθροίσματα τείνουν στο
ίδιο όριο. H απόδειξη της ύπαρξης και μοναδικότητας του ορίου αυτού
για μια συνεχή συνάρτηση  f μπορεί να αναζητηθεί σε πιο προχωρη-
μένα συγγράμματα. H συνέχεια της  f είναι ικανή αλλά όχι αναγκαία
συνθήκη για την ύπαρξη του διπλού ολοκληρώματος. Tο όριο υπάρχει
και σε περιπτώσεις στις οποίες η συνάρτηση είναι ασυνεχής.

Iδιότητες διπλών ολοκληρωμάτων
Kατ’ αντιστοιχία με τα απλά ολοκληρώματα, έτσι και τα διπλά ολο-
κληρώματα συνεχών συναρτήσεων παρουσιάζουν αλγεβρικές ιδιότη-
τες που χρησιμεύουν σε διάφορους υπολογισμούς και εφαρμογές.

Διπλά ολοκληρώματα για τον υπολογισμό όγκων
Για θετική συνάρτηση  f (x y), μπορούμε να ερμηνεύσουμε το διπλό
ολοκλήρωμα της  f ορισμένο στο ορθογώνιο χωρίο  R ως τον όγκο
στερεού πρίσματος που είναι κάτω φραγμένο από το  R και άνω φραγ-
μένο από την επιφάνεια  z � f (x y)  (Σχήμα 12.3). Kάθε όρος  f (xk yk)
�Ak του αθροίσματος Sn � � f (xk yk)  �Ak ισούται με τον όγκο ενός
κατακόρυφου ορθογώνιου παραλληλεπιπέδου που προσεγγίζει τον
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Iδιότητες διπλών ολοκληρωμάτων

1. Σταθερό πολλαπλάσιο: kf (x y) dA � k f (x y) dA

(τυχών k)

2. Άθροισμα και διαφορά:

( f (x y) � g(x y)) dA � f(x y) dA � g(x y) dA

3.

(α) f (x y) dA � 0 αν f (x y) � 0 στο R

(β) f (x y) dA � g(x y) dA αν f (x y) � g(x y) στο R

4. f (x y) dA � f(x y) dA � f (x y) dA

όπου  R είναι η ένωση των δύο μη αλληλεπικαλυπτόμενων
ορθογώνιων χωρίων R1 και R2 (Σχήμα 12.2).

 ,��
R2

 ,��
R1

 ,��
R

 , , ,��
R

 ,��
R

 , ,��
R

 ,��
R

 ,��
R

 , ,��
R

 ,�� ,��
R

R2R1

R2R1

f(x, y) dA �⌠
⌡

⌠
⌡
∪

f(x, y) dA⌠
⌡

⌠
⌡ � f(x, y) dA⌠

⌡
⌠
⌡

R2R1

ΣΧΗΜΑ 12.2 H ιδιότητα 4 ισχύει
τόσο για απλά όσο και για διπλά
ολοκληρώματα.
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ΣΧΗΜΑ 12.3 H προσέγγιση στερεών
με ορθογώνια παραλληλεπίπεδα
οδηγεί στον ορισμό όγκων μέσω
διπλών ολοκληρωμάτων. O όγκος
του πρίσματος του σχήματος
ισούται με το διπλό ολοκλήρωμα
της  f (x y)  ορισμένο στο χωρίο  R
της βάσης του στερεού .

 ,



όγκο του τμήματος εκείνου του στερεού που βρίσκεται ακριβώς πάνω
από τη βάση  �Ak Έτσι το άθροισμα  Sn προσεγγίζει τον συνολικό
όγκο του στερεού. Oρίζουμε λοιπόν τον όγκο αυτόν ως

Όγκος � lim Sn � f (x y) dA (3)

Όπως θα περίμενε κανείς, η γενική αυτή μέθοδος υπολογισμού
όγκου συμφωνεί με τις μεθόδους του Kεφαλαίου 5, πράγμα που όμως
δεν θα αποδείξουμε εδώ.

Tο Θεώρημα του Fubini για τον υπολογισμό διπλών
ολοκληρωμάτων
Έστω ότι θέλουμε να υπολογίσουμε τον όγκο μεταξύ του επιπέδου
z � 4 � x � y και του ορθογώνιου χωρίου  R : 0 � x � 2, 0 � y � 1 του
επιπέδου xy. Aν εφαρμόσουμε τη μέθοδο διατμήσεων της Eνότητας
5.1, με διατμήσεις κάθετες στον άξονα x (Σχήμα 12.4), τότε ο όγκος εί-
ναι

(4)

όπου A(x) είναι το εμβαδόν διατομής στο  x Για κάθε τιμή του x μπο-
ρούμε να υπολογίσουμε το  A(x)  ως το ολοκλήρωμα

A(x) � (5)

που ισούται με το εμβαδόν της επιφάνειας κάτω από την καμπύλη  z
� 4 � x � y στο επίπεδο που ορίζει η διατομή στο  x Kατά τον υπο-
λογισμό του  A(x) , το  x παραμένει σταθερό και η ολοκλήρωση λαμ-
βάνει χώρα ως προς  y Συνδυάζοντας τις Eξισώσεις (4) και (5), βλέ-
πουμε ότι ο όγκος του στερεού ισούται με 

Όγκος

(6)

κυβικές μονάδες.

Θα μπορούσαμε λοιπόν να γράψουμε

Όγκος

H έκφραση στο δεξιό μέλος μας λέει ότι ο όγκος υπολογίζεται αν ολο-
κληρώσουμε την ποσότητα  4 � x � y πρώτα ως προς  y από  y � 0
έως y � 1,  με σταθερό το  x, και κατόπιν ολοκληρώσουμε το αποτέ-
λεσμα που βρήκαμε ως προς  x από  x � 0 έως x � 2.  

Tι θα είχε συμβεί αν υπολογίζαμε τον όγκο με διατμήσεις κάθετες
στον άξονα  y (Σχήμα 12.5); Tο εμβαδόν μιας διατομής θα γινόταν τώ-
ρα συνάρτηση του y

(7)

O όγκος του στερεού ισούται λοιπόν με
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ΣΧΗΜΑ 12.4 Tο εμβαδόν διατομής
A(x) υπολογίζεται αν
διατηρήσουμε σταθερό το  x και
ολοκληρώσουμε ως προς  y .
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ΣΧΗΜΑ 12.5 Tο εμβαδόν διατομής
A(y) υπολογίζεται αν
διατηρήσουμε σταθερό το  y και
ολοκληρώσουμε ως προς  x .



Όγκος

που συμφωνεί με τον υπολογισμό που κάναμε πρωτύτερα.
Όπως και πριν, έτσι και τώρα μπορούμε να εκφράσουμε τον όγκο

με το ολοκλήρωμα

Όγκος

H έκφραση στο δεξιό μέλος σημαίνει ότι μπορούμε να βρούμε τον
όγκο αν ολοκληρώσουμε την 4 � x � y ως προς  x από  x � 0 έως x
� 2  όπως στην Eξίσωση (7), και κατόπιν ολοκληρώσουμε ως προς  y
από  y � 0 έως y � 1.  H σειρά ολοκλήρωσης εδώ είναι πρώτα ως προς
x και έπειτα ως προς  y αντίθετη δηλαδή από τη σειρά ολοκλήρωσης
στην Eξίσωση (6).

Ποια σχέση έχουν οι δύο παραπάνω υπολογισμοί ολοκληρωμάτων
με το διπλό ολοκλήρωμα

ορισμένο στο ορθογώνιο χωρίο  R: 0 � x � 2,  0 � y � 1;  H απάντη-
ση είναι ότι αμφότεροι μας δίνουν την τιμή του διπλού ολοκληρώμα-
τος. Ένα θεώρημα που δημοσίευσε το 1907 ο Guido Fubini λέει ότι το
διπλό ολοκλήρωμα τυχούσας συνεχούς συναρτήσεως σε ορθογώνιο
χωρίο μπορεί να υπολογιστεί με όποια σειρά ολοκλήρωσης επιθυμού-
με. (O Fubini απέδειξε το θεώρημα σε γενικότερη μορφή, αλλά η δια-
τύπωση αυτή μας αρκεί.)

Tο θεώρημα του Fubini λέει ότι διπλά ολοκληρώματα ορισμένα σε
ορθογώνια χωρία μπορούν να υπολογιστούν με διαδοχική ολοκλήρω-
ση ως προς τις εκάστοτε μεταβλητές.

Eπίσης, το θεώρημα του Fubini λέει ότι δεν έχει σημασία η σειρά
με την οποία εκτελούμε την ολοκλήρωση, πράγμα που διευκολύνει
τους υπολογισμούς μας, όπως θα δούμε στο Παράδειγμα 3. Eιδικότερα,
όταν υπολογίζουμε ολοκληρώματα με τη μέθοδο διατμήσεων, μπορού-
με να τέμνουμε είτε κάθετα στον άξονα  x είτε κάθετα στον άξονα  y,
ό,τι από τα δύο μας εξυπηρετεί περισσότερο.  

Παράδειγμα 1 Yπολογισμός διπλού ολοκληρώματος

Yπολογίστε το για τη συνάρτηση

f (x y) � 1 � 6x 2y και το χωρίο R: 0 � x � 2, �1 � y � 1.

Λύση Bάσει του θεωρήματος του Fubini,

κυβικές μονάδες. � � 1
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Θεώρημα 1 Tο Θεώρημα του Fubini (πρώτη μορφή)
Aν η  f (x y)  είναι συνεχής παντού στο ορθογώνιο χωρίο
R: a � x � b c � y � d τότε

��
R

 f (x , y) dA � � d

c
� b

a
 f (x , y) dx dy � � b

a
� d

c
 f (x , y) dy dx .

 , ,
 ,

Bιογραφικά στοιχεία

Guido Fubini 
(1879-1943) 
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Aντιστρέφοντας τη σειρά ολοκλήρωσης παίρνουμε το ίδιο αποτέλε-
σμα:

κυβικές μονάδες.

Πολλαπλή ολοκλήρωση Tα περισσότερα
συστήματα υπολογιστικής άλγεβρας
μπορούν να υπολογίζουν πολλαπλά ολο-

κληρώματα εκτελώντας διαδοχικές ολοκληρώσεις. H τυπική
διαδικασία που ακολουθεί ένα τέτοιο σύστημα είναι να εκτελεί
την ολοκλήρωση με τη σειρά που έχουμε δηλώσει ότι επιθυ-
μούμε.

Oλοκλήρωμα Tυπική διατύπωση σε υπολ. σύστημα

int(int(x ∧ 2 * y x), y) Ø

int(int(x* cos( y), x � 0 . . 1), y � �Pi 3 . . Pi/4) Ø

Aν ένα σύστημα υπολογιστικής άλγεβρας δεν μπορεί να βρει
την ακριβή τιμή ενός ορισμένου ολοκληρώματος, μπορεί συνή-
θως να την προσεγγίσει αριθμητικά.

Διπλά ολοκληρώματα ορισμένα σε φραγμένα μη ορθογώνια χωρία
Προκειμένου να ορίσουμε το διπλό ολοκλήρωμα μιας συνάρτησης   f(x
y)  σε φραγμένο μη ορθογώνιο χωρίο, όπως αυτό του Σχήματος 12.6, θε-
ωρούμε ότι το  R καλύπτεται από ένα ορθογώνιο πλέγμα, αλλά στο με-
ρικό άθροισμα κρατάμε μόνο τις κυψελίδες εμβαδού �A � �x �y οι
οποίες κείνται εξ ολοκλήρου μέσα στο χωρίο (γραμμοσκιασμένη περιο-
χή του σχήματος). Aριθμούμε τις κυψελίδες με κάποιον τρόπο, επιλέ-
γουμε ένα αυθαίρετο σημείο  (xk yk)  σε κάθε �Ak και σχηματίζουμε το
άθροισμα

Tο άθροισμα αυτό διαφέρει από το άθροισμα της Eξίσωσης (1) που
ίσχυε για ορθογώνια χωρία ως προς το ότι τώρα τα εμβαδά  �Ak δεν
καλύπτουν πλήρως το χωρίο  R Kαθώς όμως το πλέγμα γίνεται ολοέ-
να και πυκνότερο, και το πλήθος όρων στο άθροισμα Sn αυξάνεται, όλο
και μεγαλύτερο μέρος του  R καλύπτεται από τις ορθογώνιες κυψελί-
δες. Έστω τώρα ότι η  f είναι συνεχής και ότι το σύνορο του  R απο-
τελείται από καμπύλες που αποτελούν γραφήματα πεπερασμένου πλή-
θους συνεχών συναρτήσεων των  x και  y, τις οποίες (καμπύλες) έχου-
με συνδέσει στα άκρα τους. Στην περίπτωση αυτή, τα αθροίσματα Sn θα
τείνουν σε κάποιο όριο καθώς οι λεπτότητες των διαμερίσεων που ορί-
ζουν το ορθογώνιο πλέγμα τείνουν στο μηδέν χωριστά για κάθε άξονα.
Kαλούμε το όριο αυτό διπλό ολοκλήρωμα της  f στο  R :

��
R

 f (x , y) dA � lim
DAl0

 � f (xk , yk) DAk .

 .

Sn � �
n

k�1
 f (xk,yk) DAk .

 , ,

 ,

 / �p / 4

�p / 3
 � 1

0
 x  cos  y dx dy

 ,��  x2y dx dy

 � � 2

0
 2 dx � 4 

 � � 2

0
 [(1 � 3x2) � (�1 � 3x2)] dx 

 � 2

0
 � 1

�1
 (1 � 6x2 y) dy dx � � 2

0
 �y � 3x2 y 2 � y�1

y��1 dx
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YΠOΛOΓIΣTIKH
EΦAPMOΓH

R

�xk

�yk (xk, yk)

�Ak

ΣΧΗΜΑ 12.6 Tο ορθογώνιο πλέγμα
του σχήματος διαμερίζει ένα
φραγμένο μη ορθογώνιο χωρίο σε
κυψελίδες.



Tο όριο αυτό μπορεί να υπάρχει και υπό λιγότερο «περιοριστικούς»
όρους.

Tα διπλά ολοκληρώματα συνεχών συναρτήσεων σε μη ορθογώ-
νια χωρία έχουν τις ίδιες αλγεβρικές ιδιότητες με ολοκληρώματα
ορισμένα σε ορθογώνια χωρία. H ιδιότητα 4 λέει ότι αν το   R
«αποσυντεθεί» σε μη αλληλεπικαλυπτόμενα χωρία  R1 και  R2 των
οποίων τα σύνορα αποτελούνται από πεπερασμένο πλήθος ευθύ-
γραμμων τμημάτων είτε λείων καμπυλών (δείτε για παράδειγμα το
Σχήμα 12.7), τότε

Aν η  f (x y)  είναι θετική και συνεχής στο  R ορίζουμε τον όγκο
του στερεού μεταξύ του  R και της επιφάνειας  z � f (x y)  ως f(x
y) dA, όπως και πριν (Σχήμα 12.8).

Aν  R είναι χωρίο όπως αυτό του επιπέδου  xy στο Σχήμα 12.9, που
φράσσεται άνω και κάτω από τις καμπύλες  y � g2(x)  και  y � g1(x)
αντίστοιχα, ενώ από δεξιά και αριστερά φράσσεται από τις ευθείες  x
� a x � b τότε μπορούμε και πάλι να υπολογίσουμε τον όγκο με δια-
τμήσεις. Yπολογίζουμε πρώτα το εμβαδόν διατομής

και έπειτα ολοκληρώνουμε το  A(x)  από  x � a έως x � b, δηλαδή βρί-
σκουμε τον όγκο με διαδοχική ολοκλήρωση:

(8)

Oμοίως, αν  R είναι το χωρίο του Σχήματος 12.10, που φράσσεται
από τις καμπύλες  x � h2( y)  και  x � h1( y)  και από τις ευθείες y � c
και  y � d τότε η μέθοδος διατμήσεων για τον υπολογισμό όγκου κα-
ταλήγει στο ολοκλήρωμα 

Όγκος (9)

Tο ότι τα ολοκληρώματα των Eξισώσεων (8) και (9) δίνουν τον
όγκο που ορίσαμε ως το διπλό ολοκλήρωμα της  f στο  R, αποτελεί
συνέπεια της ακόλουθης ισχυρής μορφής του θεωρήματος του Fubini.

� � d

c
� h2(y)

h1(y)
 f (x , y) dx dy .

 ,

V � � b

a
 A(x) dx � � b

a
� g2(x)

g1(x)
 f (x , y) dy dx .

A(x) � � y�g2(x)

y�g1(x)
 f (x , y) dy

 , ,

 ,��R ,
 ,

��
R

 f (x , y) dA � ��
R1

 f (x , y) dA � ��
R2

 f (x , y) dA .
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x

y

O

f(x, y) dA �⌠
⌡

R1

R2

⌠
⌡

R

f(x, y) dA �⌠
⌡
⌠
⌡

R1

f(x, y) dA⌠
⌡
⌠
⌡

R2

R = R1 ∪ R2

ΣΧΗΜΑ 12.7 H ιδιότητα 4 ισχύει
επίσης για χωρία που φράσσονται
από συνεχείς καμπύλες.

� Ak

z � f (x, y)

���	 � f (xk, yk)

z

y

x

R

(xk, yk)


���	 � lim � f (xk, yk) �Ak �   ⌠⌡
R

 f (x, y) dA

O

⌠
⌡

ΣΧΗΜΑ 12.8 Oι όγκοι στερεών που
έχουν καμπυλόγραμμες βάσεις
ορίζονται με τον ίδιο τρόπο που
ορίζονται και οι όγκοι στερεών με
ορθογώνιες βάσεις. 

z � f (x, y)

z

yx

O

R

y � g2(x)

y � g1(x)

x
a

b

A(x)

RR

ΣΧΗΜΑ 12.9 Tο εμβαδόν της
κατακόρυφης τομής που
φαίνεται εδώ είναι

Για να βρούμε τον όγκο του
στερεού, ολοκληρώνουμε το
εμβαδόν αυτό από  x � a έως
x � b .

A(x) � � g2(x)

g1(x)
 f (x , y) dy .

z

y

y
d

c

x

x � h1(y)

x � h2(y)

A(y) �
h2(y)

h1(y)
f (x, y) dx⌠⎮⌡z � f (x, y)

ΣΧΗΜΑ 12.10 O όγκος του στερεού
του σχήματος είναι

� d

c
 A(y) d y � � d

c
 � h2(y)

h1(y)
 f (x , y) dx dy .



Παράδειγμα 2 Eύρεση όγκου
Bρείτε τον όγκο του πρίσματος του οποίου η βάση είναι το τριγωνι-
κό χωρίο στο επίπεδο  xy που φράσσεται από τον άξονα  x και από
τις ευθείες  y � x και  x � 1,  και του οποίου η άνω πλευρά ανήκει
στο επίπεδο

z � f(x y) � 3 � x � y

Λύση Δείτε το Σχήμα 12.11. Για κάθε  x μεταξύ 0 και 1, το  y μπο-
ρεί να μεταβάλλεται από  y � 0  έως  y � x (Σχήμα 12.11β). Έτσι,

κυβική μονάδα.

Aν αντιστρέψουμε τη σειρά ολοκλήρωσης (Σχήμα 12.11γ), το ολο-
κλήρωμα του όγκου γίνεται

κυβική μονάδα.

Tα δύο ολοκληρώματα είναι ίσα, ως όφειλαν.

 � � 1

0
 �5

2
 � 4y � 3

2
 y2� dy � �5

2
 y � 2y2 � 

y3

2�
y�1

y�0
 � 1 

 � � 1

0
 �3 � 1

2
 � y � 3y � 

y 2

2
 � y 2� dy

 V � � 1

0
� 1

y
 (3 � x � y) dx dy � � 1

0
 �3x � x

2

2
 � xy�

x�1

x�y

 dy

 � � 1

0
 �3x � 3x2

2 � dx � �3x2

2
 � x

3

2�
x�1

x�0
 � 1 

 V � � 1

0
� x

0
 (3 � x � y) dy dx � � 1

0
 �3y � xy �

y 2

2�
y�x

y�0
 dx

 . ,
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Θεώρημα 2 Θεώρημα του Fubini (ισχυρή μορφή)
Έστω  f(x y) συνεχής σε χωρίο  R

1. Aν το  R ορίζεται από τις σχέσεις  a � x � b g1(x) � y �
g2(x) ,  και οι g1 και  g2 είναι συνεχείς στο  [a b] , τότε

2. Aν το  R ορίζεται από τις σχέσεις  c � y � d h1( y) � x �
h2( y) ,  και οι  h1 και  h2 είναι συνεχείς στο  [c d] ,  τότε

��
R

 f (x , y) dA � � d

c
� h2(y)

h1(y)
 f (x , y) dx dy .

 ,
 ,

��
R

 f (x , y) dA � � b

a
� g2(x)

g1(x)
 f (x , y) dy dx .

 ,
 ,

 . ,

(�) (�)

y

x

y � x

y � x

R

y � 00 1

x � 1

x � 1x � y

x � 1

y � x

y

x
0 1

R

ΣΧΗΜΑ 12.11 (α) Πρίσμα με
τριγωνική βάση στο επίπεδο  xy.
O όγκος του πρίσματος ορίζεται ως
διπλό ολοκλήρωμα στο  R Για να
το υπολογίσουμε, μπορούμε να
ολοκληρώσουμε πρώτα ως προς  y
και κατόπιν ως προς  x ή
αντιστρόφως (Παράδειγμα 2). 
(β) Tα όρια ολοκλήρωσης είναι 

Aν εκτελέσουμε πρώτα την
ολοκλήρωση ως προς  y,
ολοκληρώνουμε κατά μήκος
κατακόρυφης ευθείας  και κατόπιν
ολοκληρώνουμε από αριστερά
προς τα δεξιά ώστε να
συμπεριλάβουμε όλες τις
κατακόρυφες ευθείες στο  R. 
(γ) Tα όρια ολοκλήρωσης είναι

Aν εκτελέσουμε πρώτα την
ολοκλήρωση ως προς  x,
ολοκληρώνουμε κατά μήκος
οριζόντιας ευθείας και κατόπιν
ολοκληρώνουμε από κάτω προς τα
πάνω ώστε να συμπεριλάβουμε
όλες τις οριζόντιες ευθείες στο  R .

� y�1

y�0
 � x�1

x�y
 f (x , y) dx dy .

� x�1

x�0
 � y�x

y�0
 f (x , y) d y dx .

 ,

 .

(�)

y

y � x

z

x R

(3, 0, 0)

(1, 0, 2)

(1, 0, 0)

(1, 1, 0)

(1, 1, 1)

z � f (x, y)

� 3� x � y



Παρ’ όλο που το θεώρημα του Fubini μας εξασφαλίζει ότι ένα διπλό
ολοκλήρωμα μπορεί να υπολογιστεί με διαδοχική ολοκλήρωση με
όποια σειρά ολοκλήρωσης θέλουμε, η επιλογή της μίας σειράς ολοκλή-
ρωσης έναντι της άλλης μπορεί να επιβάλλεται από τη διευκόλυνση των
υπολογισμών. Δείτε το ακόλουθο παράδειγμα.

Παράδειγμα 3 Yπολογισμός διπλού ολοκληρώματος

Yπολογίστε το

όπου R είναι το τρίγωνο του επιπέδου  xy που φράσσεται από τον
άξονα  x, την ευθεία  y � x και την ευθεία  x � 1.  

Λύση Tο χωρίο ολοκλήρωσης φαίνεται στο Σχήμα 12.12. Aν ολο-
κληρώσουμε πρώτα ως προς  y και κατόπιν ως προς  x βρίσκουμε

κυβικές μονάδες. �  �cos  (1) � 1 	 0,46 

 � 1

0
 ��

x

0
 sin x

x  dy� dx � � 1

0
 �y sin x

x �
y�x

y�0� dx � � 1

0
 sin x dx

 ,

 ,

��
R

 sin x
x  dA ,
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R

x � 1 y � x

x

y

0 1

1

ΣΧΗΜΑ 12.12 Tο χωρίο
ολοκλήρωσης του Παραδείγματος
3.

Διαδικασία εύρεσης ορίων ολοκλήρωσης

A. Για τον υπολογισμό του  ��R f (x y)  dA σε χωρίο  R με ολοκλήρωση πρώτα ως προς  y και κατόπιν
ως προς  x ακολουθούμε τα εξής βήματα. ,

 , ,

B. Για να υπολογίσουμε το ίδιο ολοκλήρωμα με
αντίστροφη σειρά ολοκλήρωσης, χρησιμοποιούμε
οριζόντιες ευθείες αντί για κατακόρυφες. Tο ολοκλή-
ρωμα είναι

��
R

 f (x , y) dA � � 1

0
�
1�y2

1�y
 f (x , y) dx dy .

Bήμα 1: Σχήμα. Σχεδιά-
ζουμε το χωρίο ολοκλή-
ρωσης και ονομάζουμε
τις καμπύλες που το περι-
κλείουν.

Bήμα 2: Όρια ολοκλήρωσης στον άξονα
y. Θεωρούμε κατακόρυφη ευθεία  L
που τέμνει το  R στην κατεύθυνση
αύξησης του  y Σημειώνουμε τις τι-
μές  y που αντιστοιχούν στα τυπικά
σημεία εισόδου και εξόδου της  L
από το χωρίο. Oι τιμές αυτές είναι τα
όρια ολοκλήρωσης ως προς  y και
συνήθως είναι συναρτήσεις του  x
(και όχι σταθερές).

 .

Bήμα 3: Όρια ολοκλήρωσης στον άξο-
να x. Eπιλέγουμε όρια ολοκλήρωσης
ως προς  x που περιέχουν όλες τις κα-
τακόρυφες ευθείες που διέρχονται
από το  R Tο ολοκλήρωμα είναι

� x�1

x�0
� y�
1�x2

y�1�x
 f (x , y) dy dx .

��
R

 f (x , y) dA �

 .

x

y

0

x2 � y2 � 1

1

x � y � 1

R

1

x

y

0


����	 ���

1x

L

y � ⎯⎯⎯⎯⎯⎯1 � x2

E�����	 ���
y � 1 � x

1
R

√

x

y

0


����	 ���

1

y

E�����	 ���
x � 1 � y

E������� y
����� �� y � 0

M������ y
����� �� y � 1

R

1

x � ⎯⎯⎯⎯⎯⎯1 � y2√

x

y

0


����	 ���

1x

L

y � 1 � x2

E�����	 ���
y � 1 � x

E������� x
����� �� x � 0

M������ x
����� �� x � 1

1
R

√
———



Aν αντιστρέψουμε τη σειρά ολοκλήρωσης και αποπειραθούμε να
υπολογίσουμε το

τότε αδυνατούμε να προχωρήσουμε στον υπολογισμό, δεδομένου ότι
το � ((sin x) x) dx δεν μπορεί να εκφραστεί μέσω στοιχειωδών συ-
ναρτήσεων.

Δεν υπάρχει κάποιος γενικός κανόνας που να μας λέει ως προς
ποια μεταβλητή θα πρέπει να ολοκληρώσουμε πρώτα, οπότε μην
πονοκεφαλιάζετε για τη σειρά ολοκλήρωσης που θα επιλέξετε.
Aπλώς ξεκινήστε την ολοκλήρωση και αν στην πορεία δείτε ότι η
σειρά ολοκλήρωσης που επιλέξατε δεν οδηγεί πουθενά, αντιστρέψ-
τε την.

Eύρεση ορίων ολοκλήρωσης
Συχνά, το δυσκολότερο μέρος στον υπολογισμό ενός διπλού ολοκλη-
ρώματος είναι η εύρεση των ορίων ολοκλήρωσης. Για καλή μας τύχη,
υπάρχει μια μέθοδος που μπορούμε να χρησιμοποιήσουμε.

Παράδειγμα 4 Aντιστρέφοντας τη σειρά ολοκλήρωσης

Σχεδιάστε το χωρίο ολοκλήρωσης του 

και γράψτε ένα ισοδύναμο ολοκλήρωμα με τη σειρά ολοκλήρωσης
αντεστραμμένη.

Λύση Tο χωρίο ολοκλήρωσης δίνεται από τις ανισότητες x 2 � y
� 2x και 0 � x � 2. Πρόκειται λοιπόν για το χωρίο που φράσσεται
από τις καμπύλες y � x 2 και y � 2x από x � 0 έως x � 2 (Σχήμα
12.13α).

Για να βρούμε τα όρια ολοκλήρωσης όταν αντιστρέφουμε τη
σειρά ολοκλήρωσης, θεωρούμε μια οριζόντια ευθεία που τέμνει το
χωρίο από τα αριστερά προς τα δεξιά. H ευθεία εισέρχεται στο χω-
ρίο για x � y 2 και εξέρχεται για Για να συμπεριλάβουμε
όλες τις ευθείες τέτοιου τύπου στον υπολογισμό μας, δίνουμε στο y
τιμές από y � 0 έως  y � 4 (Σχήμα 12.13β). Tο ολοκλήρωμα είναι

Kαι τα δύο ολοκληρώματα έχουν την τιμή 8.

� 4

0
�
y

y / 2
 (4x � 2) dx dy .

x � 
y. / 

� 2

0
� 2x

x2
 (4x � 2) dy dx

 / 

� 1

0
� 1

y
 sin x

x  dx dy ,
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y � 2x

y � x2

0 2
(�)

4 (2, 4)

x � – x � √⎯ y

0 2
(�)

4 (2, 4)

y
2

y y

xx

ΣΧΗΜΑ 12.13 To σχήμα αναφέρεται στο Παράδειγμα 4.
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Eύρεση χωρίου ολοκλήρωσης και διπλά
ολοκληρώματα 

Aφού σχεδιάσετε το χωρίο ολοκλήρωσης, υπολογίστε το
ολοκλήρωμα σε καθεμία από τις Aσκήσεις 1-10.

1. 2.

3.

4.

5. 6.

7. 8.

9. 10.

Στις Aσκήσεις 11-16, ολοκληρώστε την  f στο χωρίο που
δίνεται.

11. Tετράπλευρο f (x y) � x y στο χωρίο του πρώτου τεταρ-
τημορίου που φράσσεται από τις ευθείες y � x y � 2x
x � 1, x � 2.

12. Tετράγωνο f(x y) � 1 (xy) στο τετράγωνο 1 � x � 2,
1 � y � 2.

13. Tρίγωνο f(x y) � x 2 � y2 στην τριγωνική περιοχή με
κορυφές (0, 0), (1, 0), και (0, 1).

14. Oρθογώνιο παραλληλόγραμμο f(x y) � y cos xy στο χωρίο
0 � x � � 0 � y � 1.

15. Tρίγωνο f(u v) � v � στην τριγωνική περιοχή που
αποκόπτει από το πρώτο τεταρτημόριο του επιπέδου uv
η ευθεία u � v� 1.

16. Kαμπύλη περιοχή f(s t) � es ln t στην περιοχή του πρώτου
τεταρτημορίου του επιπέδου st που κείται πάνω από την
καμπύλη s � ln t και εκτείνεται από t � 1 έως t � 2.

Σε καθεμία των Aσκήσεων 17-20 δίνεται ένα ολοκλήρωμα
ορισμένο σε μια περιοχή του καρτεσιανού επιπέδου. Σχε-
διάστε την περιοχή αυτή και υπολογίστε το ολοκλήρωμα.

17. 2 dp dv (επίπεδο pv)

18. 8t dt ds (επίπεδο st)

19. 3 cos t du dt (επίπεδο tu)

20. dv du (επίπεδο uv)

Aντιστρέφοντας τη σειρά ολοκλήρωσης
Στις Aσκήσεις 21-30, σχεδιάστε την περιοχή ολοκλήρω-

σης και γράψτε ένα ισοδύναμο διπλό ολοκλήρωμα με τη
σειρά ολοκλήρωσης αντεστραμμένη.

21. dy dx 22. dx dy

23. dx dy 24. dy dx

25. dy dx 26. dx dy

27. 16x dy dx 28. y dx dy

29. 3y dx dy 30. 6x dy dx

Yπολογισμός διπλών ολοκληρωμάτων
Στις Aσκήσεις 31-40, σχεδιάστε την περιοχή ολοκλήρω-
σης, αντιστρέψτε τη σειρά ολοκλήρωσης, και υπολογίστε
το ολοκλήρωμα.

31. 32. 2y2 sin xy dy dx

33. x 2exy dx dy 34. dy dx

35. dx dy 36. dy dx

37. cos (16�x5) dx dy 38.

39. Tετραγωνική περιοχή ( y � 2x2) dA όπου R είναι το χω-

ρίο που φράσσεται από το τετράγωνο .

40. Tριγωνική περιοχή όπου R είναι το χωρίο που

φράσσεται από τις ευθείες y � x y � 2x και

x � y � 2.

Όγκος κάτω από την επιφάνεια z � f(x, y)
41. Bρείτε τον όγκο του χωρίου που φράσσεται από το πα-

ραβολοειδές z � x 2 � y2 και βρίσκεται κάτω από το
τρίγωνο που ορίζουν οι ευθείες y � x x � 0, και
x � y � 2 του επιπέδου xy.

42. Bρείτε τον όγκο του στερεού που είναι άνω φραγμένο
από τον κύλινδρο z � x 2 και κάτω φραγμένο από το χω-
ρίο που ορίζουν η παραβολή y � 2 � x 2 και η ευθεία
y � x του επιπέδου xy.

43. Bρείτε τον όγκο του στερεού που έχει βάση το χωρίο
του επιπέδου xy που φράσσεται από την παραβολή
y � 4 � x 2 και την ευθεία y � 3x ενώ η άνω πλευρά του
στερεού φράσσεται από το επίπεδο z � x � 4.

44. Bρείτε τον όγκο του στερεού του πρώτου οκτημορίου
που φράσσεται από τα επίπεδα των αξόνων συντεταγ-
μένων, από τον κύλινδρο x2 � y2 � 4, και από το επίπε-
δο z � y � 3.

 ,
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45. Bρείτε τον όγκο του στερεού του πρώτου οκτημορίου
που φράσσεται από τα επίπεδα των αξόνων συντεταγ-
μένων, από το επίπεδο x � 3, και από τον παραβολικό
κύλινδρο z � 4 � y2.

46. Bρείτε τον όγκο του στερεού το οποίο αποκόπτει από
το πρώτο οκτημόριο η επιφάνεια z � 4 � x 2 � y

47. Bρείτε τον όγκο της σφηνοειδούς βαθμίδας που αποκό-
πτουν από το πρώτο οκτημόριο ο κύλινδρος z � 12 �
3y2 και το επίπεδο x � y � 2.

48. Bρείτε τον όγκο του στερεού που αποκόπτουν από τη
στερεά «στήλη» � 1 τα επίπεδα z � 0 και
3x � z � 3.

49. Bρείτε τον όγκο του στερεού που φράσσεται μπροστά
και πίσω από τα επίπεδα x � 2 και x � 1, δεξιά και αρι-
στερά από τους κυλίνδρους y � � 1 x και πάνω και κά-
τω από τα επίπεδα z � x � 1 και z � 0.

50. Bρείτε τον όγκο του στερεού που φράσσεται μπροστά
και πίσω από τα επίπεδα x � �� 3 δεξιά και αριστερά
από τους κυλίνδρους y � � sec x πάνω από τον κύλιν-
δρο z � 1 � y2, και κάτω από το επίπεδο xy.

Oλοκληρώματα ορισμένα σε μη φραγμένες
περιοχές
Yπολογίστε τα γενικευμένα ολοκληρώματα που δίνονται
στις Aσκήσεις 51-54 εκτελώντας διαδοχικά τις ολοκληρώ-
σεις.

51. 52. (2y � 1) dy dx

53.

54.

Προσεγγίζοντας διπλά ολοκληρώματα
Στις Aσκήσεις 55 και 56, προσεγγίστε το διπλό ολοκλήρω-
μα της f (x y) στο χωρίο R που διαμερίζεται από τις δοθεί-
σες κατακόρυφες ευθείες x � a και οριζόντιες ευθείες
y � c Σε κάθε ορθογώνιο υποχωρίο, χρησιμοποιήστε το
(xk yk) που σας δίνει η προσέγγισή σας.

55. f(x y) � x � y στο χωρίο R που είναι άνω φραγμένο
από το ημικύκλιο y � και κάτω φραγμένο από
τον άξονα x. Xρησιμοποιήστε τη διαμέριση x � �1,
�1 2, 0, 1 4, 1 2, 1 και y � 0, 1 2, 1 και θεωρήστε το
(xk yk) στην κάτω αριστερή γωνία του k-στού υποχω-
ρίου (αρκεί το υποχωρίο να ανήκει στο R).

56. f(x y) � x � 2y στο χωρίο R εντός του κύκλου (x � 2)2

� ( y � 3)2 � 1. Xρησιμοποιήστε τη διαμέριση x � 1,
3 2, 2, 5 2, 3 και y � 2, 5 2, 3, 7 2, 4 και θεωρήστε το
(xk yk) ως το κέντρο (κεντροειδές) του k-στού υποχω-
ρίου (αρκεί το υποχωρίο να ανήκει στο R).

Θεωρία και παραδείγματα
57. Kυκλικός τομέας Oλοκληρώστε την f (x y) �

στον μικρό κυκλικό τομέα που αποκόπτουν από τον κυ-
κλικό δίσκο x 2 � y2 � 4 οι ημιευθείες u � � 6 και u �
� 2.

58. Mη φραγμένη περιοχή Oλοκληρώστε την f(x y) � 1 [(x 2

� x)( y � 1)2/3] στο άπειρο ορθογώνιο 2 � x 	 � ,
0 � y � 2.

59. Mη κυκλικός κύλινδρος Ένας στερεός ορθός (μη κυκλικός)
κύλινδρος έχει τη βάση του R στο επίπεδο xy και η
άνω πλευρά του φράσσεται από το παραβολοειδές
z � x 2 � y2. O όγκος του κυλίνδρου είναι

Σχεδιάστε τη βάση R και εκφράστε τον όγκο του κυ-
λίνδρου ως ένα και μόνο ολοκλήρωμα με τη σειρά ολο-
κλήρωσης αντεστραμμένη. Yπολογίστε το ολοκλήρω-
μα αυτό για να βρείτε τον όγκο.

60. Mετατροπή σε διπλό ολοκλήρωμα Yπολογίστε το ολοκλή-
ρωμα

(tan�1 �x � tan�1 x) dx

(Yπόδειξη: Γράψτε την ολοκληρωτέα ποσότητα ως
ολοκλήρωμα.)

61. Mεγιστοποίηση διπλού ολοκληρώματος Για ποια περιοχή R
του επιπέδου xy μεγιστοποιείται η τιμή του

(4 � x 2 � 2y2) dA;

Aιτιολογήστε την απάντησή σας.

62. Eλαχιστοποίηση διπλού ολοκληρώματος Για ποια περιοχή R
του επιπέδου xy ελαχιστοποιείται η τιμή του

(x 2 � y2 � 9) dA;

Aιτιολογήστε την απάντησή σας.

63. Mάθετε γράφοντας Eίναι δυνατόν να υπολογίσουμε το
ολοκλήρωμα συνεχούς συνάρτησης f(x y) σε μια ορ-
θογώνια περιοχή του επιπέδου xy και να πάρουμε δια-
φορετικά αποτελέσματα αναλόγως της σειράς ολοκλή-
ρωσης; Aιτιολογήστε την απάντησή σας.

64. Mάθετε γράφοντας Πώς θα υπολογίζατε το διπλό ολοκλή-
ρωμα μιας συνεχούς συνάρτησης f(x y) στην περιοχή
R του επιπέδου xy που περικλείεται από το τρίγωνο με
κορυφές τα σημεία (0, 1) , (2, 0) , και (1, 2); Aιτιολογή-
στε την απάντησή σας.

65. Mη φραγμένη περιοχή Δείξτε ότι

66. Γενικευμένο διπλό ολοκλήρωμα Yπολογίστε το γενικευμέ-
νο ολοκλήρωμα

� 1
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Aριθμητικός υπολογισμός διπλών
ολοκληρωμάτων
Xρησιμοποιήστε ένα σύστημα υπολογιστικής άλγεβρας
προκειμένου να εκτιμήσετε τις τιμές των ολοκληρωμάτων
των Aσκήσεων  67-70.

67.

68.

69.

70.

Xρησιμοποιήστε ένα σύστημα υπολογιστικής άλγεβρας
προκειμένου να υπολογίσετε τα ολοκληρώματα των Aσκή-
σεων 71-76. Kατόπιν, αντιστρέψτε τη σειρά ολοκλήρωσης
και υπολογίστε πάλι κάθε ολοκλήρωμα.

71. 72.

73. 74.

75. 76. � 2

1
� 8

y3
 1


x2 � y2
 dx dy� 2

1
� x2

0
 1
x � y

 dy dx

� 2

0
� 4�y2

0
 exy dx dy� 2

0
� 4
2y

y3
 �x2y � xy 2� dx dy

� 3

0
� 9

x2
 x  cos  (y 2) dy dx� 1

0
� 4

2y
 ex2

 dx dy

� 1

�1
�
1�x2

0
  3
1 � x2� y 2 dy dx

� 1

0
� 1

0
  tan�1 xy dy dx

� 1

0
� 1

0
 e�(x2�y2) dy dx

� 3

1
� x

1
 1
xy dy dx
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ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΔΙΕΡΕΥΝΗΣΕΙΣ

Eμβαδά φραγμένων χωρίων στο επίπεδο • Mέση τιμή • Pοπές

και κέντρα μάζας • Mάζες κατανεμημένες σε επίπεδο χωρίο

• Λεπτά και επίπεδα στρώματα με συνεχή κατανομή μάζας •

Pοπές αδρανείας • Kεντροειδή γεωμετρικών σχημάτων

Στην ενότητα αυτή θα δείξουμε πώς χρησιμοποιούμε διπλά ολοκληρώ-
ματα για τον υπολογισμό εμβαδών φραγμένων χωρίων του επιπέδου και
για την εύρεση της μέσης τιμής μιας συνάρτησης δύο μεταβλητών. Στη
συνέχεια θα μελετήσουμε το φυσικό πρόβλημα εύρεσης του κέντρου
μάζας ενός λεπτού στρώματος που καλύπτει ένα χωρίο του επιπέδου.

Eμβαδά φραγμένων χωρίων στο επίπεδο
Aν στον ορισμό του διπλού ολοκληρώματος σε ένα χωρίο  R, που εί-
δαμε στην προηγούμενη ενότητα, θέσουμε  f (x y) � 1, τότε τα μερικά
αθροίσματα παίρνουν τη μορφή

H έκφραση αυτή προσεγγίζει εκείνο που θα θέλαμε να ονομάζουμε εμ-
βαδόν της περιοχής  R Kαθώς τα  �x και  �y τείνουν στο μηδέν, τα
�Ak καλύπτουν το χωρίο  R ολοένα και περισσότερο (Σχήμα 12.14),
οπότε ορίζουμε ως εμβαδόν του R το όριο

Eμβαδόν � lim
nl�

 �
n

k�1
 DAk � ��

R

 dA .

 .

Sn � �
n

k�1
 f (xk, yk) DAk � �

n

k�1
 DAk .

 ,

12.2 Eμβαδά, ροπές και κέντρα μάζας*

Oρισμός Eμβαδόν
Tο εμβαδόν ενός κλειστού, φραγμένου χωρίου  R στο επίπεδο
είναι

A � ��
R

 dA .

R

�xk

�yk (xk, yk)

�Ak

ΣΧΗΜΑ 12.14 Tο πρώτο βήμα στον
ορισμό του εμβαδού ενός χωρίου
είναι να διαμερίσουμε το
εσωτερικό του χωρίου σε
κυψελίδες. 

*H συζήτηση περί μαζών και ροπών της ενότητας αυτής είναι αυτόνομη και δεν
προαπαιτεί μελέτη του Kεφαλαίου 5. Όλες οι ουσιώδεις έννοιες παρατίθενται
εδώ εκ νέου, επαναλαμβάνοντας εν μέρει όσα ειπώθηκαν περί ροπών στο
Kεφάλαιο 5.



O ορισμός αυτός ισχύει για πολύ μεγαλύτερη ποικιλία χωρίων απ’
ό,τι ο ορισμός μέσω ολοκληρώματος μίας μεταβλητής που είδαμε πρω-
τύτερα. Ωστόσο, στις περιπτώσεις στις οποίες μπορούν να εφαρμο-
στούν και οι δύο ορισμοί, αυτοί συμφωνούν μεταξύ τους.

Yπολογίζουμε το εμβαδόν ολοκληρώνοντας τη σταθερή συνάρτη-
ση  f(x y) � 1  στην περιοχή  R

Παράδειγμα 1 Eύρεση εμβαδού

Bρείτε το εμβαδόν του χωρίου R που φράσσεται από τις «καμπύλες»
y � x και  y � x2 στο πρώτο τεταρτημόριο.

Λύση Σχεδιάζουμε το χωρίο (Σχήμα 12.15) και υπολογίζουμε το
εμβαδόν του ως εξής

τετραγωνικές μονάδες.

Σημειώστε ότι το απλό ολοκλήρωμα , που προκύπτει με-
τά τον υπολογισμό του εσωτερικού ολοκληρώματος, δεν είναι παρά
το ολοκλήρωμα του εμβαδού μεταξύ των δύο καμπυλών που θα παίρ-
ναμε εφαρμόζοντας τη μέθοδο της Eνότητας  4.6.

Παράδειγμα 2 Eύρεση εμβαδού

Bρείτε το εμβαδόν του χωρίου  R που περικλείεται από την παρα-
βολή  y � x 2 και την ευθεία  y � x � 2.  

Λύση Aν διαιρέσουμε το  R στα χωρία  R1 και  R2 του Σχήματος
12.16α, μπορούμε να υπολογίσουμε το εμβαδόν ως εξής

Aπό την άλλη, αν αντιστρέψουμε τη σειρά ολοκλήρωσης (Σχήμα
12.16β), παίρνουμε

A � � 2

�1
� x�2

x2
 dy dx .

A � ��
R1

 dA � ��
R2

 dA � � 1

0
�
y

�
y
  dx dy � � 4

1
�
y

y�2
 dx dy .

�1
0 (x � x2) dx

 � � 1

0
 (x � x2) dx � �x2

2
 � x

3

3�
1

0
 � 1

6
 

 A � � 1

0
� x

x2
 dy dx � � 1

0
 �y�

x

x2
 dx

 . ,
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(1, 1)

0

y � x

y � x

y � x2

y � x2

 

1

1

x

y

ΣΧΗΜΑ 12.15 Tο χωρίο του
Παραδείγματος 1.

⌠
⌡

⌠
⌡

⌠
⌡

(2, 4)y � x � 2

y � x2y

x
0

(�)

(�1, 1)

dx dy
4

1 y�2

⎯y

R2

R1
dx dy

1

0

y

� y

⌠
⌡

√

⎯√

⎯√

⌠
⌡

⌠
⌡

(2, 4)y � x � 2

y � x2y

x
0

(�1, 1)
dy dx

2

–1

x � 2

x2

(�)

ΣΧΗΜΑ 12.16 O υπολογισμός του εμβαδού αυτού περιλαμβάνει (α)
δύο διπλά ολοκληρώματα, αν ολοκληρώσουμε πρώτα ως προς  x
αλλά (β) μόνο ένα διπλό ολοκλήρωμα, αν ολοκληρώσουμε πρώτα
ως προς y (Παράδειγμα 2) .

 ,



Tο αποτέλεσμα αυτό είναι απλούστερο και συνεπώς το προτιμούμε.
Tο εμβαδόν είναι 

Mέση τιμή
H μέση τιμή μιας ολοκληρώσιμης συνάρτησης μίας μεταβλητής σε
κλειστό διάστημα ισούται με το πηλίκο του ολοκληρώματος της συ-
νάρτησης στο διάστημα, διά το μήκος του διαστήματος. Για μια ολο-
κληρώσιμη συνάρτηση δύο μεταβλητών που ορίζεται σε  κλειστό και
φραγμένο χωρίο του οποίου το εμβαδόν μπορεί να μετρηθεί, η μέση τι-
μή ισούται με το πηλίκο του ολοκληρώματος της συνάρτησης στο χω-
ρίο, διά το εμβαδόν του χωρίου. Aν  f είναι η συνάρτηση και  R είναι
το χωρίο, τότε

Mέση τιμή της  f στο R =  (1)

Aν  f είναι η επιφανειακή πυκνότητα ενός λεπτού στρώματος που κα-
λύπτει το  R τότε το διπλό ολοκλήρωμα της  f στο  R διά το εμβαδόν
του  R είναι η μέση πυκνότητα του στρώματος, σε μονάδες μάζας ανά
μονάδα εμβαδού.  Aν  f (x y)  είναι η απόσταση του σημείου  (x y)  από
το σταθερό σημείο  P τότε η μέση τιμή της  f στο  R είναι η μέση
απόσταση των σημείων του  R από το  P

Παράδειγμα 3 Eύρεση μέσης τιμής

Bρείτε τη μέση τιμή της  f(x y)  � x cos xy στο ορθογώνιο χωρίο
R: 0 � x � � 0 � y � 1.  

Λύση Tο ολοκλήρωμα της  f στο  R ισούται με

Tο εμβαδόν του  R ισούται με  p.  H μέση τιμή της  f στο  R είναι
2 p.

Pοπές και κέντρα μάζας
Πολλές μηχανικές δομές και συστήματα συμπεριφέρονται σαν να ήταν
συγκεντρωμένη η μάζα τους σε ένα και μόνο σημείο, το οποίο καλού-
με κέντρο μάζας. Έχει σημασία να γνωρίζουμε πώς να εντοπίζουμε το
σημείο αυτό, πράγμα που ουσιαστικά είναι ένα μαθηματικό εγχείρημα.
Θα αναπτύξουμε το μαθηματικό μας μοντέλο σε στάδια. Tο πρώτο στά-
διο είναι να θεωρήσουμε ότι οι μάζες  m1,  m2,  και  m3 προσδένονται
σε άκαμπτο άξονα  x ο οποίος στηρίζεται σε υπομόχλιο τοποθετημέ-
νο στην αρχή των αξόνων.

Tο σύστημα μπορεί να ισορροπεί, ή όχι. Aυτό εξαρτάται από το
μέγεθος των μαζών και τον τρόπο διάταξής τους πάνω στον άξονα.

 / 

 � �p

0
 (sin  x � 0) dx � �cos  x �

p

0  � 1 � 1 � 2.

 �p

0
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0
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Mάζα έναντι βάρους
Bάρος είναι η δύναμη που ασκείται σε
μια μάζα λόγω βαρύτητας. Aν στο
σημείο όπου βρίσκεται ένα σώμα
μάζας   m η επιτάχυνση της βαρύτητας
είναι  g το βάρος του σώματος στο
σημείο αυτό είναι

F � mg

(βάσει του δεύτερου νόμου του
Nεύτωνα).

 ,



Kάθε μάζα  mk ασκεί μια δύναμη  mkg  προς τα κάτω, ίση κατά μέ-
τρο με το γινόμενο της μάζας επί την επιτάχυνση της βαρύτητας. Kα-
θεμία από τις δυνάμεις αυτές έχει την τάση να στρέψει τον άξονα ως
προς την αρχή, όπως συμβαίνει σε μια τραμπάλα. Aυτή η επίδραση κα-
λείται ροπή βαρύτητας, και υπολογίζεται αν πολλαπλασιάσουμε τη βα-
ρυτική δύναμη  mkg με την προσημασμένη απόσταση  xk του σημείου
εφαρμογής της από την αρχή των αξόνων. Όσες μάζες βρίσκονται στα
αριστερά της αρχής ασκούν αρνητική (αριστερόστροφη) ροπή βαρύ-
τητας. Oι μάζες στα δεξιά της αρχής ασκούν θετική (δεξιόστροφη) ρο-
πή βαρύτητας.

Tο άθροισμα των ροπών βαρύτητας δείχνει την τάση που έχει ένα
σύστημα για περιστροφή ως προς την αρχή, και καλείται ροπή βαρύ-
τητας του συστήματος.

Pοπή βαρύτητας του συστήματος = (2)

Tο σύστημα θα ισορροπεί σε βαρυτικά πεδία αν και μόνο αν η ροπή
βαρύτητάς του μηδενίζεται.

Aν βγάλουμε κοινό παράγοντα το  g από την Eξίσωση (2), βλέ-
πουμε ότι η ροπή βαρύτητας του συστήματος ισούται με

Δηλαδή, η ροπή βαρύτητας είναι το γινόμενο της επιτάχυνσης της βα-
ρύτητας  g που χαρακτηρίζει το περιβάλλον στο οποίο βρίσκεται το
σύστημα, επί την ποσότητα  �mkxk που χαρακτηρίζει το ίδιο το σύ-
στημα και μένει σταθερή όπου και αν το τοποθετήσουμε. H σταθερά
αυτή καλείται πρώτη ροπή του συστήματος ως προς την αρχή.

Πρώτη ροπή συστήματος ως προς την αρχή � (3)

Συνήθως, μας ενδιαφέρει να μάθουμε σε ποια θέση πρέπει να το-
ποθετήσουμε το υπομόχλιο ώστε να ισορροπήσει το σώμα, δηλαδή ζη-
τούμε το σημείο  στο οποίο, αν τοποθετήσουμε το υπομόχλιο, θα
μηδενιστεί η ροπή.

H ροπή βαρύτητας κάθε μάζας ως προς το υπομόχλιο στην ειδική
αυτή θέση είναι 

Aν γράψουμε τώρα την εξίσωση που μας λέει ότι το άθροισμα των ρο-
πών αυτών μηδενίζεται, παίρνουμε μια εξίσωση που λύνουμε ως προς

:

 x � � mkxk

� mk

 .

 � mkxk � x � mk

 � mkxk � � xmk � 0

 � (mkxk � xmk) � 0

 g � (xk � x)mk � 0

 � (xk � x)mkg � 0

x

 x

� mkxk

 ,
 ,

g � mkxk

� mkgxk
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Xαρακτηρίζει
το περιβάλλον

Xαρακτηρίζει  το
σύστημα

Bιογραφικά στοιχεία

Christian Felix
Klein

(1849-1925)

CD-ROM
Δικτυότοπος

CD-ROM
Δικτυότοπος

x
m1

E����� ����
���������	

m2 m3

x1 x2 x3O ⎯x

Tο άθροισμα των ροπών είναι μηδέν

Άθροισμα σταθερών πολλαπλασίων 

Διαιρούμε με g, επιμεριστικός
κανόνας πολλαπλασιασμού για το mk

Άθροισμα διαφορών

Aναδιατάσσουμε, άθροισμα
σταθερών πολλαπλασίων και πάλι

Λύνουμε ως προς x–

προσημασμένη δύναμη προς
Pοπή βαρύτητας της mk ως προς x– = ( ) ( )απόσταση της mk τα κάτω

από το x–

= (xk – x–)mkg .

Σ.τ.M.: Στο σημείο αυτό, δυστυχώς, η ελ-
ληνική ορολογία δεν έχει ανταποκριθεί
επαρκώς στην ποικιλία της αντίστοιχης αγ-
γλικής. Έτσι, αναγκαζόμαστε να αποδώ-
σουμε δύο διαφορετικούς αγγλικούς όρους
(torque και moment) με την ίδια λέξη: «ρο-
πή». Aυτό μας αναγκάζει να προσθέσουμε
ένα δεύτερο συνθετικό, κάνοντας λόγο για
ροπή δύναμης (εδώ, βαρύτητας) στην πρώτη
περίπτωση, και για πρώτη ροπή στη δεύτε-
ρη.



H τελευταία εξίσωση μας λέει ότι το  βρίσκεται αν διαιρέσουμε την
πρώτη ροπή του συστήματος ως προς την αρχή, με την ολική μάζα του
συστήματος:

� .

Tο σημείο καλείται κέντρο μάζας του συστήματος.

Mάζες κατανεμημένες σε επίπεδο χωρίο
Θεωρήστε ένα πεπερασμένο πλήθος μαζών στο επίπεδο, με τη μάζα
mk στο σημείο  (xk yk)  (δείτε το Σχήμα 12.17). H μάζα του συστήμα-
τος είναι

Mάζα συστήματος: M � .

Kάθε μάζα  mk διαθέτει μια πρώτη ροπή ως προς κάθε άξονα. H πρώ-
τη ροπή της μάζας ως προς τον άξονα  x είναι  mkyk ενώ ως προς τον
άξονα  y είναι  mkxk Oι πρώτες ροπές του συστήματος ως προς τους
δύο άξονες είναι

Πρώτη ροπή ως προς τον άξονα x:

Πρώτη ροπή ως προς τον άξονα y :

H συντεταγμένη  x του κέντρου μάζας του συστήματος ορίζεται ως

(4)

Όπως και στη μονοδιάστατη περίπτωση, το σύστημα ισορροπεί ως
προς την ευθεία  x � (Σχήμα 12.18).

H συντεταγμένη  y του κέντρου μάζας του συστήματος ορίζεται ως

(5)

Tο σύστημα ισορροπεί και ως προς την ευθεία  y � . Oι ροπές βαρύ-
τητας τις οποίες ασκούν οι μάζες ως προς την ευθεία  y � αλληλοα-
ναιρούνται. Δηλαδή, σε ό,τι αφορά την ισορροπία, το σύστημα συμπε-
ριφέρεται σαν όλη η μάζα του να ήταν συγκεντρωμένη στο σημείο

. Tο σημείο αυτό καλείται κέντρο μάζας του συστήματος.

Λεπτά και επίπεδα στρώματα με συνεχή κατανομή μάζας
Σε αρκετές εφαρμογές μάς ενδιαφέρει να βρούμε το κέντρο μάζας ενός
λεπτού, επίπεδου στρώματος, π.χ. ενός δίσκου από αλουμίνιο, ή ενός
ατσάλινου τριγωνικού πλακιδίου. Σε τέτοιες περιπτώσεις, θεωρούμε
ότι η κατανομή μάζας είναι συνεχής, και συνεπώς οι τύποι που χρησι-
μοποιούμε για τον υπολογισμό των  και  περιέχουν ολοκληρώμα-
τα αντί για πεπερασμένα αθροίσματα. Tα ολοκληρώματα προκύπτουν
ως ακολούθως.

Θεωρήστε ότι το στρώμα καλύπτει μια περιοχή του επιπέδου xy,

yx

(x , y)

y
y

y � 
Mx

M
 � � mkyk

� mk

 .

x

x � 
My

M
 � � mkxk

� mk

 .

My � � mkxk .

Mx � � mkyk ,

 .
 ,

� mk 

 ,

x

πρώτη ροπή συστήματος ως προς την αρχή
—————————————————————

μάζα συστήματος
x � � xkmk

� mk

x
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xk

yk

yk

mk
(xk, yk)

ΣΧΗΜΑ 12.17 Kάθε μάζα  mk έχει
πρώτη ροπή ως προς κάθε άξονα.

x

y

O

Z��
�	

��
�������

	

Z���	���������	

y � y–

x–

x �
 x–

K.M.

y–

ΣΧΗΜΑ 12.18 Mια διάταξη μαζών
σε δύο διαστάσεις ισορροπεί στο
κέντρο μάζας της.



την οποία «κόβουμε» σε λεπτές λωρίδες παράλληλες προς έναν από
τους δύο άξονες (στο Σχήμα 12.19, στον άξονα  y).  Tο κέντρο μαζας
μιας τυπικής λωρίδας είναι  . Θεωρούμε ότι η μάζα �m της λωρί-
δας αυτής βρίσκεται συγκεντρωμένη στο  . H ροπή της λωρίδας
ως προς τον άξονα y θα είναι  . H ροπή της λωρίδας ως προς τον
άξονα  x θα είναι .  Oι Eξισώσεις (4) και (5) παίρνουν λοιπόν τη
μορφή

Tα αθροίσματα που εμφανίζονται στις εξισώσεις αυτές είναι τύπου
Riemann και τείνουν στα αντίστοιχα ολοκληρώματα, καθώς οι λωρίδες
γίνονται ολοένα και στενότερες. Γράφοντάς τα σε μορφή διπλών ολο-
κληρωμάτων μπορούμε να περιγράψουμε μια μεγάλη ποικιλία σχημάτων
και πυκνοτήτων του φύλλου που εξετάζουμε. H μάζα είναι το ολοκλήρω-
μα μιας συνεχούς συνάρτησης πυκνότητας, που συμβολίζουμε εδώ ως

(x y). (Oι φυσικοί συμβολίζουν συχνά την πυκνότητα ως  �(x y).) Oι τύ-
ποι της μάζας, των πρώτων ροπών, και του κέντρου μάζας δίνονται στον
Πίνακα 12.1.

Παράδειγμα 4 Eύρεση του κέντρου μάζας λεπτού στρώματος
μεταβλητής πυκνότητας

Έστω λεπτό στρώμα που καλύπτει την τριγωνική περιοχή που φράσ-
σεται από τον άξονα  x και από τις ευθείες  x � 1  και  y � 2x στο
πρώτο τεταρτημόριο. H πυκνότητα του στρώματος στο σημείο  (x y)
είναι  
(x y)  � 6x � 6y � 6.  Bρείτε τη μάζα του στρώματος, τις
πρώτες ροπές του ως προς τους άξονες συντεταγμένων, και το κέντρο
μάζας του.

Λύση Σχεδιάζουμε το στρώμα με ικανή λεπτομέρεια, ώστε να
μπορούμε να προσδιορίσουμε τα όρια ολοκλήρωσης των ολοκληρω-
μάτων που θα χρειαστούμε (Σχήμα 12.20).

H μάζα του στρώματος είναι

 � � 1

0
 (24x2 � 12x) dx � �8x3 � 6x2�

1

0
 � 14.

 � � 1

0
 �6xy � 3y 2 � 6y�

y�2x

y�0

 dx

 M � � 1

0
� 2x

0
 d(x, y) dy dx � � 1

0
� 2x

0
 (6x � 6y � 6) dy dx

 ,
 ,

 , ,

x � 
My

M
 � � x̃ Dm

� Dm
 ,   y � 

Mx

M
 � � ỹ Dm

� Dm
 .

ỹ  Dm
x̃  Dm

(x̃ , ỹ)
(x̃ , ỹ)
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Πυκνότητα
H πυκνότητα σώματος είναι η μάζα του
ανά μονάδα όγκου. Στην πράξη,
ωστόσο, χρησιμοποιούμε μονάδες που
μπορούμε εύκολα να μετρήσουμε.
Έτσι, όταν έχουμε να κάνουμε με
σύρματα, ράβδους, και λεπτές λωρίδες,
κάνουμε λόγο για μάζα ανά μονάδα
μήκους (γραμμική πυκνότητα). Για
λεπτά στρώματα, πάλι, χρησιμοποιού-
με μάζα ανά μονάδα επιφάνειας
(επιφανειακή πυκνότητα). 

x

y !"���� ��#�	 �m

~xO

!"����
��� K.M.

~y
~x ~x ~y)( ,

~y

ΣΧΗΜΑ 12.19 Ένα λεπτό στρώμα
που «κόβουμε» σε λωρίδες
παράλληλες στον άξονα  y.  H
πρώτη ροπή μιας τυπικής λωρίδας
ως προς κάθε άξονα ισούται με τη
ροπή που θα εξασκούσε η μάζα της
λωρίδας  �m αν ήταν
συγκεντρωμένη στο κέντρο μάζας
της λωρίδας  (x~, y~ ).

Πίνακας 12.1 Tύποι μάζας και πρώτων ροπών για λεπτά στρώματα που

καλύπτουν περιοχές του επιπέδου xy

Πυκνότητα: d(x , y)

Mάζα:

Πρώτες ροπές:

Kέντρο μάζας: x � 
My

M
 ,   y � 

Mx

M

Mx � ��
 
 yd(x , y) dA  ,   My � ��

 
 xd(x , y) dA

M � ��
 
 d(x , y) dA

CD-ROM
Δικτυότοπος

ΣΧΗΜΑ 12.20 H τριγωνική περιοχή
την οποία καλύπτει το λεπτό
στρώμα του Παραδείγματος 4.

(1, 2)

0 1

2

x

y

y � 2x

x � 1



H πρώτη ροπή ως προς τον άξονα  x είναι

Mε παρόμοιο υπολογισμό βρίσκουμε τη ροπή ως προς τον άξονα y:

Oι συντεταγμένες του κέντρου μάζας είναι συνεπώς

Pοπές αδρανείας
Oι πρώτες ροπές ενός σώματος (Πίνακας 12.1) μας πληροφορούν για
την ισορροπία, και την τάση για περιστροφή ως προς διάφορους άξο-
νες, ενός σώματος σε βαρυτικό πεδίο. Aν όμως το σώμα είναι ένας πε-
ριστρεφόμενος μηχανικός άξονας, για παράδειγμα, τότε είναι πιθανό-
τερο να μας ενδιαφέρει πόση ενέργεια έχει αποθηκευτεί στον άξονα ή
πόση ενέργεια απαιτείται για να τον περιστρέψουμε με δεδομένη γω-
νιακή ταχύτητα. Kαι εδώ είναι που κάνει την εμφάνισή της η δεύτερη
ροπή, ή αλλιώς ροπή αδρανείας.

Θεωρήστε ότι διαμερίζουμε τον άξονα σε μικρά στοιχεία μάζας
�mk και ότι το  rk συμβολίζει την απόσταση του κέντρου μάζας του k-
στού στοιχείου από τον άξονα περιστροφής (Σχήμα 12.21). Aν ο μηχα-
νικός άξονας περιστρέφεται με γωνιακή ταχύτητα  � � d
 dt ακτίνια
το δευτερόλεπτο, τότε το κέντρο μάζας του στοιχείου θα διαγράφει την
τροχιά του με γραμμική ταχύτητα μέτρου 

vk � d
dt

 (rku) � rk 
du

dt
 � rkv .

 / 

x � 
My

M
 � 10

14
 � 5

7
,   y � 

Mx

M
 � 11

14
 .

My � 1

0
� 2x

0
 xd(x, y) dy dx � 10.

 � �7x4 � 4x3�
1

0
 � 11.

 � � 1

0
 �3xy 2 � 2y 3 � 3y 2�

y�2x

y�0
 dx � � 1

0
 (28x3 � 12x2) dx

 Mx � � 1

0
� 2x

0
 yd(x, y) dy dx � � 1

0
� 2x

0
 (6xy � 6y 2 � 6y) dy dx
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ΣΧΗΜΑ 12.21 Για να βρούμε το ολοκλήρωμα  της ποσότητας της
ενέργειας που αποθηκεύεται σε περιστρεφόμενο άξονα, θεωρούμε ότι
ο άξονας διαμερίζεται σε πολλά μικρά τεμάχια. Kάθε τεμάχιο έχει τη
δική του κινητική ενέργεια. Προσθέτουμε τις συνεισφορές από όλα
τα επιμέρους τεμάχια για να βρούμε την κινητική ενέργεια όλου του
άξονα.

Σ.τ.M.: Για να ακριβολογούμε: οι πρώτες
ροπές (όπως τις έχουν ορίσει οι συγγρα-
φείς) αναφέρονται στην ισορροπία, και
στην τάση για περιστροφή λόγω της βαρύ-
τητας, συστημάτων με οριζόντια κατανομή
μάζας τα οποία υπόκεινται σε ομοιόμορφο
κατακόρυφο βαρυτικό πεδίο.

Σημειώστε ότι ολοκληρώνουμε το
γινόμενο  y επί τη συνάρτηση
πυκνότητας για να βρούμε το Mx, και
αντίστοιχα, ολοκληρώνουμε το
γινόμενο x επί την πυκνότητα για να
βρούμε το My .



H κινητική ενέργεια του στοιχείου μάζας θα ισούται περίπου με

Έτσι η κινητική ενέργεια του μηχανικού άξονα θα ισούται περίπου με 

Tο ολοκλήρωμα στο οποίο τείνουν τα μερικά αυτά αθροίσματα καθώς
διαμερίζουμε τον μηχανικό άξονα σε ολοένα και μικρότερα στοιχεία,
μας δίνει την κινητική ενέργεια του άξονα:

KEάξονα � (6)

O παράγοντας

(7)

είναι η ροπή αδρανείας του μηχανικού άξονα ως προς τον άξονα περι-
στροφής του, οπότε από την Eξίσωση (6) βλέπουμε ότι η κινητική
ενέργεια του μηχανικού άξονα θα είναι

KEάξονα � (8)

Για να περιστρέψουμε με γωνιακή ταχύτητα  �  έναν μηχανικό
άξονα του οποίου η ροπή αδρανείας είναι  I χρειάζεται να του δώσου-
με κινητική ενέργεια  KE � (1 2)I�2.  Oμοίως, για να σταματήσουμε
την περιστροφή, χρειάζεται να αφαιρέσουμε το ίδιο ποσό ενέργειας
από τον άξονα. Για να κινήσουμε ένα όχημα μάζας  m με γραμμική τα-
χύτητα  v,  χρειάζεται να του δώσουμε κινητική ενέργεια  KE �
(1/2)mv2.  Για να το σταματήσουμε, πρέπει να αφαιρέσουμε από το όχη-
μα το ίδιο ποσό ενέργειας. H ροπή αδρανείας του μηχανικού άξονα εί-
ναι λοιπόν το «περιστροφικό ανάλογο» της μάζας του οχήματος. H ρο-
πή αδρανείας είναι η αιτία της καταβολής προσπάθειας για την έναρξη
και τον τερματισμό της περιστροφής του μηχανικού άξονα. Όπως βλέ-
πουμε και από την Eξίσωση (7), η ροπή αδρανείας εμπεριέχει την πλη-
ροφορία όχι μόνο της μάζας του περιστρεφόμενου σώματος, αλλά και
του τρόπου κατανομής της.

H ροπή αδρανείας παίζει επίσης ρόλο στον καθορισμό του πόσο
θα καμφθεί μια οριζόντια δοκός πάνω στην οποία έχουμε κατανείμει
φορτίο. H σκληρότητα της δοκού ισούται με μια σταθερά επί τη ροπή
αδρανείας I (ως προς τον επιμήκη άξονα της δοκού) μιας τυπικής
εγκάρσιας διατομής. Όσο μεγαλύτερο είναι το  I τόσο πιο δύσκαμπτη
(σκληρή) είναι η δοκός, και άρα τόσο λιγότερο θα κάμπτεται υπό δε-
δομένο φορτίο. Γι’ αυτό και χρησιμοποιούμε δοκούς με διατομές σχή-
ματος I αντί για δοκούς με τετράγωνες διατομές. Tα «πέλματα» στο πά-
νω και κάτω μέρος της δοκού κρατούν το μεγαλύτερο μέρος της μάζας
μακριά από τον επιμήκη άξονα της δοκού, μεγιστοποιώντας έτσι την
τιμή του I (Σχήμα 12.22).

Aν θέλετε μια «απτή» αίσθηση της ροπής αδρανείας, δοκιμάστε το
ακόλουθο πείραμα. Kολλήστε με σελοτέιπ δύο κέρματα στα άκρα ενός
μολυβιού και περιστρέψτε το μολύβι ως προς το κέντρο μάζας του. H
ροπή αδρανείας ευθύνεται για την αντίσταση που νιώθετε κάθε φορά
που μεταβάλλετε τη φορά κίνησης. Tώρα μετατοπίστε τα κέρματα κα-
τά ίση απόσταση προς το κέντρο μάζας και περιστρέψτε πάλι το μολύ-
βι. Tο σύστημα έχει την ίδια μάζα και το ίδιο κέντρο μάζας με πριν, αλ-
λά τώρα αντιτίθεται λιγότερο σε μεταβολές της κίνησης. H ροπή
αδρανείας έχει μειωθεί. H αίσθηση που έχουμε όταν κρατάμε ένα ρό-
παλο του μπέιζμπολ, ή ένα μπαστούνι του γκολφ, ή μια ρακέτα του τέ-

 ,

 / 

 ,

1
2

 Iv2
 .

I � �  r 2 dm

�  1
2

 v2r 2 dm � 1
2

 v2 �  r 2 dm .

� 1
2

 v2rk
2 Dmk .

1
2

 Dmkvk
2  � 1

2
 Dmk(rkv)2 � 1

2
 v2rk

2  Dmk .
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ΣΧΗΜΑ 12.22 Όσο μεγαλύτερη
είναι η ροπή αδρανείας της
διατομής της δοκού ως προς τον
επιμήκη άξονά της,  τόσο πιο
δύσκαμπτη είναι η δοκός. Oι δοκοί
A και B έχουν το ίδιο εμβαδόν
διατομής, αλλά η A είναι πιο
δύσκαμπτη.  



νις, οφείλεται στη ροπή αδρανείας. Δύο ρακέτες του τένις με το ίδιο
βάρος, το ίδιο σχήμα, και το ίδιο κέντρο μάζας θα δημιουργούν διαφο-
ρετική αίσθηση στο χέρι μας και θα έχουν διαφορετική συμπεριφορά
αν οι μάζες τους είναι κατανεμημένες με διαφορετικό τρόπο.

O Πίνακας 12.2 δίνει τους τύπους των ροπών αδρανείας (που κα-
λούνται και δεύτερες ροπές) και των ακτίνων αδρανείας.

H μαθηματική διαφορά μεταξύ των πρώτων ροπών Mx και  My και
των ροπών αδρανείας, ή δεύτερων ροπών, Ix και  Iy, είναι ότι οι δεύτε-
ρες ροπές περιλαμβάνουν τα τετράγωνα των «μοχλοβραχιόνων»  x και
y

H ροπή  I0 καλείται και πολική ροπή αδρανείας (εφόσον υπολο-
γίζεται ως προς την αρχή). O υπολογισμός της γίνεται αν ολοκληρώ-
σουμε το γινόμενο της πυκνότητας  
(x y)  (μάζα ανά μονάδα εμβα-
δού) επί την ποσότητα r 2 � x 2 � y2, που είναι το τετράγωνο της από-
στασης του σημείου (x y) από την αρχή. Σημειώστε ότι I0 � Ix � IyØ

έτσι, μόλις βρούμε δύο από τις ροπές αυτές, αυτομάτως ξέρουμε και
την τρίτη. (H ροπή  I0 συμβολίζεται ενίοτε και ως  Iz δηλ. η ροπή
αδρανείας ως προς τον άξονα  z.  H ταυτότητα  Iz � Ix � Iy καλείται
και θεώρημα κάθετων αξόνων.)

H ακτίνα αδρανείας Rx ορίζεται από την εξίσωση

Ix � MRx
2.

H ποσότητα αυτή μας λέει σε πόση απόσταση από τον άξονα  x θα
μπορούσαμε να τοποθετήσουμε συγκεντρωμένη όλη τη μάζα του φύλ-
λου, ώστε να πάρουμε το ίδιο   Ix H ακτίνα αδρανείας μας δίνει έναν
ευχερή τρόπο έκφρασης της ροπής αδρανείας ως γινόμενο μάζας επί
μήκος στο τετράγωνο. Oι ακτίνες  Ry και  R0 ορίζονται παρομοίως, δη-
λαδή

Iy � MRy
2 και I0 � MR0

2.

Παίρνοντας τις τετραγωνικές ρίζες των ποσοτήτων αυτών βρίσκουμε
τους τύπους του Πίνακα 12.2.

Παράδειγμα 5 Eύρεση ροπών αδρανείας και ακτίνων αδρανείας

Για το λεπτό στρώμα του Παραδείγματος 4 (Σχήμα 12.20), βρείτε τις
ροπές αδρανείας και τις ακτίνες αδρανείας ως προς τους άξονες συ-
ντεταγμένων και ως προς την αρχή.

 .

 ,

 ,

 ,

 .
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Πίνακας 12.2 Tύποι δεύτερων ροπών για λεπτά στρώματα που βρίσκονται στο επίπεδο xy

Pοπές αδρανείας (δεύτερες ροπές):

Ως προς τον άξονα x: Ως προς την αρχή
(πολική ροπή):

Ως προς τον άξονα y:

Ως προς την ευθεία L: όπου r(x , y) = απόσταση του (x , y) από την L

Aκτίνες αδρανείας: Ως προς τον άξονα x:

Ως προς τον άξονα y :

Ως προς την αρχή: R0 � 
I0 / M

Ry � 
Iy / M

Rx � 
Ix / M

 IL � ��  r 2(x , y)d(x , y) dA  ,

 Iy � ��  x2d(x , y) dA

I0 � ��  (x2 � y 2)d(x, y) dA � Ix � Iy Ix � ��  y 2d(x , y) dA

Σ.τ.M.: Xρησιμοποιούμε τον όρο «ακτίνα
αδρανείας» για να αποδώσουμε το «radius
of gyration». Στα ελληνικά έχει επίσης
χρησιμοποιηθεί ο όρος «ακτίνα περιστρο-
φής», που πιστεύουμε όμως ότι είναι ατυ-
χής, αφού αδυνατεί να απομονώσει από
όλες τις δυνατές ακτίνες περιστροφής εκεί-
νη που αντιστοιχεί στη ροπή αδρανείας ως
προς τον εκάστοτε άξονα ή σημείο. Ως
εναλλακτικός όρος έχει επίσης προταθεί
το «ακτίνα γυροβολής» (απόδοση κατά λέ-
ξη από το gyration), που όμως πιστεύουμε
ότι είναι εξεζητημένος. Kαταλήγουμε έτσι,
εδώ, να προτείνουμε τον όρο «ακτίνα αδρα-
νείας» και να παρακολουθήσουμε εν συνε-
χεία την αποδοχή ή την απόρριψή του από
την επιστημονική κοινότητα.



Λύση Aν χρησιμοποιήσουμε τη συνάρτηση πυκνότητας  
(x y) �
6x � 6y � 6  από το Παράδειγμα 4, η ροπή αδρανείας ως προς τον
άξονα  x είναι

Oμοίως, η ροπή αδρανείας ως προς τον άξονα  y είναι

Γνωρίζοντας τα  Ix και  Iy δεν χρειάζεται να ολοκληρώσουμε
για να βρούμε το  I0Ø μπορούμε απλώς να χρησιμοποιήσουμε την
εξίσωση  I0 � Ix � Iy:

Oι τρεις ακτίνες αδρανείας είναι 

Kεντροειδή γεωμετρικών σχημάτων 
Όταν η πυκνότητα ενός σώματος είναι σταθερή, απαλείφεται από τον
αριθμητή και τον παρονομαστή στους τύπους των  και  .  Δηλαδή,
όσον αφορά τα  και  , το  
 θα μπορούσε και να ισούται με 1. Mε
άλλα λόγια, όταν το  
 είναι σταθερό, η θέση του κέντρου μάζας γίνε-
ται χαρακτηριστικό του σχήματος του σώματος και όχι του υλικού από
το οποίο αυτό είναι φτιαγμένο. Σε τέτοιες περιπτώσεις, οι μηχανικοί
αποκαλούν συχνά το κέντρο μάζας ως το κεντροειδές του δεδομένου
σχήματος. Για να βρούμε το κεντροειδές, θέτουμε το  
 ίσο με 1 και
υπολογίζουμε εν συνεχεία τα  και  όπως και πριν, διαιρώντας τις
πρώτες ροπές με τις μάζες.

Παράδειγμα 6 Eύρεση κεντροειδούς ενός χωρίου 

Bρείτε το κεντροειδές του χωρίου στο πρώτο τεταρτημόριο που εί-
ναι άνω φραγμένο από την ευθεία  y � x και κάτω φραγμένο από την
παραβολή  y � x 2.  

Λύση Σχεδιάζουμε το χωρίο και περιλαμβάνουμε ικανή λεπτομέ-
ρεια στο σχήμα μας ώστε να μπορούμε από αυτό να προσδιορίσουμε

yx

yx
yx

 R0 � 
I0 / M � ��99
5 � / 14 � 
99 / 70 	 1,19.

 Ry � 
Iy / M � ��39
5 � / 14 � 
39 / 70 	 0,75

 Rx � 
Ix / M � 
12 / 14 � 
6 / 7 	 0,93

I0 � 12 � 39
5

 � 60 � 39
5

 � 99
5

.

 ,

Iy � � 1

0
� 2x

0
 x2d(x, y) dy dx � 39

5
.

 � �8x5 � 4x4 � 1

0 � 12.

 � � 1

0
 �2xy 3 � 3

2
 y 4 � 2y 3�

y�2x

y�0
 dx � � 1

0
 (40x4 � 16x3) dx

 Ix � � 1

0
� 2x

0
 y 2d(x, y) dy dx � � 1

0
� 2x

0
 (6xy 2 � 6y 3 � 6y 2) dy dx

 ,

96312.2. Eμβαδά, ροπές, και κέντρα μάζας

Σημειώστε ότι για τον υπολογισμό του
Ix ολοκληρώνουμε το γινόμενο του  y2

επί την πυκνότητα, ενώ για τον
υπολογισμό του  Iy  ολοκληρώνουμε το
γινόμενο του  x 2 επί την πυκνότητα .

(1, 1)

0

y � x
y � x2

1

1

x

y

ΣΧΗΜΑ 12.23 Στο Παράδειγμα 6 υπολογίζουμε
τη θέση του κεντροειδούς του χωρίου του
σχήματος.



τα όρια ολοκλήρωσης (Σχήμα 12.23). Kατόπιν θέτουμε το  
 ίσο με
1 και υπολογίζουμε τις ποσότητες του Πίνακα 12.1:    

Aπό τις τιμές αυτές των  M Mx και  My βρίσκουμε

Tο κεντροειδές λοιπόν είναι το σημείο  (1 2,  2 5).

ΑΣΚΗΣΕΙΣ 12.2

 /  / 

x � 
My

M
 � 

1 / 12
1 / 6

 � 1
2

  ���   y � 
Mx

M
 � 

1 / 15
1 / 6

 � 2
5

.

 , , ,

 My �� 1

0
� x

x2
 x dy dx �� 1

0
[xy]y�x

y�x2 dx �� 1

0
(x2 � x3) dx ��x3

3
 � x

4

4�
1

0
� 1

12
.

  � � 1

0
 �x2

2
 � x

4

2 � dx � �x3

6
 � x

5

10�
1

0
 � 1

15

 Mx � � 1

0
� x

x2
 y dy dx � � 1

0
 �y 2

2�
y�x

y�x2
 dx
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Yπολογισμός εμβαδού με διπλή ολοκλήρωση 
Στις Aσκήσεις 1-8, σχεδιάστε την περιοχή που φράσσεται
από τις ευθείες και τις καμπύλες που δίνονται. Kατόπιν,
εκφράστε το εμβαδόν της περιοχής ως διπλό ολοκλήρωμα,
και υπολογίστε το.

1. Oι άξονες συντεταγμένων και η ευθεία x � y � 2

2. Oι ευθείες x � 0, y � 2x και y � 4

3. H παραβολή x � �y2 και η ευθεία y � x � 2

4. H παραβολή x � y �y2 και η ευθεία y � �x

5. H καμπύλη y � ex και οι ευθείες y � 0, x � 0, και
x � ln 2

6. Oι καμπύλες y � ln x και y � 2 ln x και η ευθεία x � e
στο πρώτο τεταρτημόριο

7. Oι παραβολές x � y2 και x � 2y � y2

8. Oι παραβολές x � y2 � 1 και x � 2y2 � 2

Περιοχή ολοκλήρωσης
Tα ολοκληρώματα και τα αθροίσματα ολοκληρωμάτων των
Aσκήσεων 9-14 εκφράζουν τα εμβαδά περιοχών του επιπέ-
δου xy. Σχεδιάστε κάθε περιοχή, ονομάστε κάθε συνορια-
κή καμπύλη της περιοχής με την εξίσωσή της, και βρείτε
τις συντεταγμένες των σημείων τομής των καμπυλών. Στη
συνέχεια, βρείτε το εμβαδόν κάθε περιοχής.

9. 10.

11. 12.

13.

14.

Mέσες τιμές
15. Bρείτε τη μέση τιμή της f(x y) � sin(x � y) στο 

(α) ορθογώνιο χωρίο 0 � x � � 0 � y � �

(β) ορθογώνιο χωρίο 0 �x � � 0 � y � � 2

16. Ποια από τις δύο ποσότητες πιστεύετε ότι είναι μεγα-
λύτερη, η μέση τιμή της f (x y) � xy στο τετραγωνικό
χωρίο 0 � x � 1, 0 � y � 1, ή η μέση τιμή της f στο τε-
ταρτοκύκλιο x 2 � y2 � 1 του πρώτου τεταρτημορίου;
Yπολογίστε και τις δύο για να το μάθετε.

17. Bρείτε το μέσο ύψος του παραβολοειδούς z � x 2 � y2

στο τετραγωνικό χωρίο 0 � x � 2, 0 � y � 2.

18. Bρείτε τη μέση τιμή της f (x y) � 1 (xy) στο τετραγω-
νικό χωρίο ln 2 � x � 2 ln 2, ln 2 � y � 2 ln 2.

Σταθερή πυκνότητα 
19. Eύρεση κέντρου μάζας Bρείτε το κέντρο μάζας ενός λε-

πτού στρώματος πυκνότητας 
 � 3 που φράσσεται από
τις ευθείες x � 0, y � x και από την παραβολή
y � 2 � x 2 στο πρώτο τεταρτημόριο.

20. Eύρεση ροπών αδρανείας και ακτίνων αδρανείας Bρείτε τις
ροπές αδρανείας και τις ακτίνες αδρανείας ως προς
τους άξονες συντεταγμένων ενός λεπτού ορθογώνιου
στρώματος σταθερής πυκνότητας 
 που φράσσεται από
τις ευθείες x � 3 και y � 3 στο πρώτο τεταρτημόριο.

21. Eύρεση κεντροειδούς Bρείτε το κεντροειδές της περιοχής
στο πρώτο τεταρτημόριο που φράσσεται από τον άξο-
να x, από την παραβολή y2 � 2x και από την ευθεία
x � y � 4.

22. Eύρεση κεντροειδούς Bρείτε το κεντροειδές της τριγωνι-
κής περιοχής την οποία αποκόπτει από το πρώτο τε-
ταρτημόριο η ευθεία x � y � 3.

23. Eύρεση κεντροειδούς Bρείτε το κεντροειδές της ημικυ-
κλικής περιοχής που φράσσεται από τον άξονα x και
από την καμπύλη y � .
1 � x2

 ,

 ,

 /  ,

 ,

 /  ,

 ,

 ,

� 2

0
� 0

x2�4
 dy dx � � 4

0
�
x

0
 dy dx

� 0

�1
� 1�x

�2x
 dy dx � � 2

0
� 1�x

�x / 2
 dy dx

� 2

�1
� y�2

y2
 dx dy�p / 4

0
�  cos  x

 sin  x
 dy dx

� 3

0
� x(2�x)

�x
 dy dx� 6

0
� 2y

y2
 / 3

 dx dy

 ,

 ,



24. Eύρεση κεντροειδούς Tο εμβαδόν της περιοχής του πρώ-
του τεταρτημορίου που φράσσεται από την παραβολή
y � 6x � x 2 και από την ευθεία y � x είναι 125 6 τε-
τραγωνικές μονάδες. Bρείτε το κεντροειδές.

25. Eύρεση κεντροειδούς Bρείτε το κεντροειδές της περιοχής
την οποία αποκόπτει από το πρώτο τεταρτημόριο ο κύ-
κλος  x 2 � y2 � a2.

26. Eύρεση κεντροειδούς Bρείτε το κεντροειδές της περιοχής
που περικλείεται μεταξύ του άξονα x και της καμπύλης
y � sin x 0 � x � �

27. Eύρεση ροπών αδρανείας Bρείτε τη ροπή αδρανείας ως
προς τον άξονα x του λεπτού στρώματος πυκνότητας 

� 1 που φράσσεται από τον κύκλο x 2 � y2 � 4. Eν συ-
νεχεία χρησιμοποιήστε το αποτέλεσμά σας για να
βρείτε τα Iy και I0.

28. Eύρεση ροπής αδρανείας Bρείτε τη ροπή αδρανείας ως
προς τον άξονα y του λεπτού στρώματος σταθερής πυ-
κνότητας 
 � 1 που φράσσεται από την καμπύλη
y � (sin2 x) x 2 και από το διάστημα � � x � 2� στον
άξονα x.

29. Kεντροειδές άπειρης περιοχής Bρείτε το κεντροειδές της
άπειρης περιοχής του πρώτου τεταρτημορίου που πε-
ρικλείεται από τους άξονες συντεταγμένων και από
την καμπύλη y � ex (Xρησιμοποιήστε γενικευμένα
ολοκληρώματα στους τύπους μάζας και πρώτης ροπής.)

30. Πρώτη ροπή άπειρου στρώματος Bρείτε τη ροπή αδρανείας
ως προς τον άξονα y του λεπτού στρώματος πυκνότητας

(x y) � 1 που καλύπτει την άπειρη περιοχή κάτω από
την καμπύλη y � στο πρώτο τεταρτημόριο. 

Mεταβαλλόμενη πυκνότητα
31. Eύρεση ροπής αδρανείας και ακτίνας αδρανείας Bρείτε τη ρο-

πή αδρανείας και την ακτίνα αδρανείας ως προς τον
άξονα x ενός λεπτού στρώματος που φράσσεται από
την παραβολή x � y � y2 και την ευθεία x � y � 0, αν

(x y) � x � y

32. Eύρεση μάζας Bρείτε τη μάζα ενός λεπτού στρώματος
που καλύπτει τη μικρότερη περιοχή την οποία αποκό-
πτει από την έλλειψη x 2 � 4y2 � 12 η παραβολή x �
4y2, αν 
(x y) � 5x

33. Eύρεση κέντρου μάζας Bρείτε το κέντρο μάζας μιας λε-
πτής τριγωνικής πλάκας που φράσσεται από τον άξονα
y και από τις ευθείες y � x και y � 2 � x, αν 
(x y) �
6x � 3y � 3.

34. Eύρεση κέντρου μάζας και ροπής αδρανείας Bρείτε το κέντρο
μάζας και τη ροπή αδρανείας ως προς τον άξονα x μιας
λεπτής πλάκας που φράσσεται από τις καμπύλες x � y2

και x � 2y � y2, αν η πυκνότητα στο σημείο (x y) εί-
ναι 
(x y) � y � 1.

35. Kέντρο μάζας, ροπή αδρανείας, και ακτίνα αδρανείας Bρείτε το
κέντρο μάζας, τη ροπή αδρανείας και την ακτίνα αδρα-
νείας ως προς τον άξονα y της λεπτής ορθογώνιας πλά-
κας που αποκόπτουν από το πρώτο τεταρτημόριο οι ευ-
θείες x � 6 και y � 1, αν 
(x y) � x � y � 1.

36. Kέντρο μάζας, ροπή αδρανείας, και ακτίνα αδρανείας Bρείτε το
κέντρο μάζας, τη ροπή αδρανείας και την ακτίνα αδρα-
νείας ως προς τον άξονα y της λεπτής πλάκας που
φράσσεται από την ευθεία y � 1 και από την παραβο-
λή y � x 2, αν η πυκνότητα είναι 
(x y) � y � 1.

37. Kέντρο μάζας, ροπή αδρανείας, και ακτίνα αδρανείας Bρείτε το
κέντρο μάζας, τη ροπή αδρανείας και την ακτίνα αδρα-
νείας ως προς τον άξονα y της λεπτής πλάκας που
φράσσεται από τον άξονα x, από τις ευθείες x � �1,
και από την παραβολή y � x 2, αν 
(x y) � 7y � 1.

38. Kέντρο μάζας, ροπή αδρανείας, και ακτίνα αδρανείας Bρείτε το
κέντρο μάζας, τη ροπή αδρανείας και την ακτίνα αδρα-
νείας ως προς τον άξονα y της λεπτής ορθογώνιας πλά-
κας που φράσσεται από τις ευθείες x � 0,  x � 20, y �
�1, και y � 1, αν 
(x y) � 1 � (x 20).

39. Kέντρο μάζας, ροπές αδρανείας, και ακτίνες αδρανείας Bρείτε
το κέντρο μάζας, τη ροπή αδρανείας και τις ακτίνες
αδρανείας ως προς τους άξονες συντεταγμένων, καθώς
και ως προς την αρχή της λεπτής τριγωνικής πλάκας
που φράσσεται από τις ευθείες y � x y � �x και y �
1, αν  
(x y) � y � 1.

40. Kέντρο μάζας, ροπές αδρανείας, και ακτίνες αδρανείας Eπανα-
λάβετε την Άσκηση 39 για 
(x y) � 3x 2 � 1.

Θεωρία και παραδείγματα
41. Bακτηριακός πληθυσμός Aν η f (x y) � (10.000ey) (1 �

2) αντιπροσωπεύει την πυκνότητα πληθυσμού βα-
κτηρίων κάποιου είδους πάνω στο επίπεδο xy, όπου
τα x και y μετρώνται σε cm, βρείτε τον συνολικό πλη-
θυσμό βακτηρίων στην ορθογώνια περιοχή �5 � x �
5 επί �2 � y � 0.

42. Πληθυσμός μιας περιοχής Aν η f(x y) � 100 ( y � 1) αντι-
προσωπεύει την πυκνότητα πληθυσμού σε μια επίπε-
δη περιοχή της Γης, όπου τα x και y μετρώνται σε km,
βρείτε τον συνολικό πληθυσμό στην περιοχή που
φράσσεται από τις καμπύλες x � y2 και x � 2y � y2.

43. Σχεδίαση συσκευής Kατά τη σχεδίαση των οικιακών συ-
σκευών που χρησιμοποιούμε, ένα από τα σημεία που
προσέχουν οι κατασκευαστές είναι το πόσο εύκολα
αναποδογυρίζει κανείς τη συσκευή γέρνοντάς την
στο πλάι. H συσκευή θα τείνει να επανέλθει στην όρ-
θια θέση εφόσον το κέντρο μάζας της κείται από τη
«σωστή» πλευρά του υπομοχλίου, δηλ. του σημείου ως
προς το οποίο αρχίζει η συσκευή να περιστρέφεται
καθώς τη γέρνουμε. Έστω ότι μια συσκευή περίπου
σταθερής πυκνότητας έχει παραβολικό σχήμα, όπως
τα παλιά ραδιόφωνα. Kαλύπτει λοιπόν το χωρίο 0 �
y � a(1 � x 2) , �1 � x � 1, στο επίπεδο xy (δείτε το
σχήμα). Για ποιες τιμές του a μπορούμε να εγγυη-
θούμε ότι η συσκευή δεν θα ανατραπεί παρά μονάχα
αν τη γείρουμε περισσότερο από 45�;

 ,

 / � x �
 /  ,

 ,

 ,
 , ,

 /  ,

 ,

 ,

 ,

 ,
 ,

 ,

 . ,

 . ,

e�x2
 / 2
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 .

 / 

 . ,

 / 

96512.2. Eμβαδά, ροπές, και κέντρα μάζας

CD-ROM
Δικτυότοπος

x

y

0

Y��������

1

y � a(1 � x2)

–1

a

K.M.

K.M
.



44. Eλαχιστοποίηση ροπής αδρανείας Mια ορθογώνια πλάκα
σταθερής πυκνότητας 
(x y) � 1 καλύπτει το χωρίο
που φράσσεται από τις ευθείες x � 4 και y � 2 στο πρώ-
το τεταρτημόριο. H ροπή αδρανείας Ia της πλάκας ως
προς την ευθεία y � a δίνεται από το ολοκλήρωμα

Bρείτε την τιμή του a που ελαχιστοποιεί το Ia

45. Kεντροειδές μη φραγμένου χωρίου Bρείτε το κεντροειδές
του άπειρου χωρίου του επιπέδου xy που φράσσεται
από τις καμπύλες y � και
από τις ευθείες x � 0, x � 1. 

46. Aκτίνα αδρανείας λεπτής ράβδου Bρείτε την ακτίνα αδρα-
νείας μιας λεπτής ράβδου σταθερής γραμμικής πυκνό-
τητας 
 gm cm και μήκους L cm ως προς άξονα:

(α) που διέρχεται από το κέντρο μάζας της ράβδου κά-
θετα στον άξονα της ράβδου

(β) που είναι κάθετος στον άξονα της ράβδου και διέρ-
χεται από το ένα της άκρο.

47. (Συνέχεια της Άσκησης 34) Mια λεπτή πλάκα σταθερής
πυκνότητας 
 καλύπτει το χωρίο R του επιπέδου xy που
φράσσεται από τις καμπύλες x � y2 και x � 2y � y2.

(α) Σταθερή πυκνότητα Bρείτε το 
 έτσι ώστε η πλάκα να
έχει την ίδια μάζα με την πλάκα της Άσκησης 34.

(β) Mέση τιμή Συγκρίνετε την τιμή του 
 που βρήκατε
στο (α) με τη μέση τιμή της 
(x y) � y � 1 στο χω-
ρίο R

48. Mέση θερμοκρασία στο Tέξας Σύμφωνα με το περιοδικό
Texas Almanac, η Πολιτεία του Texas έχει 254 κομη-
τείες, σε καθεμία εκ των οποίων λειτουργεί και ένας
μετεωρολογικός σταθμός. Έστω ότι τη χρονική στιγμή
t0, καθένας από τους 254 σταθμούς καταγράφει την το-
πική θερμοκρασία. Bρείτε έναν τύπο που θα έδινε μια
λογική προσέγγιση της μέσης θερμοκρασίας στο Tέ-
ξας τη στιγμή t0. H απάντησή σας θα πρέπει να κάνει
χρήση δεδομένων που θα ήταν εύλογο να υπάρχουν
στο Texas Almanac.

Tο θεώρημα των παράλληλων αξόνων 
Έστω Lκ.μ. μια ευθεία του επιπέδου xy που διέρχεται από το
κέντρο μάζας λεπτής πλάκας που έχει μάζα m και καλύπτει
ένα χωρίο του επιπέδου. Έστω L μια ευθεία του επιπέδου
παράλληλη στην Lκ.μ. και απέχουσα απόσταση h από αυ-
τήν. Tο θεώρημα των παράλληλων αξόνων λέει ότι στην
περίπτωση αυτή, οι ροπές αδρανείας IL και Iκ.μ. της πλάκας
ως προς τις ευθείες L και Lκ.μ. θα ικανοποιούν την εξίσωση

IL � Iκ.μ. � mh2.

H εξίσωση αυτή παρέχει έναν εύκολο τρόπο υπολογι-
σμού της μίας ροπής όταν η άλλη ροπή και η μάζα είναι
γνωστές.

49. Aπόδειξη του θεωρηματος των παράλληλων αξόνων

(α) Δείξτε ότι η πρώτη ροπή μιας λεπτής επίπεδης
πλάκας ως προς οποιαδήποτε ευθεία (του επιπέδου
της πλάκας) η οποία διέρχεται από το κέντρο μά-
ζας της, θα ισούται με μηδέν. (Yπόδειξη: Tοποθετή-
στε το κέντρο μάζας στην αρχή των αξόνων, και

την ευθεία κατά μήκος του άξονα y. Tι σας λέει τώ-
ρα ο τύπος ;)

(β) Xρησιμοποιήστε το αποτέλεσμά σας στο ερώτημα
(α) για να δείξετε το θεώρημα των παράλληλων
αξόνων. Yποθέστε ότι οι άξονες έχουν οριστεί
έτσι ώστε η ευθεία Lκ.μ. να συμπίπτει με τον άξονα
y και η ευθεία L να συμπίπτει με την ευθεία x � h
Eν συνεχεία αναπτύξτε την ολοκληρωτέα ποσότη-
τα του ολοκληρώματος της IL ώστε να ξαναγράψε-
τε το ολοκλήρωμα σε μορφή αθροίσματος ολοκλη-
ρωμάτων των οποίων τις τιμές γνωρίζετε.

50. Eύρεση ροπών αδρανείας

(α) Xρησιμοποιήστε το θεώρημα παράλληλων αξόνων
και τα αποτελέσματα του Παραδείγματος 4 για να
βρείτε τις ροπές αδρανείας της πλάκας του Παρα-
δείγματος 4, ως προς τις κατακόρυφες και οριζό-
ντιες ευθείες που διέρχονται από το κέντρο μάζας
της πλάκας.

(β) Xρησιμοποιήστε τα αποτελέσματά σας στο ερώτη-
μα (α) για να βρείτε τις ροπές αδρανείας ως προς
τις ευθείες x � 1 και y � 2.

Tύπος του Πάππου
O Πάππος γνώριζε ότι το κεντροειδές της ένωσης δύο μη
αλληλεπικαλυπτόμενων επίπεδων χωρίων ανήκει στο ευ-
θύγραμμο τμήμα που ενώνει τα δύο επιμέρους κεντροειδή.
Aναλυτικότερα, έστω ότι m1 και m2 είναι οι μάζες των λε-
πτών πλακών P1 και P2 που καλύπτουν δύο μη αλληλεπικα-
λυπτόμενα χωρία του επιπέδου xy. Έστω c1 και c2 τα διανύ-
σματα από την αρχή έως τα αντίστοιχα κέντρα μάζας των
P1 και P2. Στην περίπτωση αυτή το κέντρο μάζας της ένω-
σης P1 � P2 των δύο πλακών δίνεται από το διάνυσμα

(9)

H Eξίσωση (9) είναι γνωστή ως ο τύπος του Πάππου. Για
περισσότερες από δύο (αλλά πεπερασμένου πλήθους) μη
αλληλεπικαλυπτόμενες πλάκες, ο τύπος μπορεί να γενι-
κευθεί: 

(10)

O τύπος αυτός βρίσκει εφαρμογή στην εύρεση του κεντρο-
ειδούς μιας πλάκας ακανόνιστου σχήματος που αποτελεί-
ται από διαφορετικά μέρη σταθερής πυκνότητας των οποί-
ων τα κεντροειδή γνωρίζουμε από τη γεωμετρία. Aφού
βρούμε το κεντροειδές κάθε μέρους, εφαρμόζουμε την Eξί-
σωση (10) για να βρούμε το κεντροειδές όλης της πλάκας.

51. Aποδείξτε τον τύπο του Πάππου (Eξίσωση (9)). (Yπό-
δειξη: Σχεδιάστε τις πλάκες ως χωρία του πρώτου τε-
ταρτημορίου και ονομάστε τα κέντρα μάζας τους

και . Ποιες είναι οι πρώτες ροπές της
ένωσης P1 � P2 ως προς τους αξονες συντεταγμένων;)

52. Xρησιμοποιήστε την Eξίσωση (9) και τη μέθοδο της
μαθηματικής επαγωγής για να δείξετε ότι η Eξίσωση
(10) ισχύει για κάθε θετικό ακέραιο n � 2.

53. Έστω A B και C τα σχήματα που υπάρχουν στο Σχή-
μα 12.24α. Xρησιμοποιήστε τον τύπο του Πάππου για
να βρείτε το κεντροειδές του Σχήματος:

 , ,

(x 2 

, y 2)(x 1 , y 1)

c � 
m1c1 � m2c2 � � � � � mncn

m1 � m2 � � � � � mn
 .

c � 
m1c1 � m2c2

m1 � m2
 .

 .

x � My / M

 .
 ,

 / 

y � �1 / 
1 � x2
 ,1 / 
1 � x2

  ,

 .

Ia � � 4

0
� 2

0
 (y � a)2 dy dx .

 ,
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(α) A � B (β) A � C

(γ) B � C (δ) A � B � C

54. Eντοπισμός του κέντρου μάζας Bρείτε το κέντρο μάζας του
σχήματος που εικονίζεται στο Σχήμα 12.24β.

55. Ένα ισοσκελές τρίγωνο T έχει βάση 2a και ύψος h H
βάση του κείται κατά μήκος της διαμέτρου του ημικυ-
κλικού δίσκου D ακτίνας a, έτσι ώστε τα δύο σχήματα
μαζί να θυμίζουν ...ένα παγωτό χωνάκι! Ποια σχέση
πρέπει να ισχύει μεταξύ των a και h ώστε το κεντροει-
δές του T � D να βρίσκεται στο κοινό σύνορο των T
και D; Tο ίδιο ερώτημα, για το κεντροειδές στο εσωτε-
ρικό του T .

56. Ένα ισοσκελές τρίγωνο T ύψους h έχει για βάση του
τη μία πλευρά ενός τετραγώνου Q του οποίου οι πλευ-
ρές έχουν μήκος s (Tο τετράγωνο και το τρίγωνο δεν
αλληλεπικαλύπτονται.) Ποια σχέση πρέπει να ισχύει

μεταξύ των h και s για να βρίσκεται το κεντροειδές του
T � Q στη βάση του τριγώνου; Συγκρίνετε την απά-
ντησή σας με αυτήν της Άσκησης 55.

 .

 .

 .
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ΣΧΗΜΑ 12.24 Tα σχήματα που αφορούν στις
Aσκήσεις 53 και 54.

Oλοκληρώματα σε πολικές συντεταγμένες • Eύρεση ορίων

ολοκλήρωσης • Mετατροπή καρτεσιανών ολοκληρωμάτων σε

πολικά ολοκληρώματα

Mερικές φορές ένα ολοκλήρωμα υπολογίζεται πιο εύκολα αν το εκ-
φράσουμε σε πολικές συντεταγμένες. Στην ενότητα αυτή θα δούμε πώς
γίνεται η μετατροπή αυτή και πώς υπολογίζουμε ολοκληρώματα σε πε-
ριοχές των οποίων τα σύνορα δίνονται από πολικές εξισώσεις.

Oλοκληρώματα σε πολικές συντεταγμένες
Όταν ορίσαμε το διπλό ολοκλήρωμα συναρτήσεως σε χωρίο  R του
επιπέδου  xy,  χωρίσαμε πρώτα το  R σε μικρά ορθογώνια χωρία των
οποίων οι πλευρές ήταν παράλληλες με τους άξονες. H επιλογή του
ορθογώνιου σχήματος των χωρίων ήταν η πλέον φυσική, δεδομένου
ότι τα χωρία αυτά είχαν πλευρές με σταθερό  x ή  y.  Στις πολικές συ-
ντεταγμένες, το φυσικότερο σχήμα είναι ένα «πολικό ορθογώνιο» με
πλευρές σταθερού  r και σταθερού  
.  

Έστω ότι μια συνάρτηση  f (r 
)  είναι ορισμένη σε ένα χωρίο  R
που φράσσεται από τις πολικές ημιευθείες  
 � � και 
 � � και από
τις συνεχείς καμπύλες  r � g1(
)  και  r � g2(
) .  Έστω ακόμη ότι  0 �
g1(
) � g2(
) � a για κάθε  
 μεταξύ των  � και  � Στην περίπτωση
αυτή, το χωρίο  R θα κείται στην περιοχή Q που ορίζεται από τις ανι-
σότητες  0 � r � a και � � 
 � � Δείτε το Σχήμα 12.25. .

 .

 ,
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� � 2�



 � 0
 � �
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 � 


 � �

r � a

� � �


R

Q

r � g
1
(
)

r � g
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(
)
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�θ

�r
(rk, 
k)β

ΣΧΗΜΑ 12.25 Tο χωρίο  R :
g1(
) � r � g2(
) ,  � � 
 � �
περιέχεται στο χωρίο σχήματος
βεντάλιας  Q :  0 � r � a
� � 
 � � Διαμερίζοντας το  Q
με κυκλικά τόξα και πολικές
ημιευθείες, διαμερίζουμε
ταυτόχρονα και το  R .

 .
 ,

 ,

Σ.τ.M.: Kαλούμε πολική μια ημιευθεία με
αρχή την αρχή των αξόνων (πόλο).



Kαλύπτουμε την περιοχή  Q με ένα πλέγμα κυκλικών τόξων και
πολικών ευθειών. Tα τόξα ανήκουν σε κύκλους με κέντρο στην αρχή,
και με ακτίνες  �r 2�r . . . , m�r όπου  �r � a m Oι πολικές ημι-
ευθείες δίνονται από τις σχέσεις


 � � 
 � � � �
 
 � � � 2�
 . . . , 
 � � � m��
 � �

όπου  �
 � (� � �) m�.  Tα τόξα και οι πολικές ημιευθείες διαμερίζουν
την περιοχή  Q σε μικρότερα χωρία που καλούνται «πολικά ορθογώ-
νια».

Aριθμούμε τα ορθογώνια που κείνται εντός του χωρίου  R (δεν
έχει σημασία με ποια σειρά τα παίρνουμε), καλώντας τα εμβαδά τους
�A1,  �A2, . . . ,  �An

Έστω  (rk 
k)  το κέντρο πολικού ορθογωνίου του οποίου το εμβα-
δόν είναι  �Ak Λέγοντας «κέντρο», εννοούμε το σημείο που ισαπέχει
από τα κυκλικά τόξα και κείται στην πολική ευθεία που τα διχοτομεί.
Σχηματίζουμε κατόπιν το άθροισμα

(1)

Aν η  f είναι συνεχής παντού στο  R το άθροισμα αυτό θα τείνει σε
κάποιο όριο καθώς πυκνώνουμε το πλέγμα ώστε τα  �r και  �
 να τεί-
νουν στο μηδέν. Tο όριο καλείται διπλό ολοκλήρωμα της  f στο  R
Γράφουμε λοιπόν,

Για να υπολογίσουμε το όριο αυτό, θα πρέπει πρώτα να γράψουμε
το άθροισμα  Sn σε μορφή στην οποία το  �Ak είναι εκπεφρασμένο συ-
ναρτήσει των  �r και  �
 H ακτίνα του εσωτερικού τόξου που ορίζει
το  �Ak ισούται με  rk � (�r 2)  (Σχήμα 12.26). H ακτίνα του εξωτερι-
κού τόξου είναι  rk � (�r 2).  Tα εμβαδά των κυκλικών τομέων τους
οποίους ορίζουν τα τόξα αυτά είναι

Eμβαδόν τομέα μικρής ακτίνας:

Eμβαδόν τομέα μεγάλης ακτίνας:

Συνεπώς,

�Ak � εμβαδόν μεγάλου τομέα – εμβαδόν μικρού τομέα

Συνδυάζοντας το αποτέλεσμα αυτό με την Eξίσωση (1), βρίσκουμε

Mια εκδοχή του θεωρήματος του Fubini μάς λέει ότι το όριο στο οποίο
τείνουν τα αθροίσματα αυτά μπορεί να υπολογιστεί αν ολοκληρώσου-
με διαδοχικά ως προς  r και  
, ως ακολούθως

(2)��
R

 f (r, u) dA � � u�b

u�a

� r�g2(u)

r�g1(u)
 f (r , u)r dr du.

Sn � �
n

k�1
 f (rk , uk)rk Dr Du.

 � Du

2
 ��rk � Dr

2 �
2

 � �rk � Dr
2 �

2� � Du

2
 (2rk Dr)� rk Dr Du .

 1
2

 �rk � Dr
2 �

2

 Du .

 1
2

 �rk � Dr
2 �

2

 Du

 / 

 / 

 .

lim
nl�

 Sn � ��
R

 f (r, u) dA .

 .

 ,

Sn � �
n

k�1
 f (rk, uk) DAk 

.

 .
 ,

 .

 / 

 , , , ,

 . /  , , ,
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ΣΧΗΜΑ 12.26 Aν παρατηρήσουμε
ότι

καταλήγουμε στον τύπο
�Ak � rk �r �
 H εξήγηση
δίνεται στο κείμενο. 

 .

εμβαδόν εμβαδόν
�Ak � ( μεγάλου) – ( μικρού )τομέα τομέα



Eύρεση ορίων ολοκλήρωσης
H ίδια διαδικασία εύρεσης ορίων ολοκλήρωσης που ακολουθήσαμε
για ορθογώνιες συντεταγμένες ισχύει επίσης για πολικές συντεταγμέ-
νες.

Παράδειγμα 1 Eύρεση ορίων ολοκλήρωσης

Bρείτε τα όρια ολοκλήρωσης της  f(r 
)  στο χωρίο  R που κείται
εντός της καρδιοειδούς καμπύλης  r � 1 � cos 
 και εκτός του κύ-
κλου  r � 1.  

Λύση

Bήμα 1: Σχεδιάγραμμα. Σχεδιάζουμε το χωρίο και σημειώνουμε στο
σχήμα τις συνοριακές καμπύλες (Σχήμα 12.27).

Bήμα 2: Όρια της ολοκλήρωσης ως προς r. Mια τυπική πολική ημιευ-
θεία (με αφετηρία την αρχή) εισέρχεται στο χωρίο  R για  r � 1  και
εξέρχεται για  r � 1 � cos 


Bήμα 3: Όρια της ολοκλήρωσης ως προς 
. Oι πολικές ημιευθείες με

 .

 ,
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Πώς ολοκληρώνουμε σε πολικές συντεταγμένες

Προκειμένου να υπολογίσουμε το  ��R f (r 
)  dA σε ένα χωρίο  R σε πολικές συντεταγμένες, ολοκληρώ-
νοντας πρώτα ως προς  r και κατόπιν ως προς  
 ακολουθούμε τα εξής βήματα. ,

 ,

Tο ολοκλήρωμα είναι

��
R

 f (r, u) dA � � u�p / 2

u�p / 4
� r�2

r�
2cscu

  f (r, u)r dr du.

Bήμα 2: Όρια της ολοκλήρωσης
ως προς r. Θεωρούμε μια πολι-
κή ημιευθεία  L (με αφετηρία
την αρχή των αξόνων) που
τέμνει το χωρίο  R δείχνοντας
την κατεύθυνση αύξησης του
r. Σημειώνουμε τις τιμές του  r
που αντιστοιχούν στα σημεία
εισόδου και εξόδου της  L στο
R Oι τιμές αυτές είναι τα
όρια της ολοκλήρωσης ως
προς r. Συνήθως εξαρτώνται
από τη γωνία 
 που σχημα-
τίζει η L με τον θετικό ημι-
άξονα x.

 .

Bήμα 3: Όρια της ολοκλήρωσης
ως προς 
. Bρίσκουμε την
ελάχιστη και τη μέγιστη τιμή
που παίρνει το 
 εντός του
R Oι τιμές αυτές είναι τα
όρια της ολοκλήρωσης ως
προς 
.

 .
y

x
0

√⎯2

x2 � y2 � 42
R

y � √⎯2
(√⎯2, √⎯2 )

r sin 
 � y � √⎯2

y

x
0

2
R




E�������� ��� r � 2

L

r � √⎯2 csc 

���.

E��������� ��� 
r � √⎯2 csc 


y

x
0

√⎯2

y � x2
R

T� �������� � �����    .�–
4

T� ������� � �����    .�–
2

L

Bήμα 1: Σχεδιάγραμμα. Kάνου-
με ένα σχεδιάγραμμα του χω-
ρίου και ονομάζουμε τις συνο-
ριακές του καμπύλες.

y

x



1 2

E��������� 
��� r � 1

E�������� ���
r � 1 � cos 



 � ���
2


 � ��
2

 r � 1 � cos 


L

ΣΧΗΜΑ 12.27 Tο σχεδιάγραμμα
αναφέρεται στο Παράδειγμα 1.



αφετηρία την αρχή που τέμνουν το χωρίο  R καλύπτουν τις τιμές από

 � �� 2 έως 
 � � 2.  Tο ολοκλήρωμα είναι

Aν η  f(r 
)  είναι η σταθερή συνάρτηση με τιμή 1, τότε το ολο-
κλήρωμα της  f στο χωρίο  R ισούται με το εμβαδόν του  R

Όπως είναι αναμενόμενο, αυτός ο τύπος του εμβαδού συμφωνεί με
όλους τους προηγούμενους τύπους,  πράγμα που δεχόμαστε εδώ χωρίς
απόδειξη.

Παράδειγμα 2 Eύρεση εμβαδού σε πολικές συντεταγμένες

Bρείτε το εμβαδόν του χωρίου που περικλείεται από τον λημνίσκο
r 2 � 4 cos 2


Λύση Σχεδιάζουμε τον λημνίσκο για να προσδιορίσουμε τα όρια
ολοκλήρωσης (Σχήμα 12.28). Aπό το σχήμα φαίνεται ότι το συνολι-
κό ζητούμενο εμβαδόν είναι τετραπλάσιο του εμβαδού που περιέχε-
ται στο πρώτο τεταρτημόριο.

Mετατροπή καρτεσιανών ολοκληρωμάτων σε πολικά
ολοκληρώματα
H διαδικασία μετατροπής ενός καρτεσιανού ολοκληρώματος  � f (x
y) dx dy σε πολικό ολοκλήρωμα περιλαμβάνει δύο βήματα.

Bήμα 1: Aντικαθιστούμε  x � r cos 
 και y � r sin 
 και θέτουμε όπου
dx dy το  r dr d
.

Bήμα 2: Bρίσκουμε τα πολικά όρια ολοκλήρωσης που ορίζουν τη συνο-
ριακή καμπύλη του χωρίου ολοκλήρωσης  R

Tο καρτεσιανό ολοκλήρωμα παίρνει τότε τη μορφή

(4)

όπου  G είναι το χωρίο ολοκλήρωσης σε πολικές συντεταγμένες. H
διαδικασία αυτή μοιάζει με τη μέθοδο αντικατάστασης του Kεφα-
λαίου 4, μόνο που τώρα έχουμε δύο μεταβλητές προς αντικατάσταση
αντί για μία. Σημειώστε ότι το γινόμενο  dx dy δεν αντικαθίσταται
από το  dr d
, αλλά από το  r dr d
 .

��
R

 f (x , y) dx dy � ��
G

 f (r  cos  u , r  sin  u)r dr du ,

 .

 ,

 ,�R

 � 4 �p / 4

0
 2  cos  2u du � 4  sin  2u�

p / 4

0
 � 4.

 A � 4 �p / 4

0
�
4cos2u

0
 r dr du � 4 �p / 4

0
 �r 2

2�
r�
4cos2u

r�0
 du

 .

 .
 ,

�p / 2

�p / 2
 � 1�cosu

1
 f (r, u) r dr du.

 /  / 
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Eμβαδόν σε πολικές συντεταγμένες

Tο εμβαδόν κλειστού και φραγμένου χωρίου  R στο πολικό
επίπεδο είναι

(3)A � ��
R

 r dr du .

E��������� ���
r � 0

E�������� ���

r �√⎯⎯⎯⎯⎯⎯⎯

��
�
4

y

x

�
�
4

r2 = 4 cos 2


4  cos 2


ΣΧΗΜΑ 12.28 Για να
ολοκληρώσουμε στο
γραμμοσκιασμένο χωρίο, δίνουμε
στο  r τιμές από  0  έως  
και στο  
 από  0  έως  � 4.
(Παράδειγμα 2)

 / 


4  cos  2u



Παράδειγμα 3 Mετατροπή καρτεσιανών ολοκληρωμάτων σε
πολικά ολοκληρώματα

Bρείτε τη ροπή αδρανείας ως προς την αρχή των αξόνων, μιας λε-
πτής πλάκας πυκνότητας  
(x y)  � 1 η οποία φράσσεται από το τε-
ταρτοκύκλιο  x 2 � y2� 1  στο πρώτο τεταρτημόριο.

Λύση Σχεδιάζουμε την πλάκα για να προσδιορίσουμε τα όρια ολο-
κλήρωσης (Σχήμα 12.29).

Σε καρτεσιανές συντεταγμένες, η ροπή αδρανείας είναι η τιμή
του ολοκληρώματος

Oλοκληρώνοντας ως προς  y, παίρνουμε

για τον υπολογισμό του οποίου θα δυσκολευτούμε αρκετά αν δεν
έχουμε πρόσβαση σε πίνακες ολοκληρωμάτων.

Tα πράγματα μπορούν να βελτιωθούν κάπως αν εκφράσουμε το
αρχικό ολοκλήρωμα σε πολικές συντεταγμένες. Aντικαθιστώντας
x � r cos 
 y � r sin 
 και  θέτοντας όπου  dx dy το  r dr d
 παίρ-
νουμε

Για ποιον λόγο αποβαίνει τόσο πρόσφορη η αλλαγή μεταβλητών
εδώ; Ένας λόγος είναι ότι το  x 2 � y2 γράφεται ως  r 2.  Ένας άλλος
λόγος είναι ότι τα όρια ολοκλήρωσης γίνονται σταθεροί αριθμοί.

Παράδειγμα 4 Yπολογισμός ολοκληρωμάτων σε πολικές
συντεταγμένες 

Yπολογίστε το ολοκλήρωμα

όπου  R είναι το ημικυκλικό χωρίο που φράσσεται από τον άξονα  x
και από την καμπύλη  y � (Σχήμα 12.30).

Λύση Σε καρτεσιανές συντεταγμένες, πρόκειται για ένα μη στοι-
χειώδες ολοκλήρωμα μια και δεν υπάρχει άμεσος τρόπος να ολο-
κληρώσουμε την ποσότητα  ως προς το  x ή το  y Ωστόσο, το
ολοκλήρωμα αυτό έχει μεγάλη σημασία για τα μαθηματικά —εμφα-
νίζεται στη στατιστική, για παράδειγμα— και χρειαζόμαστε έναν
τρόπο υπολογισμού του. Oι πολικές συντεταγμένες λύνουν το πρό-
βλημα. Aντικαθιστώντας  x � r cos 
 y � r sin 
 και θέτοντας όπου
dy dx το  r dr d
, είμαστε σε θέση να υπολογίσουμε το ολοκλήρωμα
ως εξής

 ,

 .ex2�y2


1 � x2

��
R

 ex2�y2

 dy dx ,

 � �p / 2

0
 �r 4

4�
r�1

r�0
 du � �p / 2

0
 1
4

 du � p
8

 .

 � 1

0
�
1�x2

0
 (x2 � y 2) dy dx � �p / 2

0
� 1

0
 (r 2) r dr du

 , ,

� 1

0
 �x2
1 � x2 � 

(1 � x2)3 / 2

3 � dx ,

� 1

0
�
1�x2

0
 (x2 � y 2) dy dx .

 ,
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y

x
0 1

1


 � �


 � 0

�
2

x2 � y2 � 1, r � 1

ΣΧΗΜΑ 12.29 Σε πολικές
συντεταγμένες, το χωρίο αυτό
περιγράφεται από απλές
ανισότητες:

0 � r � 1 και 0 � 
 � � 2.

(Παράδειγμα 3)

 / 

y

x
0�1 1

1


 � � 
 � 0

y � √⎯⎯⎯⎯⎯1 � x 2

r � 1

ΣΧΗΜΑ 12.30 Tο ημικυκλικό χωρίο
του Παραδείγματος 4 ορίζεται από
τις σχέσεις

0 � r � 1, 0 � 
 � � .



Eξαιτίας του παράγοντα  r στο γινόμενο  r dr d
 μπορέσαμε να ολο-
κληρώσουμε την ποσότητα  . Xωρίς τον παράγοντα αυτόν, δεν θα
μπορούσαμε να κάνουμε τίποτα. 

ΑΣΚΗΣΕΙΣ 12.3

er2

 � �p

0
 1
2

 (e � 1) du � p
2

 (e � 1) .

 ��
R

 ex2�y2

 dy dx � �p

0
� 1

0
 er2

r dr du � �p

0
 �1

2
 er2�

1

0
 du
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Yπολογισμός πολικών ολοκληρωμάτων
Στις Aσκήσεις 1-16, μετατρέψτε το καρτεσιανό ολοκλήρω-
μα σε ένα ισοδύναμό του πολικό ολοκλήρωμα. Στη συνέ-
χεια υπολογίστε το πολικό ολοκλήρωμα.

1. 2.

3.

4.

5.

6.

7. 8.

9.

10.

11.

12.

13.

14.

15.

16.

Eύρεση εμβαδού σε πολικές συντεταγμένες 
17. Bρείτε το εμβαδόν του χωρίου που αποκόπτει από το

πρώτο τεταρτημόριο η καμπύλη r � 2(2 � sin 2
) .

18. Kαρδιοειδής που αλληλεπικαλύπτεται με κύκλο Bρείτε το εμ-
βαδόν του χωρίου που κείται εντός της καρδιοειδούς
r � 1 � cos 
 και εκτός του κύκλου r � 1.

19. Φύλλο τριαντάφυλλου Bρείτε το εμβαδόν του χωρίου που
περικλείεται από ένα «φύλλο» του «τριαντάφυλλου»
r � 12 cos 3


20. Kέλυφος Bρείτε το εμβαδόν του χωρίου που περικλείε-
ται από τον θετικό ημιάξονα x και από τη σπειροειδή κα-
μπύλη r � 4
 3, 0 � 
 � 2� Tο σχήμα του χωρίου μοιά-
ζει με κέλυφος σαλιγκαριού.

21. Kαρδιοειδής στο πρώτο τεταρτημόριο Bρείτε το εμβαδόν
του χωρίου που αποκόπτει από το πρώτο τεταρτημόριο
η καρδιοειδής καμπύλη r � 1 � sin 


22. Aλληλεπικαλυπτόμενες καρδιοειδείς Bρείτε το εμβαδόν του
χωρίου που αποτελεί τομή των καρδιοειδών r � 1 �
cos 
 και r � 1 � cos 


Mάζες και ροπές
23. Πρώτη ροπή πλάκας Bρείτε την πρώτη ροπή ως προς τον

άξονα x μιας λεπτής πλάκας σταθερής πυκνότητας 
(x
y) � 3, που είναι κάτω φραγμένη από τον άξονα x και
άνω φραγμένη από την καρδιοειδή r � 1 � cos 


24. Pοπή αδρανείας δίσκου Bρείτε τη ροπή αδρανείας ως
προς τον άξονα x, καθώς και ως προς την αρχή, ενός
λεπτού δίσκου που φράσσεται από τον κύκλο x 2 � y2

� a2 και έχει πυκνότητα στο σημείο (x y) ίση με 
(x
y) � k(x 2 � y2) , όπου k σταθερά.

25. Mάζα πλάκας Bρείτε τη μάζα μιας λεπτής πλάκας που
καλύπτει την περιοχή εκτός του κύκλου r � 3 και εντός
του κύκλου r � 6 sin 
, δεδομένου ότι η συνάρτηση πυ-
κνότητας της πλάκας είναι 
(x y) � 1 r

26. Pοπή αδρανείας πλάκας Bρείτε τη ροπή αδρανείας ως
προς την αρχή μιας λεπτής πλάκας που καλύπτει την
περιοχή εντός της καρδιοειδούς r � 1 � cos 
 και
εκτός του κύκλου r � 1, δεδομένου ότι η συνάρτηση
πυκνότητας της πλάκας είναι 
(x y) � 1 r 2.

27. Kεντροειδές καρδιοειδούς χωρίου Bρείτε το κεντροειδές

 /  ,

 . /  ,

 , ,

 .

 ,

 .

 .

 . / 

 .

1 / 2

� 1

�1
�
1�x2

�
1�x2
 2
(1 � x2 � y 2)2
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 ln  (x2 � y 2 � 1) dx dy
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0
� 0

�
1�(y�1)2
 xy 2 dx dy

� 2

0
�
1�(x�1)2

0
 

x � y

x2 � y 2
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� 1

0
�
1�x2

0
 e�(x2 � y2) dy dx

� ln2

0
�
(ln2)2�y2

0
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� 0
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� 2

0
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0
 y dy dx� 6

0
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0
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0
�
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0
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�
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�
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 dy dx
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�1
�
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�
1�y2
 (x2 � y 2) dy dx

� 1

0
�
1�y2

0
 (x2 � y 2) dx dy

� 1

�1
�
1�x2

�
1�x2
 dy dx� 1

�1
�
1�x2

0
 dy dx



της περιοχής που περικλείεται από την καρδιοειδή κα-
μπύλη r � 1 � cos 


28. Pοπή αδρανείας καρδιοειδούς χωρίου Bρείτε τη ροπή αδρα-
νείας ως προς την αρχή μιας λεπτής πλάκας που περι-
κλείεται από την καρδιοειδή καμπύλη r � 1 � cos 
,
δεδομένου ότι η συνάρτηση πυκνότητας της πλάκας εί-
ναι 
(x y) � 1.

Mέσες τιμές
29. Mέσο ύψος ημισφαιρίου Bρείτε το μέσο ύψος του ημι-

σφαιρίου z � που κείται πάνω από τον
κυκλικό δίσκο x 2 � y2 � a2 στο επίπεδο xy.

30. Mέσο ύψος κώνου Bρείτε το μέσο ύψος του (απλού) κώ-
νου z � που κείται πάνω από τον κυκλικό δί-
σκο x 2 � y2 � a2 στο επίπεδο xy.

31. Mέση απόσταση από το εσωτερικό κυκλικού δίσκου στο κέντρο

του δίσκου Bρείτε τη μέση απόσταση ενός σημείου
P(x y) του κυκλικού δίσκου x 2 � y2 � a2 από την αρ-
χή.

32. Mέσο τετράγωνο της απόστασης σημείου στο εσωτερικό κυκλικού

δίσκου από σημείο στην περιφέρειά του. Bρείτε τη μέση τιμή
του τετραγώνου της απόστασης ενός σημείου P(x y)
του κυκλικού δίσκου x2 � y2 � 1 από το συνοριακό ση-
μείο A(1, 0).

Θεωρία και παραδείγματα
33. Mετατροπή σε πολικό ολοκλήρωμα Oλοκληρώστε την f(x

y) � [ln (x 2 � y2)] στο χωρίο 1 � x 2 � y2 � e

34. Mετατροπή σε πολικό ολοκλήρωμα Oλοκληρώστε την f(x
y) � [ln (x 2 � y2)] (x 2 � y2) στο χωρίο 1 � x 2 � y2 � e2.

35. Όγκος ορθού μη κυκλικού κυλίνδρου Tο χωρίο που κείται
εντός της καρδιοειδούς καμπύλης r � 1 � cos 
 και
εκτός του κύκλου r � 1 είναι η βάση ενός στερεού ορ-
θού κυλίνδρου. H άνω πλευρά του κυλίνδρου κείται
στο επίπεδο z � x Bρείτε τον όγκο του κυλίνδρου.

36. Όγκος ορθού μη κυκλικού κυλίνδρου Tο χωρίο που περι-
κλείεται από τον λημνίσκο r 2 � 2 cos 2
 είναι η βάση
ενός στερεού ορθού κυλίνδρου του οποίου η άνω πλευ-
ρά φράσσεται από τη σφαίρα z � . Bρείτε τον
όγκο του κυλίνδρου.

37. Mετατροπή σε πολικά ολοκληρώματα

(α) O συνήθης τρόπος υπολογισμού του γενικευμένου
ολοκληρώματος I � είναι να υπολογίσου-
με πρώτα το τετράγωνό του:

Yπολογίστε το τελευταίο ολοκλήρωμα κάνοντας
χρήση πολικών συντεταγμένων και κατόπιν λύστε
ως προς I την εξίσωση που προκύπτει.

(β) Yπολογίστε το

38. Mετατροπή σε πολικό ολοκλήρωμα Yπολογίστε το ολοκλή-
ρωμα

39. Mάθετε γράφοντας Oλοκληρώστε τη συνάρτηση f (x y)
� 1 (1 � x 2 � y2) στο χωρίο του κυκλικού δίσκου x 2 �
y2 � 3 4. Yπάρχει το ολοκλήρωμα της f(x y) στο χω-
ρίο του κυκλικού δίσκου x 2 � y2 � 1; Aιτιολογήστε
την απάντησή σας.

40. Tύπος εμβαδού σε πολικές συντεταγμένες Kάνοντας χρήση
του κατάλληλου διπλού ολοκληρώματος σε πολικές
συντεταγμένες, δείξτε ότι

είναι το εμβαδόν της περιοχής σχήματος βεντάλιας
που κείται μεταξύ της αρχής και της καμπύλης r � f (
) ,
� � 
 � �

41. Mέση απόσταση από δεδομένο σημείο στο εσωτερικό κυκλικού

δίσκου Έστω P0 σημείο εντός κύκλου ακτίνας a και
έστω h η απόσταση από το P0 μέχρι το κέντρο του κύ-
κλου. Έστω d η απόσταση από ένα τυχόν σημείο P έως
το P0. Bρείτε τη μέση τιμή του d 2 στην περιοχή που
περικλείεται από τον κύκλο. (Yπόδειξη: Για λόγους
απλότητας, τοποθετήστε το κέντρο του κύκλου στην
αρχή των αξόνων και το P0 στον άξονα x.)

42. Eμβαδόν Έστω ότι το εμβαδόν ενός χωρίου στο πολικό
επίπεδο είναι

Σχεδιάστε το χωρίο αυτό και βρείτε το εμβαδόν του.

Mετατροπές συντεταγμένων 
Στις Aσκήσεις 43-46, χρησιμοποιήστε ένα σύστημα υπο-
λογιστικής άλγεβρας για να μετατρέψετε κάθε καρτεσιανό
ολοκλήρωμα σε ένα ισοδύναμο πολικό ολοκλήρωμα το
οποίο και υπολογίστε. Eκτελέστε τα εξής βήματα σε κάθε
άσκηση.

(α) Σχεδιάστε το καρτεσιανό χωρίο ολοκλήρωσης στο
επίπεδο xy.

(β) Eκφράστε κάθε συνοριακή καμπύλη του καρτεσια-
νού χωρίου του ερωτήματος (α) στην πολική της
αναπαράσταση λύνοντας την καρτεσιανή της εξί-
σωση ως προς r και 


(γ) Xρησιμοποιώντας τα αποτελέσματα του ερωτήμα-
τος (β), σχεδιάστε την πολική περιοχή ολοκλήρω-
σης στο επίπεδο r
.

(δ) Mετατρέψτε την ολοκληρωτέα ποσότητα από καρ-
τεσιανές σε πολικές συντεταγμένες. Προσδιορί-
στε τα όρια ολοκλήρωσης από το σχήμα που φτιά-
ξατε στο ερώτημα (γ) και υπολογίστε το πολικό
ολοκλήρωμα χρησιμοποιώντας κάποιο σύστημα
υπολογιστικής άλγεβρας.

43. 44.

45. 46. � 1
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x2 � y 2


a 2 � x2 � y 2

 ,

 .
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Tριπλά ολοκληρώματα • Iδιότητες τριπλών ολοκληρωμάτων

• Όγκος χωρίου του χώρου • Eύρεση ορίων ολοκλήρωσης

• Mέση τιμή συναρτήσεως στον χώρο

Tα τριπλά ολοκληρώματα μας χρησιμεύουν στον υπολογισμό όγκων
τριδιάστατων σχημάτων, μαζών και ροπών στερεών σωμάτων, και μέ-
σων τιμών συναρτήσεων τριών μεταβλητών. Στο Kεφάλαιο 13 θα δού-
με με ποιον τρόπο προκύπτουν τέτοια ολοκληρώματα στη μελέτη δια-
νυσματικών πεδίων και ροής ρευστών.

Tριπλά ολοκληρώματα
Aν η  F(x y z)  είναι συνάρτηση ορισμένη στο κλειστό φραγμένο χω-
ρίο  D του χώρου —το χωρίο που καλύπτεται από μια στερεά σφαίρα,
για παράδειγμα, ή από έναν βώλο από τσιμέντο— τότε το ολοκλήρωμα
της  F στο  D μπορεί να οριστεί ως ακολούθως.  Διαμερίζουμε ένα ορ-
θογώνιο χωρίο που περιέχει το  D σε ορθογώνιες κυψέλες, φέροντας
επίπεδα παράλληλα στα επίπεδα που ανά δύο ορίζουν οι άξονες συ-
ντεταγμένων (Σχήμα 12.31). Aριθμούμε τις κυψέλες στο εσωτερικό του
D από  1 έως n με όποια σειρά θέλουμε. Mια τυπική κυψέλη έχει δια-
στάσεις  �xk επί  �yk επί  �zk και όγκο  �Vk Eπιλέγουμε ένα σημείο
(xk yk zk)  σε κάθε κυψέλη και σχηματίζουμε το άθροισμα

(1)

Aν η  F είναι συνεχής, και η συνοριακή επιφάνεια του  D αποτελεί-
ται από λείες επιφάνειες που συνδέονται μεταξύ τους μέσω συνεχών
καμπυλών, τότε καθώς τα  �xk �yk και  �zk τείνουν στο μηδέν ανε-
ξάρτητα το ένα από το άλλο, τα αθροίσματα  Sn τείνουν στο όριο

(2)

Kαλούμε το όριο αυτό τριπλό ολοκλήρωμα της F στο D. Tο όριο υπάρ-
χει επίσης για κάποιες ασυνεχείς συναρτήσεις.

Iδιότητες τριπλών ολοκληρωμάτων
Tα τριπλά ολοκληρώματα έχουν τις ίδιες αλγεβρικές ιδιότητες με τα
διπλά και τα απλά ολοκληρώματα. 

lim
nl�

 Sn � ���
D

 F(x, y, z) dV.

 , ,

Sn � �
n

k�1
 F(xk, yk, zk) DVk.

 , ,
 .

 , ,
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z

y

x

D

(xk, yk, z k)

�zk

�xk
�yk

ΣΧΗΜΑ 12.31 Διαμέριση του
στερεού σε ορθογώνιες
κυψέλες όγκου  �Vk .



Όγκος χωρίου του χώρου
Aν η  F είναι σταθερή συνάρτηση με τιμή 1, τότε τα αθροίσματα στην
Eξίσωση (1) γράφονται στη μορφή

Kαθώς τα  �x �y και  �z τείνουν στο μηδέν, οι κυψέλες  �Vk

πολλαπλασιάζονται και μικραίνουν σε μέγεθος, καλύπτοντας ολοένα
και πληρέστερα το χωρίο  D Έτσι, ορίζουμε ως όγκο του χωρίου  D
το τριπλό ολοκλήρωμα

Όπως θα δούμε σε λίγο, το ολοκλήρωμα αυτό μας επιτρέπει να
υπολογίσουμε τους όγκους των στερεών που περικλείονται από κα-
μπύλες επιφάνειες.

Eύρεση ορίων ολοκλήρωσης
Tα τριπλά ολοκληρώματα υπολογίζονται με εφαρμογή μιας τριδιάστα-
της εκδοχής του θεωρήματος του Fubini (Eνότητα 12.1), δηλαδή με τη

lim
nl�

 �
n

k�1
 DVk � ���

D

 dV .

 .

 , ,

Sn � � F(xk, yk, zk) DVk � � 1 � DVk � � DVk.
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Iδιότητες τριπλών ολοκληρωμάτων
Aν οι  F � F(x y z)  και  G � G(x y z)  είναι συνεχείς, τότε

1. Σταθερό πολλαπλάσιο: για κάθε k

2. Άθροισμα και διαφορά:

3. Aνισότητες:

(α) εφόσον F ≥ 0 στο D

(β) εφόσον F ≥ G στο D

4.

όπου D είναι η ένωση πεπερασμένου πλήθους μη
αλληλεπικαλυπτόμενων  κυψελών.

���
D

 F dV � ���
D1

 F dV � ���
D2

 F dV � � � � � ���
Dn

 F dV   

���
D

 F dV � ���
D

 G dV

���
D

 F dV � 0

���
D

(F � G) dV ����
D

F dV ����
D

G dV

���
D

 kF dV � k ���
D

 F dV

 , , , ,

Bιογραφικά στοιχεία

Max Planck
(1858-1947)

CD-ROM
Δικτυότοπος

Oρισμός Όγκος
O όγκος ενός κλειστού, φραγμένου χωρίου  D στον χώρο είναι

(3)V � ���
D

 dV .



διαδοχική εκτέλεση τριών απλών (δηλ. ως προς μία μεταβλητή) ολο-
κληρώσεων. Tα όρια ολοκλήρωσης καθενός από αυτά τα τρία απλά
ολοκληρώματα βρίσκονται μέσω μιας γεωμετρικής διαδικασίας παρό-
μοιας με αυτήν που εφαρμόσαμε για διπλά ολοκληρώματα.
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Πώς βρίσκουμε τα όρια ολοκλήρωσης σε τριπλά ολοκληρώματα

Για να υπολογίσουμε το

σε ένα χωρίο  D όπου ολοκληρώνουμε πρώτα ως προς  z έπειτα ως προς  y και τελικά ως προς  x
ακολουθούμε τα εξής βήματα.

 , , , ,

���
D

 F(x, y, z) dV

Bήμα 4: Όρια ολοκλήρωσης ως προς x. Eπιλέγουμε τιμές του  x που περιέχουν όλες τις ευθείες οι οποίες
διέρχονται από το χωρίο  R και είναι παράλληλες στον άξονα  y (x � a και  x � b στο παραπάνω σχήμα).
Oι τιμές αυτές είναι τα όρια της ολοκλήρωσης ως προς  x. Tο ολοκλήρωμα είναι

Παρόμοια διαδικασία ακολουθούμε και όταν αλλάζουμε τη σειρά ολοκλήρωσης. H «σκιά» του χωρίου  D
ανήκει στο επίπεδο που σχηματίζουν οι άξονες των τελευταίων δύο μεταβλητών της ολοκλήρωσης. 

� x�b

x�a
 � y�g2(x)

y�g1(x )
 � z�f2(x , y)

z�f1(x , y)
 F(x , y , z) dz dy dx .

Bήμα 2: Όρια της ολοκλήρωσης
ως προς  z. Φέρουμε μια ευθεία
M που διέρχεται από ένα τυπι-
κό σημείο  (x y)  του χωρίου  R
και είναι παράλληλη στον άξο-
να z. Kαθώς το z αυξάνεται, η M
εισέρχεται στο  D για  z � f1(x
y) και εξέρχεται για  z � f2(x
y) . Oι τιμές αυτές είναι τα όρια
της ολοκλήρωσης ως προς  z.

 ,
 ,

 ,

Bήμα 3: Όρια της ολοκλήρωσης
ως προς  y. Φέρουμε μια ευθεία
L που διέρχεται από το  (x y)
και είναι παράλληλη στον
άξονα  y.  Kαθώς το  y αυξά-
νεται, η  L εισέρχεται στο χω-
ρίο R για y � g1(x) και εξέρχε-
ται για y � g2(x) . Oι τιμές αυ-
τές είναι τα όρια της ολοκλή-
ρωσης ως προς  y.

 ,

y � g1(x)

y � g2(x)

z � f2(x, y)

z � f1(x, y)

z

y

x

D

R

b

a

E�������� ���

E��������� ���

M

(x, y)

y � g1(x)

y � g2(x)

y

x

D

R

b

a

E�������� ���

E��������� ���

M

L

x

(x, y)

z
z

y

x

z � f2(x, y)

D

R

z � f1(x, y)

y � g1(x)

y � g2(x)
b

a

Bήμα 1: Σχεδιάγραμμα. Σχεδιά-
ζουμε το χωρίο  D καθώς και τη
«σκιά» του  R (κατακόρυφη
προβολή) στο επίπεδο  xy.  Ση-
μειώνουμε στο σχεδιάγραμμα
τις συνοριακές επιφάνειες του
D, καθώς και τις συνοριακές κα-
μπύλες του R .



Παράδειγμα 1 Eύρεση όγκου

Bρείτε τον όγκο του χωρίου  D που περικλείεται από τις επιφάνειες
z � x 2 � 3y2 και  z � 8 � x 2 � y2.  

Λύση O όγκος ισούται με

δηλαδή με το ολοκλήρωμα της  F(x y z) � 1  στο D Bρίσκουμε τα
όρια ολοκλήρωσης ακολουθώντας την εξής διαδικασία.

Bήμα 1: Σχεδιάγραμμα. Oι δύο επιφάνειες (Σχήμα 12.32) τέμνονται πά-
νω στον ελλειπτικό κύλινδρο  x 2 � 3y2 � 8 � x 2 � y2 δηλ.  x 2 � 2y2

� 4.  Tο σύνορο του χωρίου  R δηλ. της προβολής του  D στο επί-
πεδο  xy,  είναι μια έλλειψη με ίδια εξίσωση:  x 2 � 2y2 � 4.  Tο
«άνω» σύνορο του  R είναι η καμπύλη  y � . Tο κάτω σύ-
νορο είναι η καμπύλη  y � � .

Bήμα 2: Όρια ολοκλήρωσης ως προς  z. H ευθεία  M που διέρχεται από
ένα τυπικό σημείο  (x y) του χωρίου  R παράλληλα στον άξονα  z,
εισέρχεται στο χωρίο  D για  z � x 2 � 3y2 και εξέρχεται για  z � 8
� x 2 � y2.

Bήμα 3: Όρια ολοκλήρωσης ως προς  y. H ευθεία L που διέρχεται από
το  (x y)  παράλληλα στον άξονα  y εισέρχεται στο χωρίο  R για  y
� � και εξέρχεται για  y � .

Bήμα 4: Όρια ολοκλήρωσης ως προς  x. Kαθώς η ευθεία  L σαρώνει το
χωρίο  R η τιμή του  x μεταβάλλεται από  x � �2 στο σημείο (�2,
0, 0)  έως  x � 2 στο (2, 0, 0) .  O όγκος του χωρίου  D είναι

 ,


(4 � x2) / 2
(4 � x2) / 2
 ,

 ,


(4 � x2) / 2

(4� x2) / 2

 ,

 . , ,

V � ���
D

 dz dy dx ,
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H ����'�� ����	 �����
x2 � 2y2 � 4.

x2 � 2y2 � 4

E��������� ���
z � x2 � 3y2

E�������� ���
z � 8 � x2 � y2 z � 8 � x2 � y2

z � x2 � 3y 2
(2, 0, 4)

(2, 0, 0)
(x, y)x

y

z

yL

(–2, 0, 4)

(–2, 0, 0)

R

E��������� ���

x

D

M

√⎯⎯⎯⎯⎯⎯⎯
E�������� ���

(4 – x2)/2y �

(4 – x2)/2y � – √⎯⎯⎯⎯⎯⎯⎯

ΣΧΗΜΑ 12.32 O όγκος του χωρίου που περικλείεται από τα δύο αυτά
παραβολοειδή υπολογίζεται στο Παράδειγμα 1.



κυβικές μονάδες.

Στο επόμενο παράδειγμα, προβάλλουμε το χωρίο  D στο επίπεδο  xz
αντί για το επίπεδο  xy, οπότε προκύπτει διαφορετική σειρά ολοκλή-
ρωσης.

Παράδειγμα 2 Eύρεση ορίων ολοκλήρωσης με σειρά  dy dz dx

Προσδιορίστε τα όρια ολοκλήρωσης για τον υπολογισμό του τρι-
πλού ολοκληρώματος της συνάρτησης  F(x y z)  στο τετράεδρο  D
με κορυφές  (0, 0, 0) ,  (1, 1, 0) ,  (0, 1, 0) ,  και  (0, 1, 1) .

Λύση

Bήμα 1: Σχεδιάγραμμα Σχεδιάζουμε το χωρίο  D καθώς και τη
«σκιά» του  R στο επίπεδο  xz (Σχήμα 12.33). H άνω (δεξιά) συνο-
ριακή επιφάνεια του  D ανήκει στο επίπεδο  y � 1.  H κάτω (αρι-
στερά) ανήκει στο επίπεδο  y � x � z H άνω συνοριακή καμπύλη
του  R είναι η ευθεία  z � 1 � x H κάτω συνοριακή καμπύλη εί-
ναι η ευθεία  z � 0.

Bήμα 2: Όρια ολοκλήρωσης ως προς  y. H ευθεία που διέρχεται από
ένα τυπικό σημείο (x z)  του χωρίου  R και είναι παράλληλη στον
άξονα  y εισέρχεται στο χωρίο  D για  y � x � z και εξέρχεται για
y � 1.

Bήμα 3: Όρια ολοκλήρωσης ως προς  z H ευθεία  L που διέρχεται από
το  (x z)  και είναι παράλληλη στον άξονα  z, εισέρχεται στο  R για
z � 0  και εξέρχεται για  z � 1 � x

Bήμα 4: Όρια ολοκλήρωσης ως προς  x Kαθώς η ευθεία  L σαρώνει το
χωρίο  R η τιμή του  x μεταβάλλεται από  x � 0  έως  x � 1.  Tο
ολοκλήρωμα είναι

Παράδειγμα 3 Eπανερχόμαστε στο Παράδειγμα 2
χρησιμοποιώντας τη σειρά ολοκλήρωσης  dz dy dx

Για να ολοκληρώσουμε την  F(x y z)  στο τετράεδρο  D με τη σει-
ρά  dz dy dx εκτελούμε τα βήματα 2 έως 4 ως εξής.

Bήμα 2: Όρια ολοκλήρωσης ως προς  z. Mια παράλληλη στον άξονα  z

 ,
 , ,

� 1

0
� 1�x

0
� 1

x�z
 F(x , y , z) dy dz dx .

 ,
 .

 .
 ,

 .

 ,

 .
 .

 .

 , ,

 � 8p
2 

 � � 2

�2
 �8 �4 � x2

2 �
3 / 2

 � 8
3

 �4 � x2

2 �
3 / 2� dx � 4
2

3
 � 2

�2
 (4 � x2)3 / 2 dx

 � � 2

�2
 �2(8 � 2x2)�4 � x2

2
 � 8

3
 �4 � x2

2 �
3 / 2

� dx

 � � 2

�2
 �(8 � 2x2)y � 4

3
 y 3�y�
(4�x2) / 2

y��
(4�x2) / 2
 dx

 �� 2

�2
�
(4�x2) / 2

�
(4�x2) / 2
 (8 � 2x2 � 4y 2) dy dx

 � � 2

�2
�
(4�x2) / 2

�
(4�x2) / 2
 � 8�x2�y2

x2�3y2
 dz dy dx

 V � ���
D

 dz dy dx
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H ολοκλήρωση έγινε με την αντικατάσταση
x � 2 sin u

z

y

x

y � x � z

y � x � z
E��������� ���

x

E�����
x � z � 1

R

DL

y � 1
E�������� ���

M

(0, 1, 0)

y � 1

(0, 1, 1)

(1, 1, 0)

(x, z)

1

1

ΣΧΗΜΑ 12.33 Tο τετράεδρο του
Παραδείγματος 2.



ευθεία που διέρχεται από ένα τυπικό σημείο  (x y)  της «σκιάς» του
D στο επίπεδο  xy εισέρχεται στο τετράεδρο για  z � 0  και εξέρ-
χεται διά της επιφάνειας  z � y � x (Σχήμα 12.33).

Bήμα 3: Όρια ολοκλήρωσης ως προς  y. Mια ευθεία που διέρχεται από
το  (x y)  και είναι παράλληλη στον άξονα  y εισέρχεται στη «σκιά»
του  D στο επίπεδο  xy για  y � x και εξέρχεται για  y � 1.

Bήμα 4: Όρια ολοκλήρωσης ως προς  x. Kαθώς η παράλληλη στον άξο-
να  y ευθεία του βήματος 3 σαρώνει τη «σκιά» του τετραέδρου, η τι-
μή του  x μεταβάλλεται από  x � 0  έως  x � 1  καταλήγοντας στο
σημείο  (1, 1, 0) .  Tο ολοκλήρωμα είναι

Για παράδειγμα, αν  F(x y z) � 1,  τότε ο όγκος του τετραέδρου θα
ισούται με 

κυβικής μονάδας.

Tο ίδιο αποτέλεσμα θα παίρναμε αν υπολογίζαμε το

από το Παράδειγμα 2. Δοκιμάστε το!

Όπως έχουμε δει, ενδέχεται να υπάρχουν δύο διαφορετικές
σειρές ολοκλήρωσης για τον υπολογισμό ενός διπλού ολοκληρώ-
ματος. Για τριπλά ολοκληρώματα, ενδέχεται να υπάρχουν μέχρι
και έξι διαφορετικές σειρές ολοκλήρωσης.

Παράδειγμα 4 Διαφορετικές σειρές ολοκλήρωσης

Kαθένα από τα ακόλουθα ολοκληρώματα δίνει τον όγκο του στερεού
του Σχήματος 12.34.

(α) (β)

(γ) (δ) � 2

0
� 1

0
� 1�z

0
 dy dz dx� 1

0
� 2

0
� 1�z

0
 dy dx dz

� 1

0
� 1�y

0
� 2

0
 dx dz dy� 1

0
� 1�z

0
� 2

0
dx dy dz

V � � 1

0
� 1�x

0
� 1

x�z
 dy dz dx

 � 1
6

  

 � �1
2

 x � 1
2

  x2 � 1
6

 x3�1

0

 � � 1

0
 �1

2
 � x � 1

2
 x2� dx

 � � 1

0
 �1

2
 y 2 � xy�

y�1

y�x
 dx

 � � 1

0
� 1

x
 (y � x) dy dx

 V � � 1

0
� 1

x
� y�x

0
 dz dy dx

 , ,

� 1

0
� 1

x
� y�x

0
 F(x , y , z) dz dy dx .

 ,

 ,
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y

z

x

1

2

y � z � 1

1

ΣΧΗΜΑ 12.34 Tο Παράδειγμα 4
δείχνει ότι μπορούμε να
εκφράσουμε τον όγκο του
πρίσματος αυτού με έξι
διαφορετικά τριπλά
ολοκληρώματα.



(ε) (στ)

Aς υπολογίσουμε τα ολοκληρώματα (β) και (γ) :

κυβική  μονάδα.

Eπίσης,

κυβική μονάδα.

Mέση τιμή συναρτήσεως στον χώρο
H μέση τιμή μιας συναρτήσεως  F σε ένα χωρίο  D του χώρου ορί-
ζεται από τον τύπο

Mέση τιμή της F στο D � (4)

Για παράδειγμα, αν  F(x y z)  � , τότε η μέση τιμή της
F στο χωρίο  D είναι η μέση απόσταση σημείων του  D από την αρ-
χή. Aν  F(x y z)  είναι η πυκνότητα στερεού που καταλαμβάνει χωρίο
D του χώρου, τότε η μέση τιμή της  F στο  D είναι η μέση πυκνότη-
τα του στερεού σε μονάδες μάζας ανά μονάδα όγκου.

Παράδειγμα 5 Eύρεση μέσης τιμής

Bρείτε τη μέση τιμή της  F(x y z) � xyz στο κυβικό χωρίο που ανή-
κει στο πρώτο οκτημόριο και φράσσεται από τα επίπεδα που ανά δύο
ορίζουν οι άξονες συντεταγμένων, καθώς και από τα επίπεδα  x �2,
y �2,  και  z � 2.

Λύση Σχεδιάζουμε το κυβικό χωρίο με ικανή λεπτομέρεια, ώστε
να δείξουμε τα όρια ολοκλήρωσης (Σχήμα 12.35). Kατόπιν χρησιμο-
ποιούμε την Eξίσωση (4) για να υπολογίσουμε τη μέση τιμή της  F
στο κυβικό χωρίο.

O όγκος του κύβου είναι  (2)(2)(2) � 8.  Tο ολοκλήρωμα της  F
στον κύβο αυτόν ισούται με

 , ,

 , ,


x2 � y 2 � z 2
 , ,

���
D

 F dV .
1

———–—
όγκος D

 � 1 

 � � 1

0
 (2 � 2z) dz

 � � 1

0
 �x � zx � x�2

x�0 dz

 � � 1

0
� 2

0
 (1 � z) dx dz

 V � � 1

0
� 2

0
� 1�z

0
 dy dx dz

 � 1 

 � � 1

0
 2(1 � y) dy

 � � 1

0
 �2z � z�1�y

z�0  dy

 � � 1

0
� 1�y

0
 2 dz dy

 V � � 1

0
� 1�y

0
 � 2

0
 dx dz dy

� 2

0
� 1

0
� 1�y

0
 dz dy dx� 1

0
� 2

0
� 1�y

0
 dz dx dy
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Tο ολοκλήρωμα (β)

Tο ολοκλήρωμα (γ)

z

y
2

x

2

2

ΣΧΗΜΑ 12.35 H περιοχή
ολοκλήρωσης του Παραδείγματος
5.



Για τις τιμές αυτές, η Eξίσωση (4) μας δίνει

κύβος

Kατά τον υπολογισμό του ολοκληρώματος, ολοκληρώσαμε με σειρά
dx dy dz, αλλά οποιαδήποτε άλλη σειρά ολοκλήρωσης θα έδινε προ-
φανώς το ίδιο αποτέλεσμα.

ΑΣΚΗΣΕΙΣ 12.4

��� xyz dV � �1
8� (8) � 1.Mέση τιμή 1

= ——–—
του xyz στον κύβο όγκος

 � � 2

0
 �y 2z�

y�2

y�0
 dz � � 2

0
 4z dz � �2z 2�

2

0
 � 8.

 � 2

0
� 2

0
� 2

0
 xyz dx dy dz � � 2

0
� 2

0
 �x2

2
 yz�

x�2

x�0
 dy dz � � 2

0
� 2

0
 2yz dy dz
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Yπολογισμός τριπλών ολοκληρωμάτων 
1. Yπολογίστε το ολοκλήρωμα του Παραδείγματος 2 για

F(x, y, z) � 1 προκειμένου να βρείτε τον όγκο του τε-
τραέδρου.

2. Όγκος ορθογώνιου στερεού Γράψτε έξι διαφορετικά τρι-
πλά ολοκληρώματα που να εκφράζουν τον όγκο του
ορθογώνιου στερεού που ανήκει στο πρώτο οκτημόριο
και φράσσεται από τα επίπεδα που ανά δύο ορίζουν οι
άξονες συντεταγμένων, καθώς και από τα επίπεδα x �
1, y � 2, και z � 3. Yπολογίστε ένα από τα ολοκληρώ-
ματα αυτά.

3. Όγκος τετραέδρου Γράψτε έξι διαφορετικά τριπλά ολο-
κληρώματα που να εκφράζουν τον όγκο του τετραέ-
δρου που αποκόπτει από το πρώτο οκτημόριο το επίπε-
δο 6x � 3y � 2z � 6. Yπολογίστε ένα από τα ολοκλη-
ρώματα αυτά.

4. Όγκος στερεού Γράψτε έξι διαφορετικά τριπλά ολοκλη-
ρώματα που να εκφράζουν τον όγκο του χωρίου που
ανήκει στο πρώτο οκτημόριο και περικλείεται από τον
κύλινδρο x 2 � z2 � 4 και από το επίπεδο y � 3. Yπο-
λογίστε ένα από τα ολοκληρώματα αυτά.

5. Όγκος περιεχόμενος σε παραβολοειδή Έστω D το χωρίο που
φράσσεται από τα παραβολοειδή z � 8 � x 2 � y2 και z
� x 2 � y2. Γράψτε έξι διαφορετικά τριπλά ολοκληρώ-
ματα που να εκφράζουν τον όγκο του χωρίου D Yπο-
λογίστε ένα από τα ολοκληρώματα αυτά. 

6. Όγκος εσωτερικού παραβολοειδούς κάτω από επίπεδο Έστω D
το χωρίο που φράσσεται από το παραβολοειδές z � x 2

� y2 και από το επίπεδο z � 2y Γράψτε τριπλά ολο-
κληρώματα της μορφής dz dx dy και dz dy dx που να εκ-
φράζουν τον όγκο του χωρίου D Mην υπολογίσετε κα-
νένα από τα ολοκληρώματα αυτά.

Yπολογισμός τριπλών ολοκληρωμάτων
Yπολογίστε τα ολοκληρώματα των Aσκήσεων 7-20.

7.

8. 9.

10. 11.

12.

13. 14.

15. 16.

17. (χώρος uυw)

18. (χώρος rst)

19. (χώρος tυx)

20. (χώρος pqr)

Yπολογισμός όγκων μέσω τριπλών
ολοκληρωμάτων
21. Στο παρακάτω σχήμα φαίνεται το χωρίο ολοκλήρωσης

του

� 1

�1
� 1

x2
� 1�y

0
 dz dy dx .

� 7

0
� 2

0
�
4�q2

0
 

q
r � 1

 dp dq dr  

�p / 4

0
� ln sec v

0
� 2 t

��
 ex dx dt dv  

� e

1
� e

1
� e

1
 ln  r ln  s ln  t dt dr ds  

�p

0
�p

0
�p

0
  cos  (u � v � w) du dv dw  

� 1

0
� 1�x2

0
� 4�x2�y

3
 x dz dy dx� 1

0
� 2�x

0
� 2�x�y

0
 dz dy dx

� 2

0
�
4�y2

�
4�y2
 � 2x�y

0
 dz dx dy� 3

0
�
9�x2

0
�
9�x2

0
 dz dy dx

� 1

�1
� 1

�1
� 1

�1
 (x � y � z) dy dx dz

� 1

0
�p

0
�p

0
 y  sin  z dx dy dz� 1

0
� 3�3x

0
� 3�3x�y

0
 dz dy dx

� e

1
� e

1
� e

1
 1
xyz dx dy dz�
2

0
� 3y

0
� 8�x2�y2

x2�3y2
 dz dx dy

� 1

0
� 1

0
� 1

0
 (x2 � y 2 � z 2) dz dy dx

 .

 .

 .



Ξαναγράψτε το ολοκλήρωμα σε ισοδύναμη μορφή
χρησιμοποιώντας τη σειρά ολοκλήρωσης

(α) dy dz dx (β) dy dx dz

(γ) dx dy dz (δ) dx dz dy

(ε) dz dx dy

22. Στο σχήμα φαίνεται το χωρίο ολοκλήρωσης του

Ξαναγράψτε το ολοκλήρωμα σε ισοδύναμη μορφή
χρησιμοποιώντας τη σειρά ολοκλήρωσης

(α) dy dz dx (β) dy dx dz

(γ) dx dy dz (δ) dx dz dy

(ε) dz dx dy

Yπολογίστε τους όγκους των χωρίων των Aσκήσεων
23-36.

23. Tο χωρίο κείται μεταξύ του κυλίνδρου z � y 2 και του
επιπέδου xy, και φράσσεται από τα επίπεδα x � 0, x �
1, y � �1, y � 1

24. Tο χωρίο ανήκει στο πρώτο οκτημόριο και φράσσεται
από τα επίπεδα που ανά δύο ορίζουν οι άξονες συντεταγ-
μένων, καθώς και από τα επίπεδα x � z � 1, y � 2z � 2.

25. Tο χωρίο ανήκει στο πρώτο οκτημόριο και φράσσεται
από τα επίπεδα που ανά δύο ορίζουν οι άξονες συντε-
ταγμένων, από το επίπεδο y � z � 2, και από τον κύ-
λινδρο x � 4 � y2.

26. Tο χωρίο σφηνοειδούς σχήματος που αποκόπτουν από
τον κύλινδρο x 2 � y 2 � 1 τα επίπεδα z � �y και z � 0.

27. Tο τετράεδρο που ανήκει στο πρώτο οκτημόριο και
φράσσεται από τα επίπεδα που ανά δύο ορίζουν οι άξο-
νες συντεταγμένων, καθώς και από το επίπεδο x � y 2
� z 3 � 1.

28. Tο χωρίο ανήκει στο πρώτο οκτημόριο και φράσσεται
από τα επίπεδα που ανά δύο ορίζουν οι άξονες συντε-
ταγμένων, από το επίπεδο y � 1 � x και από την επι-
φάνεια z � cos (�x 2), 0 � x � 1.

29. H κοινή περιοχή του εσωτερικού των κυλίνδρων x 2 �
y 2 � 1 και x 2 � z 2 � 1 (Σχήμα 12.36).

z

y

x

 / 

 ,

z

y

x

 / 

 / 

z

y

x

z

y

x

z

y

x

z
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 .
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1
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0
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 .
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30. Tο χωρίο ανήκει στο πρώτο οκτημόριο και φράσσεται
από τα επίπεδα που ανά δύο ορίζουν οι άξονες συντε-
ταγμένων, και από την επιφάνεια z � 4 � x 2 � y.

31. Tο χωρίο ανήκει στο πρώτο οκτημόριο και φράσσεται
από τα επίπεδα που ανά δύο ορίζουν οι άξονες συντε-
ταγμένων, από το επίπεδο x � y � 4, και από τον κύ-
λινδρο y2 � 4z 2 � 16.

32. Tο χωρίο που αποκόπτουν από τον κύλινδρο x 2 � y 2 �
4 τα επίπεδα z � 0 και x � z � 3.

33. Tο χωρίο μεταξύ των επιπέδων x � y � 2z � 2 και
2x � 2y � z � 4 στο πρώτο οκτημόριο.

34. Tο πεπερασμένο χωρίο που φράσσεται από τα επίπεδα
z � x x � z � 8, z � y y � 8, και z � 0.

35. Tο χωρίο που αποκόπτουν από τον στερεό ελλειπτικό
κύλινδρο x 2 � 4y 2 � 4 το επίπεδο xy και το επίπεδο
z � x � 2.

36. Tο χωρίο που φράσσεται από πίσω από το επίπεδο
x � 0, από μπροστά και από πλάι από τον παραβολικό
κύλινδρο x � 1 � y 2, από πάνω από το παραβολοειδές
z � x 2 � y 2, και από κάτω από το επίπεδο xy.

Mέσες τιμές
Στις Aσκήσεις 37-40, βρείτε τη μέση τιμή της F(x y z)
στο χωρίο που δίνεται.

37. F(x y z) � x 2 � 9 στο κυβικό χωρίο του πρώτου οκτη-
μορίου, το οποίο φράσσεται από τα επίπεδα που ανά
δύο ορίζουν οι άξονες συντεταγμένων, και από τα επί-
πεδα x � 2, y � 2, και z � 2.

38. F(x y z) � x � y � z στο ορθογώνιο παραλληλεπίπε-
δο χωρίο του πρώτου οκτημορίου, το οποίο φράσσεται
από τα επίπεδα που ανά δύο ορίζουν οι άξονες συντε-
ταγμένων, και από τα επίπεδα x � 1, y � 1, και z � 2.

39. F(x y z) � x 2 � y 2 � z 2 στο κυβικό χωρίο του πρώτου
οκτημορίου, το οποίο φράσσεται από τα επίπεδα που
ανά δύο ορίζουν οι άξονες συντεταγμένων, και από τα
επίπεδα x � 1, y � 1, και z � 1.

40. F(x y z) � xyz στο κυβικό χωρίο του πρώτου οκτημο-
ρίου, το οποίο φράσσεται από τα επίπεδα που ανά δύο
ορίζουν οι άξονες συντεταγμένων, και από τα επίπεδα
x � 2, y � 2, και z � 2.

Aλλάζοντας τη σειρά ολοκλήρωσης 
Yπολογίστε τα ολοκληρώματα των Aσκήσεων 41-44 αλλά-
ζοντας τη σειρά ολοκλήρωσης με κατάλληλο τρόπο.

41.

42.

43.

44.

Θεωρία και παραδείγματα
45. Eύρεση άνω ορίου ολοκλήρωσης Λύστε ως προς το a:

46. Eλλειψοειδές Για ποια τιμή του c ισούται ο όγκος του ελ-
λειψοειδούς x 2 � ( y 2)2 � (z c) 2 � 1 με 8�;

47. Mάθετε γράφοντας: Eλαχιστοποίηση τριπλού ολοκληρώματος

Για ποιο χωρίο D του χώρου ελαχιστοποιείται η τιμή
του ολοκληρώματος  

���
D

 (4x2 � 4y2 � z2 � 4) dV ;

 /  / 
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0
� 4�a�x2

0
� 4�x2�y
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 dz dy dx � 4

15
 .
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0
� 1
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z

y
x

O

x2 � y2 � 1

x2 � z2 � 1

ΣΧΗΜΑ 12.36 Φαίνεται το ένα όγδοο της κοινής
περιοχής των κυλίνδρων  x 2 � y2 � 1  και
x 2 � z2 � 1  της Άσκησης 29.



Aιτιολογήστε την απάντησή σας.

48. Mάθετε γράφοντας: Mεγιστοποίηση τριπλού ολοκληρώματος

Για ποιο χωρίο D του χώρου μεγιστοποιείται η τιμή
του ολοκληρώματος

Aιτιολογήστε την απάντησή σας.

Aριθμητικοί υπολογισμοί
Στις Aσκήσεις 49-52, χρησιμοποιήστε ένα σύστημα υπο-
λογιστικής άλγεβρας για να υπολογίσετε το τριπλό ολο-

κλήρωμα της δοθείσας συνάρτησης στο καθορισμένο χω-
ρίο του χώρου.

49. F(x y z) � x2y2z στον στερεό κύλινδρο που φράσσε-
ται από την επιφάνεια x2 � y2 � 1 και από τα επίπεδα
z � 0 και z � 1.

50. F(x y z) � �xyz � στο στερεό που φράσσεται από κάτω
από το παραβολοειδές z � x 2 � y 2, και από πάνω από
το επίπεδο z � 1.

51. F(x y z) � στο στερεό που φράσσε-

ται από κάτω από τον κώνο z � , και από πά-

νω από το επίπεδο z � 1.

52. F(x y z) � x 4 � y 2 � z 2 στη στερεά σφαίρα
x2 � y2 � z2 � 1.

 , ,


x2 � y 2

z
(x2 � y 2 � z 2)3 / 2 , ,

 , ,

 , ,

���
D

 (1 � x2 � y2 � z2) dV ;
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ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΔΙΕΡΕΥΝΗΣΕΙΣ

Mάζες και ροπές

Στην ενότητα αυτή θα δούμε τρόπους υπολογισμού μάζας και ροπής
τριδιάστατων αντικειμένων σε καρτεσιανές συντεταγμένες. Oι τύποι
μοιάζουν με τους αντίστοιχους τύπους για αντικείμενα σε δύο δια-
στάσεις. Για υπολογισμούς σε σφαιρικές και κυλινδρικές συντεταγ-
μένες, δείτε την Eνότητα 12.6.

Mάζες και ροπές
Aν  
(x y z)  είναι η πυκνότητα (μάζα ανά μονάδα όγκου) σώματος που
καταλαμβάνει κάποιο χωρίο  D του χώρου, τότε το ολοκλήρωμα της  

στο  D δίνει τη μάζα του σώματος. Για να δούμε γιατί αληθεύει αυτό,
θεωρούμε μια διαμέριση του σώματος σε  n στοιχεία μάζας όπως αυτή
του Σχήματος 12.37. H μάζα του σώματος είναι το όριο

.

Για να βρούμε τις πρώτες ροπές ως προς τα επίπεδα που ανά δύο ορίζουν
οι άξονες συντεταγμένων, πολλαπλασιάζουμε την πυκνότητα με την
προσημασμένη απόσταση από κάθε επίπεδο. Για παράδειγμα, η έκ-
φραση

δίνει την πρώτη ροπή ως προς το επίπεδο  yz.  
Mπορούμε εύκολα να επεκτείνουμε την έννοια της ροπής  αδρα-

νείας σε τριπλά ολοκληρώματα. Aν  r(x y z)  είναι η απόσταση από
το σημείο  (x y z)  του χωρίου  D μέχρι την ευθεία  L τότε η ροπή
αδρανείας της μάζας  �mk � 
(xk yk zk) �Vk ως προς την ευθεία  L
(που φαίνεται στο Σχήμα 12.37) είναι περίπου  �Ik � r 2(xk yk zk)  �mk

H ροπή αδρανείας ως προς την ευθεία  L  όλου του στερεού σώματος εί-
ναι

 . , ,
 , ,

 , , ,
 , ,

Myz � ���
D

 xd(x, y, z) dV

M � lim
nl�

 �
n

k�1
 Dmk � lim

nl�
 �

n

k�1
 d(xk , yk, zk) DVk � ���

D

 d(x , y , z) dV

 , ,

12.5 Mάζες και ροπές σε τρεις διαστάσεις

�mk � 
(xk, yk, zk) �Vk

(xk, yk, zk)

x

z

y

L

D

r

ΣΧΗΜΑ 12.37 Για να ορίσουμε τη
μάζα ενός σώματος και τη ροπή
αδρανείας του ως προς μια ευθεία,
θεωρούμε μια διαμέρισή του σε
πεπερασμένο πλήθος στοιχείων
μάζας  �mk .



Aν η  L είναι ο άξονας  x,  τότε  r 2 � y2 � z2 (Σχήμα 12.38) και

Oμοίως,

Oι τύποι μάζας και ροπής στον χώρο είναι ανάλογοι των αντίστοιχων
τύπων στο επίπεδο (Eνότητα 12.2) και συνοψίζονται στον Πίνακα 12.3.

Iy � ���
D

 (x2 � z2) d dV   ���   Iz � ���
D

 (x2 � z2) d dV .

Ix � ���
D

 (y 2� z 2)d dV .

IL � lim
nl�

 �
n

k�1
 DIk � lim

nl�
 �

n

k�1
 r 2(xk 

, yk 

, zk)d(xk 

, yk 

, zk) DVk � ���
D

 r 2 
d dV .
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⎯√⎯⎯⎯⎯⎯y2 � z2

z
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⎯√⎯⎯⎯⎯⎯x2 � y2
x

y

x

y

z
x

dV

⎯√⎯⎯⎯⎯⎯x2 � z2
0

ΣΧΗΜΑ 12.38 Aποστάσεις του  dV από τους άξονες συντεταγμένων και
από τα επίπεδα που ανά δύο ορίζουν οι άξονες συντεταγμένων. 

Πίνακας 12.3 Tύποι μάζας και ροπής σώματος στον χώρο

Mάζα: M � 
 dV (
 � 
(x y z) � πυκνότητα)

Πρώτες ροπές ως προς τα επίπεδα που ορίζουν οι άξονες συντεταγμένων:

Kέντρο μάζας:

Pοπές αδρανείας (δεύτερες ροπές) ως προς τους άξονες συντεταγμένων:

Pοπές αδρανείας ως προς ευθεία L:

απόσταση από το σημείο (x y z)
μέχρι την ευθεία L)

Aκτίνα αδρανείας ως προς ευθεία L:

RL � 
IL / M

 , ,IL � ���  r 2 d dV   (r ( x, y, z ) �

 Iz � ���  (x2 � y 2) d dV

 Iy � ���  (x2 � z 2) d dV

 Ix � ���  (y 2 � z 2) d dV

 x � 
Myz

M
 ,    y � 

Mxz

M
 ,  z � 

Mxy

M

Myz � ���
D

 x d dV,   Mxz � ���
D

 y d dV,   Mxy � ���
D
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Παράδειγμα 1 Eύρεση κέντρου μάζας στερεού σώματος

Bρείτε το κέντρο μάζας ενός στερεού σταθερής πυκνότητας  
 που
φράσσεται από κάτω από τον κυκλικό δίσκο  R: x 2 � y2 � 4  του επι-
πέδου  z � 0,  και από πάνω από το παραβολοειδές  z � 4 � x 2 � y2

(Σχήμα 12.39).

Λύση Λόγω συμμετρίας, . Για να βρούμε το , υπολογί-
ζουμε πρώτα

Mε παρόμοιο υπολογισμό, βρίσκουμε

Συνεπώς, , οπότε το κέντρο μάζας είναι (x–, y–, z–) =
(0, 0, 4/3).

Όταν η πυκνότητα στερεού σώματος είναι σταθερή (όπως στο Παρά-
δειγμα 1), τότε το κέντρο μάζας καλείται κεντροειδές του σώματος
(όπως και στα διδιάστατα σχήματα της Eνότητας 12.2).

Παράδειγμα  2 Eύρεση ροπών αδρανείας ως προς τα επίπεδα
που ανά δύο ορίζουν οι άξονες συντεταγμένων

Bρείτε τα  Ix Iy Iz για το ορθογώνιο στερεό σταθερής πυκνότητας

 που φαίνεται στο Σχήμα 12.40.

Λύση O τύπος για το Ix δίνει

Mπορούμε να διευκολύνουμε τις πράξεις κάνοντας την παρατήρηση
ότι η ποσότητα  ( y2 � z2)
 είναι άρτια συνάρτηση των  x y και  z,
και συνεπώς

 � 4ad �b 3c
48

 � c
3b

48 � � abcd

12
 (b 2 � c 2) � M

12
 (b 2 � c 2) . 

 � 4ad � c / 2

0
 �b 3

24
 � z

2b
2 � dz

 � 4ad � c / 2

0
 �y 3

3
 � z 2y�

y�b / 2

y�0

 dz

 Ix � 8 � c / 2

0
� b / 2

0
� a / 2

0
 (y 2 � z 2) d dx dy dz � 4ad � c / 2

0
� b / 2

0
 (y 2 � z 2) dy dz

 , ,

Ix � � c / 2

�c / 2
� b / 2

�b/ 2
� a / 2

�a / 2
 (y 2� z 2) d dx dy dz .

 , ,

z � (Mxy / M) � 4 / 3

M � ���
R

4�x2�y2

0
 d dz dy dx � 8pd .

 � d
2

 � 2p

0
 ��1

6
 (4 � r 2)3�

r�2

r�0
 du � 16d

3
 � 2p

0
 du � 32pd

3
 .

 � d
2

 � 2p

0
� 2

0
 (4 � r 2)2r dr du

 � d
2

 ��
R

 (4 � x2 � y 2)2 dy dx

 Mxy � ���
R

z�4�x2�y2

z�0
 z d dz dy dx � ��

R

 �z 2

2�
z�4�x2�y2

z�0
 d dy dx

zx � y � 0
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z � 4 � x2 � y2

z

y

x

0
R

x2 � y 2  � 4

K.M.

ΣΧΗΜΑ 12.39 Στο Παράδειγμα 1
βρίσκουμε το κέντρο μάζας του
στερεού του σχήματος.

Πολικές συντεταγμένες

ΣΧΗΜΑ 12.40 Στο Παράδειγμα 2
υπολογίζονται οι  Ix Iy και  Iz για
το στερεό του σχήματος. H αρχή
βρίσκεται στο κέντρο του στερεού.

 , ,

x

y

z

b

a

c

K�����
��� ������'



Oμοίως,

ΑΣΚΗΣΕΙΣ 12.5

Iy � M
12

 (a2 � c2)   ���   Iz � M
12

 (a2 � b2) .

98712.5. Mάζες και ροπές σε τρεις διαστάσεις

Σταθερή πυκνότητα
Tα στερεά των Aσκήσεων 1-12 έχουν όλα σταθερή πυκνό-
τητα 
 � 1.

1. Eπανερχόμενοι στο Παράδειγμα 1 Yπολογίστε απευθείας
το ολοκλήρωμα Ix του Πίνακα 12.3 για να επιβεβαιώ-
σετε τον σύντομο τρόπο υπολογισμού του Παραδείγ-
ματος 2. Xρησιμοποιήστε τα αποτελέσματα του Παρα-
δείγματος 2 για να βρείτε την ακτίνα αδρανείας του ορ-
θογώνιου στερεού ως προς κάθε άξονα συντεταγμένων.

2. Pοπές αδρανείας Oι άξονες συντεταγμένων στο σχήμα
διέρχονται από το κεντροειδές της στερεάς σφηνοει-
δούς βαθμίδας, και είναι παράλληλοι προς τις πλευρές
της. Bρείτε τις ποσότητες Ix Iy και Iz για a � b � 6 και
c � 4.

3. Pοπές αδρανείας Για το ορθογώνιο στερεό του σχήμα-
τος, βρείτε τις ροπές αδρανείας Ix Iy και Iz

4. (α) Kεντροειδές και ροπές αδρανείας Bρείτε το κεντροει-
δές και τις ροπές αδρανείας Ix Iy και Iz του τετραέ-
δρου που έχει κορυφές τα σημεία (0, 0, 0) , (1, 0, 0), (0,
1, 0) , και (0, 0, 1).

(β) Aκτίνα αδρανείας Bρείτε την ακτίνα αδρανείας του
τετραέδρου ως προς τον άξονα x. Συγκρίνετέ την
με την απόσταση του κεντροειδούς από τον άξονα
x.

5. Kέντρο μάζας και ροπές αδρανείας Mια στερεά «σκάφη»
σταθερής πυκνότητας φράσσεται από κάτω από την
επιφάνεια z � 4y2, από πάνω από το επίπεδο z � 4, και

από μπροστά και πίσω από τα επίπεδα x � 1 και
x � �1. Bρείτε το κέντρο μάζας και τις ροπές αδρανεί-
ας ως προς τους τρεις άξονες.

6. Kέντρο μάζας Ένα στερεό σταθερής πυκνότητας φράσ-
σεται από κάτω από το επίπεδο z � 0, από τα πλάγια
από τον ελλειπτικό κύλινδρο x2 � 4y2 � 4, και από πά-
νω από το επίπεδο z � 2 � x (δείτε το σχήμα).

(α) Bρείτε τα 

(β) Yπολογίστε το ολοκλήρωμα

κάνοντας χρήση πινάκων ολοκλήρωσης για την
τελευταία ολοκλήρωση ως προς x Στη συνέχεια
διαιρέστε το Mxy με το M για να επαληθεύσετε ότι

.

7. (α) Kέντρο μάζας Bρείτε το κέντρο μάζας του στερεού
σταθερής πυκνότητας που φράσσεται από κάτω
από το παραβολοειδές z � x 2 � y2 και από πάνω
από το επίπεδο z � 4.

(β) Bρείτε το επίπεδο z � c που διαιρεί το στερεό σε
δύο μέρη ίσων όγκων. Tο επίπεδο αυτό δεν διέρχε-
ται από το κέντρο μάζας.

8. Pοπές και ακτίνες αδρανείας Ένας στερεός κύβος με ακμή
μήκους 2, φράσσεται από τα επίπεδα x � �1,  z � �1,
y � 3, και y � 5. Bρείτε το κέντρο μάζας του, τις ροπές
αδρανείας, και τις ακτίνες αδρανείας ως προς τους άξο-
νες συντεταγμένων.

9. Pοπή αδρανείας και ακτίνα αδρανείας ως προς ευθεία Mια
σφήνα όπως αυτή της Άσκησης 2 έχει a � 4, b � 6, και
c � 3. Kάντε ένα πρόχειρο σχήμα για να βεβαιωθείτε
ότι το τετράγωνο της απόστασης ενός τυπικού σημείου
(x y z) της σφήνας από την ευθεία L: z � 0, y � 6
ισούται με r 2 � ( y � 6)2 � z2. Kατόπιν υπολογίστε τη

 , ,

z

y

x

x2 � 4y2 � 4

1

2

2
x � �2

z � 2 � x

z � 5 / 4

 .

Mxy � � 2

�2
� (1 / 2)
4�x2

�(1 / 2)
4�x2
� 2�x

0
 z dz dy dx

x ��� y .

 , ,

z

y

x

c

b

a

 . , ,

z

y

x b

a

K���������	
��� (0, 0, 0)

c

c–
3

b–
3

a–
2

 , ,



ροπή αδρανείας και την ακτίνα αδρανείας της σφήνας
ως προς την ευθεία L

10. Pοπή αδρανείας και ακτίνα αδρανείας ως προς ευθεία Mια
σφήνα όπως αυτή της Άσκησης 2 έχει a � 4, b � 6, και
c � 3. Kάντε ένα πρόχειρο σχήμα για να βεβαιωθείτε
ότι το τετράγωνο της απόστασης ενός τυπικού σημείου
(x y z) της σφήνας από την ευθεία L: x � 4, y � 0
ισούται με r 2 � (x � 4)2 � y2. Kατόπιν υπολογίστε τη
ροπή αδρανείας και την ακτίνα αδρανείας της σφήνας
ως προς την ευθεία L

11. Pοπή αδρανείας και ακτίνα αδρανείας ως προς ευθεία Ένα στε-
ρεό όπως αυτό της Άσκησης 3 έχει a � 4, b � 2, και c
� 1. Kάντε ένα πρόχειρο σχήμα για να βεβαιωθείτε ότι
το τετράγωνο της απόστασης ενός τυπικού σημείου (x
y z) του στερεού από την ευθεία L: y � 2, z � 0 ισού-
ται με r 2 � ( y � 2)2 � z2. Kατόπιν υπολογίστε τη ροπή
αδρανείας και την ακτίνα αδρανείας του στερεού ως
προς την ευθεία L

12. Pοπή αδρανείας και ακτίνα αδρανείας ως προς ευθεία Ένα στε-
ρεό όπως αυτό της Άσκησης 3 έχει a � 4, b � 2, και c
� 1. Kάντε ένα πρόχειρο σχήμα για να βεβαιωθείτε ότι
το τετράγωνο της απόστασης ενός τυπικού σημείου (x
y z) του στερεού από την ευθεία L: x � 4, y � 0 ισού-
ται με r 2 � (x � 4)2 � y2. Kατόπιν υπολογίστε τη ροπή
αδρανείας και την ακτίνα αδρανείας του στερεού ως
προς την ευθεία L

Mεταβαλλόμενη πυκνότητα
Στις Aσκήσεις 13 και 14, βρείτε

(α) Tη μάζα του στερεού

(β) Tο κέντρο μάζας.

13. Ένα στερεό χωρίο του πρώτου οκτημορίου φράσσεται
από τα επίπεδα που ανά δύο ορίζουν οι άξονες συντε-
ταγμένων και το επίπεδο x � y � z � 2. H πυκνότητα
του στερεού είναι 
(x y z) � 2x

14. Ένα στερεό χωρίο του πρώτου οκτημορίου φράσσεται
από τα επίπεδα y � 0 και z � 0, καθώς και από τις επι-
φάνειες z � 4 � x 2 και x � y2 (δείτε το σχήμα). H συ-
νάρτηση πυκνότητας του στερεού είναι 
(x y z) �
kxy, όπου k σταθερά

Στις Aσκήσεις 15 και 16, βρείτε

(α) Tη μάζα του στερεού

(β) Tο κέντρο μάζας

(γ) Tις ροπές αδρανείας ως προς τους άξονες συντε-
ταγμένων

(δ) Tις ακτίνες αδρανείας ως προς τους άξονες συντε-
ταγμένων.

15. Ένας στερεός κύβος στο πρώτο οκτημόριο φράσσεται
από τα επίπεδα που ανά δύο ορίζουν οι άξονες συντε-
ταγμένων, καθώς και από τα επίπεδα x � 1, y � 1, και
z � 1. H πυκνότητα του κύβου δίνεται από τη συνάρτη-
ση 
(x y z) � x � y � z � 1.

16. Mια σφήνα όπως αυτή της Άσκησης 2 έχει διαστάσεις
a � 2, b � 6, και c � 3. H συνάρτηση πυκνότητας είναι

(x y z) � x � 1. Σημειώστε ότι αν η πυκνότητα είναι
σταθερή, το κέντρο μάζας θα είναι (0, 0, 0). Nα βρεθούν
τα Ix, Iy , Iz.

17. Mάζα Bρείτε τη μάζα του στερεού που φράσσεται από
τα επίπεδα x � z � 1, x � z � �1, y � 0 και από την
επιφάνεια y � . H πυκνότητα του στερεού είναι

(x y z) � 2y � 5.

18. Mάζα Bρείτε τη μάζα του στερεού που φράσσεται από
τις παραβολικές επιφάνειες z � 16 � 2x 2 � 2y2 και
z � 2x 2 � 2y2 δεδομένου ότι η πυκνότητα του στερεού
είναι 
(x y z) �

Έργο
Στις Aσκήσεις 19 και 20, υπολογίστε τις εξής ποσότητες.

(α) Tο έργο που εκτελείται από τη βαρυτική δύναμη
(για σταθερή επιτάχυνση της βαρύτητας g) κατά τη
μετατόπιση του υγρού περιεχομένου του δοχείου
στο επίπεδο xy. (Yπόδειξη: Διαμερίστε το υγρό σε
μικρά στοιχεία όγκου �Vi και βρείτε (κατά προ-
σέγγιση) το έργο που εκτελεί η βαρυτική δύναμη
για τη μετακίνηση κάθε στοιχείου όγκου. Aθροί-
ζοντας και παίρνοντας κατόπιν το όριο, καταλήγε-
τε σε ένα τριπλό ολοκλήρωμα που πρέπει να υπο-
λογίσετε.)

(β) Tο έργο της βαρυτικής δύναμης κατά τη μετατόπι-
ση μάζας ίσης με τη συνολική μάζα του υγρού, η
οποία είναι συγκεντρωμένη στο κέντρο μάζας, μέ-
χρι το επίπεδο xy.

19. Tο δοχείο είναι ένα κυβικό κουτί στο πρώτο οκτημό-
ριο και φράσσεται από τα επίπεδα που ανά δύο ορίζουν
οι άξονες συτεταγμένων, καθώς και από τα επίπεδα
x � 1, y � 1, και z � 1. H πυκνότητα του υγρού περιε-
χομένου του δοχείου δίνεται από τη συνάρτηση 
(x y
z) � x � y � z � 1 (δείτε την Άσκηση 15).

20. Tο δοχείο έχει το σχήμα του χωρίου που φράσσεται
από τις επιφάνειες y � 0, z � 0, z � 4 � x 2, και x � y2.
H πυκνότητα του υγρού περιεχομένου του δοχείου δί-
νεται από τη συνάρτηση 
 (x y z) � kxy, όπου k στα-
θερά (Δείτε την Άσκηση 14).

Tο θεώρημα των παράλληλων αξόνων 
Tο θεώρημα των παράλληλων αξόνων (Aσκήσεις 12.2)
ισχύει επίσης στις τρεις διαστάσεις. Έστω Lκ.μ. μια ευθεία
που διέρχεται από το κέντρο μάζας σώματος με μάζα m και
έστω L μια ευθεία παράλληλη στην Lκ.μ. και απέχουσα h
από αυτήν Tο θεώρημα των παράλληλων αξόνων λέει ότι
οι ροπές αδρανείας Iκ.μ. και IL του σώματος ως προς τις ευ-
θείες Lκ.μ. και L θα ικανοποιούν την εξίσωση

 .

 .
 , ,

 , ,


x2 � y 2
 . , ,

 , ,

z

 , ,

 , ,

z

y

x

x  � y2 

2

z � 4 � x 2 

(2, √⎯2, 0)

4

 .
 , ,

 . , ,

 .

 ,
 ,

 .

 ,
 ,

 .

 , ,

 .
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IL � Iκ.μ. � mh2. (1)

Όπως και στην περίπτωση των δύο διαστάσεων, το θεώ-
ρημα μας παρέχει έναν εύκολο τρόπο υπολογισμού της
ροπής αδρανείας ως προς την ευθεία L όταν η Iκ.μ. και η
μάζα του σώματος είναι γνωστές.

21. Aπόδειξη του θεωρήματος των παράλληλων αξόνων

(α) Δείξτε ότι η πρώτη ροπή ενός σώματος ως προς
επίπεδο που διέρχεται από το κέντρο μάζας του
ισούται με μηδέν. (Yπόδειξη: Tοποθετήστε το κέ-
ντρο μάζας του σώματος στην αρχή και θεωρήστε
ότι το εν λόγω επίπεδο είναι το yz. Tι σας λέει ο
τύπος ;)

(β) Για να αποδείξουμε το θεώρημα των παράλληλων
αξόνων, τοποθετούμε το κέντρο μάζας του σώμα-
τος στην αρχή, την ευθεία Lκ.μ. κατά μήκος του
άξονα z, και την ευθεία L κάθετα στο επίπεδο xy
στο σημείο (h 0, 0). Έστω D ο χώρος που κατα-
λαμβάνει το σώμα. Στην περίπτωση αυτή, χρησι-
μοποιώντας τον συμβολισμό του σχήματος,

(2)

Aναπτύξτε την ολοκληρωτέα ποσότητα και συ-
μπληρώστε την απόδειξη.

22. H ροπή αδρανείας ως προς μια διάμετρο της στερεάς
σφαίρας που έχει σταθερή πυκνότητα και ακτίνα a εί-
ναι (2 5)ma2, όπου m είναι η μάζα της σφαίρας. Bρείτε
τη ροπή αδρανείας ως προς ευθεία που εφάπτεται στη
σφαίρα.

23. H ροπή αδρανείας του στερεού της Άσκησης 3 ως προς
τον άξονα z ισούται με Iz � abc(a2 � b2) 3.

(α) Xρησιμοποιήστε την Eξίσωση (1) για να βρείτε τη
ροπή αδρανείας και την ακτίνα αδρανείας του στε-
ρεού ως προς ευθεία που είναι παράλληλη στον
άξονα z και διέρχεται από το κέντρο μάζας του
στερεού.

(β) Xρησιμοποιήστε την Eξίσωση (1) και το αποτέλε-
σμα του ερωτήματος (α) για να βρείτε τη ροπή
αδρανείας και την ακτίνα αδρανείας του στερεού
ως προς την ευθεία x � 0, y � 2b

24. Aν a � b � 6 και c � 4, τότε η ροπή αδρανείας της στε-
ρεάς σφήνας της Άσκησης 2 ως προς τον άξονα x είναι
Ix � 208. Bρείτε τη ροπή αδρανείας της σφήνας ως
προς την ευθεία y � 4, z � �4 3 (δηλ. ως προς την ευ-
θεία που περιέχει την κοφτερή ακμή της σφήνας).

Tύπος του Πάππου
O τύπος του Πάππου (Aσκήσεις Eνότητας 12.2) ισχύει για
τρεις διαστάσεις όπως και για δύο.Έστω ότι τα σώματα B1

και B2 με μάζες m1 και m2, αντίστοιχα, καταλαμβάνουν μη
αλληλεπικαλυπτόμενες περιοχές του χώρου και ότι c1 και
c2 είναι τα διανύσματα με αρχικό σημείο την αρχή των αξό-
νων και τελικό σημείο το κέντρο μάζας κάθε σώματος.
Στην περίπτωση αυτή, το κέντρο μάζας της ένωσης B1 � B2

των δύο σωμάτων δίνεται από το διάνυσμα

(3)

Όπως και πριν, ο τύπος αυτός καλείται τύπος του Πάππου.
Όπως και στην περίπτωση των δύο διαστάσεων, έτσι κι εδώ
ο τύπος γενικεύεται εύκολα στη μορφή

(4)

για n σώματα.

25. Aποδείξτε τον τύπο του Πάππου (Eξίσωση 3). (Yπόδει-
ξη: Σχεδιάστε τα σώματα B1 και B2 ως δύο μη αλληλε-
πικαλυπτόμενες περιοχές του πρώτου οκτημορίου και
ονομάστε τα κέντρα μάζας τους

Eκφράστε τις ροπές της ένω-
σης B1 � B2 ως προς τα επίπεδα που ανά δύο ορίζουν οι
άξονες συντεταγμένων, συναρτήσει των μαζών m1 και
m2 και των συντεταγμένων των κέντρων τους.)

26. Tο ακόλουθο σχήμα δείχνει ένα στερεό που αποτελεί-
ται από τρία ορθογώνια στερεά σταθερής πυκνότητας 

 � 1. Xρησιμοποιήστε τον τύπο του Πάππου για να
βρείτε το κέντρο μάζας της ένωσης

(α) A � B (β) A � C

(γ) B � C (δ) A � B � C

27. (α) Έστω ότι ο στερεός ορθός κυκλικός κώνος C με
ακτίνα βάσης a και ύψος h τοποθετείται πάνω στην
κυκλική βάση στερεού ημισφαιρίου S ακτίνας a,
έτσι ώστε η ένωση των δύο στερεών να θυμίζει ένα
...παγωτό χωνάκι. Tο κεντροειδές του στερεού κώ-
νου βρίσκεται στο ένα τέταρτο της απόστασης από
τη βάση έως την κορυφή. Tο κεντροειδές του στε-
ρεού ημισφαιρίου βρίσκεται στα τρία όγδοα της
απόστασης από τη βάση έως την κορυφή. Ποια
σχέση πρέπει να υπάρχει μεταξύ των h και a, ώστε
το κεντροειδές της ένωσης C � S να ανήκει στην
κοινή βάση των δύο στερεών;

(β) Aν δεν το έχετε ήδη κάνει, απαντήστε στην ανά-
λογη ερώτηση για το τρίγωνο και το ημικύκλιο της
Άσκησης 55 της Eνότητας 12.2. Oι απαντήσεις δεν
είναι οι ίδιες.

z

(0, 3, 2)

(2, 0, 2)

(2, 0, 0)

x

y

(3, 6, –2)

(–1, 6, –2)

(–1, 6, 1)
3

2

2

1

1

2
1

4B

C

A

 .

(x1 

, y1 

, z1) ��� (x2 

, y2 

, z2) .

c � 
m1c1 � m2c2 � � � � � mncn

m1 � m2 � � � �� mn

c � 
m1c1 � m2c2

m1 � m2
 .

 / 

 .

 / 

 / 

IL � ���
D

 � v � hi �2 dm .

 ,

v � xi � yj

z

x

y

(h, 0, 0)

K.M.

L

L�.�.

(x, y, z)

v � hi

hi

D

x � Myz / M

98912.5. Mάζες και ροπές σε τρεις διαστάσεις



28. Mια στερεά πυραμίδα P με ύψος h και τέσσερις ίσες
πλευρές έχει ως βάση τη μία έδρα του στερεού κύβου
C του οποίου οι πλευρές έχουν μήκος s Tο κεντροει-
δές της στερεάς πυραμίδας βρίσκεται στο ένα τέταρτο
της απόστασης από τη βάση έως την κορυφή.   Ποια

σχέση πρέπει να ισχύει μεταξύ των h και s ώστε το κε-
ντροειδές της ένωσης P � C να ανήκει στη βάση της
πυραμίδας; Συγκρίνετε την απάντησή σας με τα αποτέ-
λεσματά σας στην Άσκηση 27, καθώς και στην Άσκη-
ση 56 της Eνότητας 12.2.

 .
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Oλοκλήρωση σε κυλινδρικές συντεταγμένες • Σφαιρικές

συντεταγμένες • Oλοκλήρωση σε σφαιρικές συντεταγμένες

Πολλές εφαρμογές που αφορούν τους φυσικούς, τους μηχανικούς, ή
τους γεωμέτρες, περιλαμβάνουν κυλίνδρους, κώνους, ή σφαίρες. Στις
περιπτώσεις αυτές οι υπολογισμοί απλοποιούνται αν χρησιμοποιηθούν
κυλινδρικές ή σφαιρικές συντεταγμένες.

Oλοκλήρωση σε κυλινδρικές συντεταγμένες
Oι κυλινδρικές συντεταγμένες προκύπτουν αν συνδυάσουμε τις πολι-
κές συντεταγμένες του επιπέδου  xy με την καρτεσιανή συντεταγμένη
z.  Έτσι, σε κάθε σημείο του χώρου αντιστοιχεί μία ή περισσότερες
τριάδες της μορφής  (r 
 z) ,  όπως φαίνεται στο  Σχήμα 12.41.

Tα  x y r και  
 των ορθογώνιων (καρτεσιανών) και των κυλιν-
δρικών συντεταγμένων συνδέονται με τις συνήθεις εξισώσεις.

Σε κυλινδρικές συντεταγμένες, η εξίσωση  r � a περιγράφει όχι
απλώς έναν κύκλο του επιπέδου  xy, αλλά έναν πλήρη κύλινδρο γύρω
από τον άξονα  z (Σχήμα 12.42). O άξονας  z δίνεται από την εξίσωση
r � 0.  H εξίσωση  
 � 
0 περιγράφει το επίπεδο που περιέχει τον άξο-
να  z και σχηματίζει γωνία  
0 με τον θετικό ημιάξονα  x.  Tέλος, η
εξίσωση  z � z0 περιγράφει το κάθετο στον άξονα  z επίπεδο (ακρι-
βώς όπως και για τις καρτεσιανές συντεταγμένες).  

Oι κυλινδρικές συντεταγμένες προσφέρονται για την περιγραφή
κυλίνδρων των οποίων οι άξονες συμπίπτουν με τον άξονα  z, και επι-

 , , ,

 , ,
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Oρισμός Kυλινδρικές συντεταγμένες
Oι κυλινδρικές συντεταγμένες παριστάνουν ένα σημείο  P του
χώρου μέσω της διατεταγμένης τριάδας  (r 
 z)  όπου

1. r και  
 είναι οι πολικές συντεταγμένες της κατακόρυφης
προβολής του  P στο επίπεδο  xy  και

2. z είναι η ορθογώνια (καρτεσιανή) κατακόρυφη 
συντεταγμένη.

 , ,
y

z

O

r

P(r, 
, z)




x

x

z

y

ΣΧΗΜΑ 12.41 Oι κυλινδρικές
συντεταγμένες σημείου στον χώρο
είναι  r 
 και  z . , ,

Eξισώσεις που συνδέουν τις ορθογώνιες  (x , y , z)  και τις
κυλινδρικές  (r , 
, z)  συντεταγμένες

x � r cos 
 y � r sin 
 z � z

r 2 � x 2 � y2, tan 
 � y x / 

 , , ,



πέδων που είτε περιέχουν τον άξονα  z είτε είναι κάθετα προς αυτόν.
Tέτοιου είδους επιφάνειες έχουν εξισώσεις με σταθερή τη μία συντε-
ταγμένη τους:

Tο στοιχείο όγκου σε κυλινδρικές συντεταγμένες είναι

dV � dz r dr d
 (1)

(Σχήμα 12.43). Tώρα μπορούμε να υπολογίζουμε τριπλά ολοκληρώμα-
τα σε κυλινδρικές συντεταγμένες εκτελώντας διαδοχική ολοκλήρωση,
όπως στο ακόλουθο παράδειγμα.

Παράδειγμα 1 Eύρεση ορίων ολοκλήρωσης σε κυλινδρικές
συντεταγμένες

Bρείτε τα όρια ολοκλήρωσης, σε κυλινδρικές συντεταγμένες, της
συνάρτησης  f (r 
 z)  στο χωρίο  D το οποίο φράσσεται από  το επί-
πεδο  z � 0,  από τον κυκλικό κύλινδρο  x 2 � ( y � 1)2 � 1,  και από
το παραβολοειδές  z � x 2 � y2.  

Λύση

Bήμα 1: Σχεδιάγραμμα (Σχήμα 12.44). H βάση του χωρίου  D συμπί-
πτει με την προβολή του, R, στο επίπεδο  xy.  Tο σύνορο του χωρίου
προβολής  R είναι ο κύκλος  x 2 � ( y � 1)2 � 1.  H εξίσωση του κύ-
κλου αυτού, σε πολικές συντεταγμένες, είναι

Bήμα 2: Όρια ολοκλήρωσης ως προς z. Mια ευθεία  M που διέρχεται από
ένα τυπικό σημείο  (r 
)  του  R και είναι παράλληλη στον άξονα  z
εισέρχεται στο  D για  z � 0  και εξέρχεται για  z � x2 � y2 � r2.

 ,

 r � 2  sin  u .

 r 2 � 2r  sin  u � 0

 x2 � y 2 � 2y � 1 � 1

 x2 � (y � 1)2 � 1

 , ,

 z � 2.

 u � p
3

 r � 4
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z � z0,
��+ �� r ��� � �������������

r � a,
��+ �� � ��� z ������������� 

� = �0,
��+ �� r ��� z �������������

z

y

x

z0

�0

O

a

ΣΧΗΜΑ 12.42 Aν
κρατήσουμε σταθερή μία
από τις κυλινδρικές
συντεταγμένες,
προκύπτουν εξισώσεις
κυλίνδρων και επιπέδων.

dz

r d


d


r dr d


r

z

dr

ΣΧΗΜΑ 12.43 Tο στοιχείο όγκου σε
κυλινδρικές συντεταγμένες είναι  
dV � dz r dr d
 .

K���������	 ����/��	: x2 � (y � 1)2 � 1
r � 2 sin θ*�����	 ����/��	:x

y

z

θ

M D

��� ����	���

K���������	 ����/��	:    z � x 2 � y 2

K���������	 ����/��	: z � r 2

2

R L
(r, θ)

ΣΧΗΜΑ 12.44 Σχήμα για το
Παράδειγμα 1.



Bήμα 3: Όρια ολοκλήρωσης ως προς r. Mια ημιευθεία  L που ξεκινά
από την αρχή των αξόνων και διέρχεται από το σημείο  (r 
)  εισέρ-
χεται στο  R για  r � 0  και εξέρχεται για  r � 2 sin 


Bήμα 4: Όρια ολοκλήρωσης ως προς 
. Kαθώς η  L σαρώνει το  R η
γωνία 
 που σχηματίζει με τον θετικό ημιάξονα  x μεταβάλλεται
από 
 � 0  έως  
 � � Tο ολοκλήρωμα είναι 

Στο Παράδειγμα 1 παρατίθεται μια χρήσιμη διαδικασία εύρεσης
ορίων ολοκλήρωσης σε κυλινδρικές συντεταγμένες. H διαδικασία αυ-
τή συνοψίζεται στο παράδειγμα που ακολουθεί.

���
D

 f (r, u, z) dV � �p

0
� 2 sin u

0
� r2

0
 f (r, u, z) dz r dr du .

 .

 ,

 .
 ,
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Πώς ολοκληρώνουμε σε κυλινδρικές συντεταγμένες

Για να υπολογίσουμε το 

σε ένα χωρίο  D του χώρου σε κυλινδρικές συντεταγμένες, ολοκληρώνοντας πρώτα ως προς  z έπειτα ως
προς  r και τελικά ως προς  
 ακολουθούμε τα εξής βήματα. , ,

 ,

���
D

 f (r , u , z) dV

Bήμα 4: Όρια της ολοκλήρωσης ως προς 
. Kαθώς η ημιευθεία  L σαρώνει το  R η γωνία 
 που σχημα-
τίζει με τον θετικό ημιάξονα x μεταβάλλεται από 
 � � σε 
 � � Aυτά είναι τα όρια της ολοκλήρω-
σης ως προς 
. Tο ολοκλήρωμα είναι λοιπόν

���
D

 f (r , u , z) dV � � u�b

u�a

 � r�h2(u)

r�h1(u)
 � z�g2(r, u)

z�g1(r, u)
 f (r, u, z) dz r dr du .

 .
 ,

Bήμα 2: Όρια της ολοκλήρωσης
ως προς z. Φέρουμε μια ευθεία
M που διέρχεται από ένα τυπι-
κό σημείο  (r 
) του  R και εί-
ναι παράλληλη στον άξονα  z.
Kαθώς το  z αυξάνεται, η  M ει-
σέρχεται στο  D για  z � g1(r

) και εξέρχεται για  z � g2(r

) . Aυτά είναι τα όρια της ολο-
κλήρωσης ως προς z.

 ,
 ,

 ,

Bήμα 3: Όρια της ολοκλήρωσης
ως προς r. Aπό την αρχή των
αξόνων φέρουμε από την αρχή
μια ημιευθεία L που διέρχεται
από το σημείο (r 
). H ημι-
ευθεία αυτή εισέρχεται στο R
για  r � h1(
) και εξέρχεται για
r � h2(
) . Aυτά είναι τα όρια
της ολοκλήρωσης ως προς r.

 ,

r � h1(θ )

z � g2(r, θ )

z � g1(r, θ)

r � h2(θ)

z

y

x

D

R

z

y

x

z � g2(r, θ )

z � g1(r, θ )r � h1(θ)

D

R
r � h2(θ )

M

(r, θ )
r � h1(θ )

θ � β

z � g2(r, θ )

z � g1(r, θ )

r � h2(θ )

z

y

x
θ

D

R

M

(r, θ)

βα

L

θ � α

Bήμα 1: Σχεδιάγραμμα. Aπεικονί-
ζουμε το χωρίο  D, καθώς και την
προβολή του, R, στο επίπεδο  xy.
Σημειώνουμε στο σχήμα τις
επιφάνειες και τις καμπύλες που
αποτελούν σύνορα των  D και
R .



Παράδειγμα 2 Eύρεση κεντροειδούς

Bρείτε το κεντροειδές  (
 � 1)  του στερεού που περικλείεται από τον
κύλινδρο  x2 � y2 � 4,  και είναι άνω φραγμένο από το παραβολοειδές
z � x2 � y2,  και κάτω φραγμένο από το επίπεδο xy.

Λύση

Bήμα 1: Σχεδιάγραμμα. Σχεδιάζουμε το στερεό, το οποίο είναι άνω
φραγμένο από το παραβολοειδές  z � r2 και κάτω φραγμένο από το
επίπεδο z � 0  (Σχήμα 12.45). H βάση του  R είναι ο κυκλικός δί-
σκος  του επιπέδου  xy.

Tο κεντροειδές  του στερεού κείται πάνω στον άξονα
συμμετρίας του, που εδώ είναι ο άξονας  z.  Aυτό σημαίνει ότι

.  Προκειμένου να βρούμε το  ,  διαιρούμε την πρώτη ρο-
πή  Mxy με τη μάζα  M

Για να βρούμε τα όρια ολοκλήρωσης των ολοκληρωμάτων μάζας
και ροπής, εκτελούμε τα τέσσερα βασικά βήματα. Tο βήμα 1 το εκτε-
λέσαμε ήδη κάνοντας το αρχικό σχήμα. Tα υπόλοιπα βήματα θα μας
δώσουν τα όρια ολοκλήρωσης.

Bήμα 2: Όρια ολοκλήρωσης ως προς z. Mια ευθεία  M που διέρχεται
από το τυπικό σημείο  (r 
)  της βάσης η οποία είναι παράλληλη
στον άξονα  z, εισέρχεται στο στερεό για  z � 0  και εξέρχεται για
z � r 2.

Bήμα 3: Όρια ολοκλήρωσης ως προς r. Mια ημιευθεία  L που ξεκινά
από την αρχή και διέρχεται από το  (r 
)  εισέρχεται στο χωρίο  R
για  r � 0  και εξέρχεται για  r � 2.

Bήμα 4: Όρια ολοκλήρωσης ως προς 
. Kαθώς η  L σαρώνει τη βάση
του στερεού με δεξιόστροφη φορά, η γωνία  
 που σχηματίζει με τον
θετικό ημιάξονα  x μεταβάλλεται από  
 � 0  σε 
 � 2� H ποσό-
τητα  Mxy ισούται με

H μάζα  M ισούται με

Συνεπώς,

και άρα το κεντροειδές είναι  (0, 0, 4 3) .  Σημειώστε ότι το κεντρο-
ειδές κείται εκτός του στερεού.

Σφαιρικές συντεταγμένες
Oι σφαιρικές συντεταγμένες ορίζουν σημεία του χώρου μέσω δύο γω-
νιών και μίας αποστάσεως, καθώς φαίνεται στο Σχήμα 12.46.

H πρώτη συντεταγμένη,  ,  είναι η απόσταση του σημεί-r � � OP
9

 �

 / 

z � 
Mxy

M
 � 32p

3
 1
8p

 � 4
3

 ,

 � � 2p

0
� 2

0
 r 3 dr du � � 2p

0
 �r 4

4�
2

0
 du � � 2p

0
 4 du � 8p .

 M � � 2p

0
� 2

0
� r2

0
 dz r dr du � � 2p

0
� 2

0
 �z � r2

0
 r dr du

 � � 2p

0
� 2

0
 r

5

2
 dr du � � 2p

0
 �r 6

12�
2

0
 du � � 2p

0
 16

3
 du � 32p

3
  .

 Mxy � � 2p

0
� 2

0
� r2

0
 z dz r dr du � � 2p

0
 � 2

0
 �z 2

2�
r2

0
 r dr du

 .

 ,

 ,

 .
 zx � y � 0

(x , y ,  z)

� r � � 2
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Σε μερικά συγγράμματα οι σφαιρικές
συντεταγμένες δίνονται με τη σειρά
(� 
 �) . Eνίοτε χρησιμοποιείται
επίσης το σύμβολο  r αντί του  � .

 , ,

y

z

O

r

P(�, �, 
)




x

x

z � � cos �

y

��

ΣΧΗΜΑ 12.46 Oι σφαιρικές
συντεταγμένες  � � και  
, και η
σχέση τους με τα  x y z και  r . , , ,

 , ,

r � 2
x2 � y2 

� 4

� r2
z � x2 

� y2z

M4

K.M.

R

L

x y

θ
(r, θ)

ΣΧΗΜΑ 12.45 Στο Παράδειγμα 2
εξηγούμε πώς βρίσκουμε το
κεντροειδές του στερεού αυτού.



ου από την αρχή. Σε αντίθεση με τη μεταβλητή  r η μεταβλητή  � δεν
είναι ποτέ αρνητική. H δεύτερη συντεταγμένη,  �,  είναι η γωνία που
σχηματίζει το με τον θετικό ημιάξονα  z.  H γωνία αυτή οφείλει να
ανήκει στο διάστημα  [0, �] .  H τρίτη συντεταγμένη είναι η γωνία  

των κυλινδρικών συντεταγμένων.

H εξίσωση  � � a περιγράφει μια σφαίρα με ακτίνα  a και κέντρο
την αρχή (Σχήμα 12.47). H εξίσωση  f � f0 περιγράφει έναν απλό κώ-
νο με κορυφή την αρχή των αξόνων και άξονα τον άξονα z.  (Διευρύ-
νουμε την έννοια της κωνικής επιφάνειας θεωρώντας το επίπεδο  xy
ως τον κώνο  f � � 2.)  Aν το  f0 είναι μεγαλύτερο του  � 2,  τότε ο
κώνος  f � f0 «ανοίγει» προς τα κάτω. H εξίσωση  
 � 
0 περιγράφει
το ημιεπίπεδο που περιέχει τον άξονα  z και σχηματίζει γωνία  
0 με
τον θετικό ημιάξονα  x.  

Παράδειγμα 3 Mετατροπή καρτεσιανών σε σφαιρικές
συντεταγμένες

Bρείτε μια εξίσωση σε σφαιρικές συντεταγμένες για τη σφαίρα  x 2

� y2 � (z � 1)2 � 1.

Λύση Xρησιμοποιούμε τις Eξισώσεις (3) για να αντικαταστήσου-
με τα  x y και z:  

Δείτε το Σχήμα 12.48.

 r � 2  cos  f .

 r 2 � 2r  cos  f

 r 2  (sin2 f � cos2 f )
1

 � 2r  cos  f

 r 2  sin2 f(cos2 u �  sin2 u)
1

 � r 2  cos2
  f � 2r  cos  f � 1 � 1

 r 2  sin2 f  cos2 u � r 2  sin2 f  sin2 u � (r  cos  f � 1)2 � 1

 x2 � y 2 � (z � 1)2 � 1

 , ,

 /  / 

OP
9

 ,
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P(a, �0, 
0)

x

�0

z� = �0, 
 

� = a  


 = 
  ,0   
 

y

0

 ,

��+ �� ρ ��� θ
�������������

           ��+
�� f ��� θ
�������������            ��+

�� ρ ��� f
�������������

ΣΧΗΜΑ 12.47 Aν κρατήσουμε
σταθερή τη μία από τις σφαιρικές
συντεταγμένες, προκύπτουν
εξισώσεις σφαιρών, κώνων, και
ημιεπιπέδων.

Oρισμός Σφαιρικές συντεταγμένες
Oι σφαιρικές συντεταγμένες παριστάνουν ένα σημείο  P στον
χώρο με τη διατεταγμένη τριάδα αριθμών  (� f, 
)  όπου

1. r είναι η απόσταση από το  P έως την αρχή των αξόνων

2. f είναι η γωνία που σχηματίζει το με τον θετικό 
ημιάξονα z (0 � f � p)  

3. u είναι η ίδια γωνία που εμφανίζεται και στις κυλινδρικές 
συντεταγμένες.

OP
9

 ,

Eξισώσεις που συνδέουν τις σφαιρικές συντεταγμένες με τις
καρτεσιανές και τις κυλινδρικές συντεταγμένες

r � � sin f, x � r cos 
 � � sin f cos 
,

z � � cos f, y � r sin 
 � � sin f sin 
, (3)

� � 
x2 � y 2 � z 2 � 
r 2 � z 2
 .

�

y

x

z

�

2

1

x2 + y2 + (z – 1)2 = 1
ρ = 2 cos φ

ΣΧΗΜΑ 12.48 H σφαίρα του
Παραδείγματος 3.

Eξισώσεις (3)



Παράδειγμα 4 Mετατροπή καρτεσιανών συντεταγμένων σε
σφαιρικές 

Eκφράστε σε σφαιρικές συντεταγμένες την εξίσωση του κώνου
(Σχήμα 12.49).

Λύση 1 Mε χρήση γεωμετρίας. O κώνος είναι συμμετρικός ως προς τον
άξονα  z και τέμνει το πρώτο τεταρτημόριο του επιπέδου  yz στην ευ-
θεία  z � y H γωνία που σχηματίζει ο κώνος με τον θετικό ημιάξονα
z ισούται συνεπώς με  � 4  ακτίνια. O κώνος αποτελείται από σημεία
για τα οποία το f ισούται με � 4,  οπότε η εξίσωση που τον περιγρά-
φει είναι f � � 4.

Λύση 2 Mε χρήση άλγεβρας. Xρησιμοποιώντας τις Eξισώσεις (3) για να
αντικαταστήσουμε τα  x y και  z, παίρνουμε το ίδιο αποτέλεσμα:

Oλοκλήρωση σε σφαιρικές συντεταγμένες
Oι σφαιρικές συντεταγμένες χρησιμεύουν για να περιγράφουμε σφαί-
ρες που έχουν κέντρο την αρχή των αξόνων, ημιεπίπεδα που περιέ-
χουν τον άξονα  z,  και απλούς κώνους με κορυφή την αρχή των αξό-
νων και άξονα τον άξονα  z.  Oι επιφάνειες αυτές έχουν εξισώσεις στις
οποίες η μία συντεταγμένη είναι σταθερή:

Tο στοιχείο όγκου σε σφαιρικές συντεταγμένες περιγράφει τον όγκο
του χωρίου που ορίζεται από τα διαφορικά  d� df,  και  d
 (Σχήμα
12.50). Tο χωρίο έχει περίπου τον όγκο ορθογωνίου «κιβωτίου» του
οποίου η μία πλευρά είναι το κυκλικό τόξο μήκους  � df, η άλλη πλευ-
ρά είναι το κυκλικό τόξο μήκους  � sin f d
 και η τρίτη πλευρά (το
πάχος του κιβωτίου) ισούται με  d� Συνεπώς, το στοιχείο όγκου σε
σφαιρικές συντεταγμένες είναι 

 .
 ,

 ,

 u � p
3

 .

 f � p
3

 r � 4

 f � p
4

 .

  cos  f �  sin  f

 r  cos  f � r  sin  f

 r  cos  f � 
r 2  sin2 f

 z � 
x2 � y 2

 , ,

 / 

 / 

 / 

 .

z � 
x2 � y 2
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Παράδειγμα 3

� � 0, sin f � 0

0 � f � �

Σφαίρα, με ακτίνα 4 και κέντρο την αρχή των αξόνων

Kώνος, που έχει κορυφή στην αρχή των αξόνων και
σχηματίζει γωνία �/3 ακτινίων με τον θετικό ημιάξονα z

Hμιεπίπεδο, που περιέχει τον άξονα z, και σχηματίζει
γωνία �/3 ακτινίων με τον θετικό ημιάξονα x

y

z

x

�–
4

� �

z � √⎯⎯⎯⎯⎯⎯x2 � y2

�–
4

� �

ΣΧΗΜΑ 12.49 O κώνος του
Παραδείγματος 4.

�

ρ

d


 � d





ρ d�
ρ sin �

ρ sin � d


O

y

x

z

ρ

ΣΧΗΜΑ 12.50 Tο στοιχείο
όγκου σε σφαιρικές
συντεταγμένες είναι

 � r 2  sin  f dr df du.

 dV � dr � r df � r  sin  f du



dV � �2 sin f d� df d
 (4)

και τα τριπλά ολοκληρώματα παίρνουν τη μορφή

(5)

Yπολογίζουμε τα ολοκληρώματα αυτά ολοκληρώνοντας συνήθως πρώ-
τα ως προς  � H διαδικασία εύρεσης των ορίων ολοκλήρωσης περι-
γράφεται αμέσως παρακάτω. Θα περιορίσουμε τη μελέτη μας σε πε-
ριοχές ολοκλήρωσης που έχουν το σχήμα στερεών εκ περιστροφής ως
προς τον άξονα  z και όπου τα όρια ολοκλήρωσης των  
 και  f είναι
σταθερά.

 .

���  F(r , f , u) dV � ���  F(r , f , u)r 2  sin  f dr df du.

 ,
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Πώς ολοκληρώνουμε σε σφαιρικές συντεταγμένες

Για να υπολογίσουμε το 

σε χωρίο  D του χώρου σε σφαιρικές συντεταγμένες, εκτελώντας πρώτα
την ολοκλήρωση ως προς  � έπειτα ως προς  f,  και τελικά ως προς  

ακολουθούμε την εξής διαδικασία.

Bήμα 1: Σχεδιάγραμμα. Σχεδιάζουμε το χωρίο  D καθώς και την προβολή
του  R στο επίπεδο  xy.  Σημειώνουμε στο σχήμα τις επιφάνειες
που αποτελούν σύνορο του  D

Bήμα 2: Όρια ολοκλήρωσης ως προς �. Φέρνουμε μια ημιευθεία  M από
την αρχή έτσι ώστε να διέρχεται από το  D και να σχηματίζει
γωνία  f με τον θετικό ημιάξονα  z. Προβάλλουμε την  M στο
επίπεδο  xy (καλούμε την προβολή  L) .  H ημιευθεία  L
σχηματίζει γωνία 
 με τον θετικό ημιάξονα  x.  Kαθώς το  �
αυξάνεται,  η  M εισέρχεται στο  D για  � � g1(f, 
)  και εξέρ-
χεται για  � � g2(f, 
).  Aυτά είναι τα όρια της ολοκλήρωσης ως
προς  �.

Bήμα 3: Όρια ολοκλήρωσης ως προς f. Για δεδομένο 
 η γωνία f που
σχηματίζει η M με τον θετικό ημιάξονα  z μεταβάλλεται από
f � fmin έως f � fmax Aυτά είναι τα όρια της ολοκλήρωσης
ως προς f.

Bήμα 4: Όρια ολοκλήρωσης ως προς 
. H ημιευθεία  L σαρώνει το χωρίο
R καθώς το 
 μεταβάλλεται από  � έως � Aυτά είναι τα όρια
της ολοκλήρωσης ως προς 
. Tο ολοκλήρωμα είναι

. (6)���
D

f (r, f, u) dV �� u�b

u�a

�f�fmax

f�fmin

� r�g2(f,u)

r�g1(f,u)
f (r, f, u)r2  sin  f dr df du

 .

 .

 ,

 .

 , ,

���
D

 f (r , f , u) dV

x

y

z

R

ρ � g2(�, θ)

D
ρ � g1(�, θ)

x

y

z

R

ρ � g2(�, θ)

D ρ � g1(�, θ )

θ � α
θ � β

L

θ

M
�

�min

�max



Παράδειγμα 5 Eύρεση όγκου σε σφαιρικές συντεταγμένες

Bρείτε τον όγκο του χωρίου  D που αποκόπτει από τη στερεά σφαί-
ρα  � � 1  ο κώνος  f � � 3.

Λύση O όγκος ισούται με  , δηλαδή με

το ολοκλήρωμα της  f (� f, 
) � 1 στο D
Για να βρούμε τα όρια ολοκλήρωσης, εκτελούμε τα εξής βήμα-

τα.

Bήμα 1: Σχεδιάγραμμα. Σχεδιάζουμε το χωρίο  D και την προβολή του
R στο επίπεδο  xy (Σχήμα 12.51).

Bήμα 2: Όρια ολοκλήρωσης ως προς �. Φέρνουμε μια ημιευθεία M
απο την αρχή των αξόνων έτσι ώστε να διέρχεται από το  D και να
σχηματίζει γωνία  f με τον θετικό ημιάξονα  z.  Φέρνουμε επίσης
την  L που είναι η προβολή της  M στο επίπεδο  xy.  Σημειώνου-
με στο σχήμα τη γωνία  
 που σχηματίζει η  L με τον θετικό ημιά-
ξονα  x.  H ημιευθεία  M εισέρχεται στο  D για  � � 0  και εξέρ-
χεται για � � 1.

Bήμα 3: Όρια ολοκλήρωσης ως προς f. O κώνος  f � � 3  σχηματίζει
γωνία  � 3  με τον θετικό ημιάξονα  z.  Για δεδομένο  
 η γωνία f

μπορεί να μεταβάλλεται από f � 0  έως f � � 3. 

Bήμα 4: Όρια ολοκλήρωσης ως προς 
. H ημιευθεία  L σαρώνει το  R
καθώς το 
 μεταβάλλεται από 0 σε 2� O όγκος ισούται με

Παράδειγμα 6 Eύρεση ροπής αδρανείας

Ένα στερεό σταθερής πυκνότητας  
 � 1  καταλαμβάνει το χωρίο  D
του Παραδείγματος 5. Bρείτε τη ροπή αδρανείας του στερεού ως
προς τον άξονα  z.

Λύση Σε ορθογώνιες συντεταγμένες, η ροπή αδρανείας δίδεται
από τον τύπο

Σε σφαιρικές συντεταγμένες,  x 2 � y2 � (� sin f cos 
) 2 � (� sin
f sin 
) 2 � �2 sin2 f. Συνεπώς,

Για το χωρίο του Παραδείγματος 5, το τελευταίο ολοκλήρωμα παίρ-
νει τη μορφή

Iz � ���  (r 2  sin2 f)r 2  sin  f dr df du � ���  r 4  sin3 f dr df du .

Iz � ���  (x2 � y 2) dV .

 � � 2p

0
 ��1

3
  cos  f�

p / 3

0
 du � � 2p

0
 ��1

6
 � 1

3� du � 1
6

 (2p) � p
3

 .

 � � 2p

0
�p / 3

0
 �r 3

3�
1

0
  sin  f df du � � 2p

0
�p / 3

0
 1
3

  sin  f df du

 V � ���
D

 r 2  sin  f dr df du � � 2p

0
�p / 3

0
� 1

0
 r 2  sin  f dr df du

 .

 / 

 , / 

 / 

 ,

 . ,

V � ���
D

 r 2  sin  f dr df du

 / 
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�–
3

K+��	 � �

x y

z

R

L

M

D -%���� ρ � 1

θ

ΣΧΗΜΑ 12.51 H επιφάνεια του
Παραδείγματος 5 έχει σχήμα που
μοιάζει με παγωτό χωνάκι.



 � 1
5

 � 2p

0
 ��1

2
 � 1 � 1

24
 � 1

3� du � 1
5

 � 2p

0
 5
24

 du � 1
24

 (2p) � p
12

 .

 �1
5
� 2p

0
�p / 3

0
(1� cos2 f) sin f df du � 1

5
� 2p

0
 ��cos f � 

 cos3 f
3 �p / 3

0
du

 Iz � � 2p

0
�p / 3

0
� 1

0
 r 4  sin3 f dr df du � � 2p

0
�p / 3

0
 �r 5

5�
1

0
  sin3 f df du

998 Κεφάλαιο 12. Πολλαπλά ολοκληρώματα

Tύποι μετατροπής συντεταγμένων

Kυλινδρικές σε Σφαιρικές σε Σφαιρικές σε
καρτεσιανές καρτεσιανές κυλινδρικές 

x � r cos 
 x = � sin f cos 
 r = � sin f
y = r sin 
 y = � sin f sin 
 z = � cos f
z = z z = � cos f 
 = 


Tα αντίστοιχα στοιχεία όγκου είναι

 � r 2  sin  f dr df du

 � dz r dr du

 dV � dx dy dz

ΑΣΚΗΣΕΙΣ 12.6

Yπολογισμός ολοκληρωμάτων σε κυλινδρικές
συντεταγμένες
Yπολογίστε τα ολοκληρώματα που δίνονται στις Aσκήσεις
1-6.

1.

2.

3.

4.

5.

6.

Aλλάζοντας τη σειρά ολοκλήρωσης σε
κυλινδρικές συντεταγμένες
Aλλάζοντας τη σειρά ολοκλήρωσης σε κυλινδρικές συντε-
ταγμένες, μπορεί να καταφέρουμε να απλοποιήσουμε τον

υπολογισμό. Yπολογίστε τα ολοκληρώματα των Aσκή-
σεων 7-10.

7.

8.

9.

10.

11. Έστω D το χωρίο που είναι κάτω φραγμένο από το επί-
πεδο z � 0, άνω φραγμένο από τη σφαίρα x2 � y2 � z2 �
4, και πλευρικά φραγμένο από τον κύλινδρο x2 � y2 �
1. Σχηματίστε τα τριπλά ολοκληρώματα σε κυλινδρικές
συντεταγμένες τα οποία δίνουν τον όγκο του D, με τις
ακόλουθες σειρές ολοκλήρωσης.  

(α) dz dr d


(β) dr dz d


(γ) d
 dz dr

12. Έστω D το χωρίο που είναι κάτω φραγμένο από τον
κώνο z � και άνω φραγμένο από το παραβο-
λοειδές z � 2 � x 2 � y2. Σχηματίστε τα τριπλά ολο-


x2 � y 2

� 2

0
�
4�r2

r�2
� 2p

0
 (r  sin  u � 1) r du dz dr

� 1

0
�
z

0
� 2p

0
 (r 2  cos2 u � z 2) r du dr dz

� 1

�1
� 2p

0
� 1�cos u

0
 4r dr du dz

� 2p

0
� 3

0
� z / 3

0
 r 3 dr dz du

� 2p

0
� 1

0
� 1 / 2

�1 / 2
 (r 2 sin2  u � z 2) dz r dr du

� 2p

0
� 1

0
� 1 / 
2�r2

r
 3 dz r dr du

�p

0
� u / p

0
� 3
4�r2

�
4�r2
 z dz r dr du

� 2p

0
� u / 2p

0
� 3�24r2

0
 dz r dr du

� 2p

0
� 3

0
�
18�r2

r2
 / 3

 dz r dr du

� 2p

0
� 1

0
�
2�r2

r
 dz r dr du



κληρώματα σε κυλινδρικές συντεταγμένες τα οποία δί-
νουν τον όγκο του D, με τις ακόλουθες σειρές ολοκλή-
ρωσης.

(α) dz dr d


(β) dr dz d


(γ) d
 dz dr

13. Bρείτε τα όρια ολοκλήρωσης του 

στο χωρίο που είναι κάτω φραγμένο από το επίπεδο
z � 0, πλευρικά φραγμένο από τον κύλινδρο r � cos 

και άνω φραγμένο από το παραβολοειδές z � 3r 2.

14. Mετατρέψτε το ολοκλήρωμα

σε ισοδύναμο ολοκλήρωμα σε κυλινδρικές συντεταγ-
μένες, το οποίο και υπολογίστε.

Eύρεση ορίων ολοκλήρωσης σε κυλινδρικές
συντεταγμένες 
Στις Aσκήσεις 15-20, βρείτε τα όρια ολοκλήρωσης για τον
υπολογισμό του στην περιοχή D

15. D είναι ο ορθός κυκλικός κύλινδρος του οποίου βάση
είναι ο κύκλος r � 2 sin 
 στο επίπεδο xy, και η άνω
πλευρά του ανήκει στο επίπεδο z � 4 � y

16. D είναι ο ορθός κυκλικός κύλινδρος του οποίου βάση
είναι ο κύκλος r � 3 cos 
, και η άνω πλευρά του ανή-
κει στο επίπεδο z � 5 � x

17. D είναι ο στερεός ορθός κύλινδρος του οποίου βάση
είναι η περιοχή του επιπέδου xy που βρίσκεται εντός
της καρδιοειδούς r � 1 � cos 
 και εκτός του κύκλου 
r � 1, και του οποίου η άνω πλευρά ανήκει στο επίπε-
δο z � 4.

18. D είναι ο στερεός ορθός κύλινδρος του οποίου βάση
είναι η περιοχή μεταξύ των κύκλων r � cos 
 και r � 2
cos 
, και του οποίου η ανω πλευρά ανήκει στο επίπε-
δο z � 3 � y

19. D είναι το πρίσμα του οποίου βάση είναι το τρίγωνο
του επιπέδου xy που φράσσεται από τον άξονα x και
από τις ευθείες y � x και x � 1. H άνω πλευρά του πρί-
σματος ανήκει στο επίπεδο z � 2 � y

20. D είναι το πρίσμα του οποίου βάση είναι το τρίγωνο
του επιπέδου xy που φράσσεται από τον άξονα y και
από τις ευθείες y � x και y � 1. H άνω πλευρά του πρί-
σματος ανήκει στο επίπεδο z � 2 � x.

y

z

x

z � 2 � x

y � x

2

1

y

z

x

z � 2 � y

y � x

2

1

 .

z

y

x

r � 2 cos θ

r � cos θ

z � 3 � y

 .

z

y

x

r � 1

r � 1 � cos θ

4

z

y

x

z � 5 � x

r � 3 cos θ

 .

z

y

x

z = 4 � y

r = 2 sin θ

 .

 .���D f (r, u, z) dz r dr du

� 1

�1
�
1�y2

0
� x

0
 (x2 � y 2) dz dx dy

 ,

���  f (r, u, z) dz r dr du
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Yπολογισμός ολοκληρωμάτων σε σφαιρικές
συντεταγμένες

Yπολογίστε τα ολοκληρώματα των Aσκήσεων 21-26.

21.

22.

23.

24.

25.

26.

Aλλαγή σειράς ολοκλήρωσης σε σφαιρικές
συντεταγμένες
Aλλάζοντας τη σειρά ολοκλήρωσης σε σφαιρικές συντε-
ταγμένες, μπορεί να καταφέρουμε να απλοποιήσουμε τον
υπολογισμό. Yπολογίστε τα ολοκληρώματα των Aσκήσε-
ων 27-30.

27.

28.

29.

30.

31. Έστω D το χωρίο της Άσκησης 11. Σχηματίστε τα τρι-
πλά ολοκληρώματα σε σφαιρικές συντεταγμένες τα
οποία δίνουν τον όγκο του D, χρησιμοποιώντας τις
ακόλουθες σειρές ολοκλήρωσης.

(α) d� df d
 (β) df d� d


32. Έστω D το χωρίο που είναι κάτω φραγμένο από τον
κώνο z � και άνω φραγμένο από το επίπεδο 
z � 1. Σχηματίστε τα τριπλά ολοκληρώματα σε σφαι-
ρικές συντεταγμένες τα οποία δίνουν τον όγκο του D,
χρησιμοποιώντας τις ακόλουθες σειρές ολοκλήρωσης.

(α) d� df d
 (β) df d� d


Eύρεση ορίων ολοκλήρωσης σε σφαιρικές
συντεταγμένες 
Στις Aσκήσεις 33-38, (α) βρείτε τα όρια ολοκλήρωσης του
ολοκληρώματος όγκου του στερεού που δίνεται, και κατό-
πιν (β) υπολογίστε το ολοκλήρωμα αυτό.

33. Tο στερεό που περικλείεται από τη σφαίρα � � cos f
και το ημισφαίριο � � 2, z � 0.

34. Tο στερεό που είναι κάτω φραγμένο από το ημισφαίριο
� � 1, z � 0, και άνω φραγμένο από το καρδιοειδές εκ
περιστροφής � � 1 � cos f.

35. Tο στερεό που περικλείεται απο το καρδιοειδές εκ πε-
ριστροφής  � � 1 � cos f.

36. Tο άνω τμήμα που αποκόπτει από το στερεό της Άσκη-
σης 35 το επίπεδο xy.

37. Tο στερεό που είναι κάτω φραγμένο από τη σφαίρα �
� 2 cos f και άνω φραγμένο από τον κώνο z �

.

38. Tο στερεό που είναι κάτω φραγμένο από το επίπεδο xy,
πλευρικά φραγμένο από τη σφαίρα � � 2, και άνω
φραγμένο από τον κώνο f � � 3.

Kαρτεσιανές, κυλινδρικές και σφαιρικές
συντεταγμένες
39. Σχηματίστε τριπλά ολοκληρώματα για τον όγκο της

σφαίρας � � 2 σε (α) σφαιρικές, (β) κυλινδρικές, και (γ)
καρτεσιανές συντεταγμένες.

40. Έστω D η περιοχή του πρώτου οκτημορίου που είναι
κάτω φραγμένη από τον κώνο f � � 4 και άνω φραγ-
μένη από τη σφαίρα � � 3. Eκφράστε τον όγκο της πε-

 / 

z

yx

ρ � 2

� � �–
3

 / 

z

yx

z � √⎯⎯⎯⎯⎯⎯x 2 � y2

ρ � 2 cos �


x2 � y 2

z

yx

ρ � 1 � cos �

ρ � 1

z

yx

ρ � 2

ρ � cos �


x2 � y 2

�p / 2

p / 6
�p / 2

�p / 2
 � 2

 csc f
 5r 4 sin3 f dr du df

� 1

0
�p

0
�p / 4

0
 12r sin3 f df du dr

�p / 3

p / 6
� 2 csc f

 csc f
� 2p

0
 r 2  sin  f du dr df

� 2

0
� 0

�p

 �p / 2

p / 4
 r 3  sin  2f df du dr

� 2p

0
�p / 4

0
�  sec f

0
 (r  cos  f)r 2  sin  f dr df du

� 2p  

0
�p / 3

0
 � 2

sec f
 3r 2 sin f dr df du

� 3p / 2

0
�p

0
� 1

0
 5r 3 sin3 f dr df du

� 2p

0
�p

0
� (1�cos f) / 2

0
 r 2  sin  f dr df du

� 2p

0
�p / 4

0
� 2

0
 (r  cos  f)r 2  sin  f dr df du

�p

0
�p

0
� 2 sin f

0
 r 2  sin  f dr df du
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ριοχής D ως τριπλό ολοκλήρωμα σε (α) κυλινδρικές
και (β) σφαιρικές συντεταγμένες. Kατόπιν (γ) βρείτε
τον όγκο V

41. Έστω D το μικρότερο τμήμα που αποκόπτει από μια
στερεά σφαίρα ακτίνας 2 μονάδων μήκους ένα επίπεδο
που απέχει 1 μονάδα μήκους από το κέντρο της σφαί-
ρας. Eκφράστε τον όγκο του χωρίου D ως τριπλό ολο-
κλήρωμα σε (α) σφαιρικές, (β) κυλινδρικές, και (γ)
καρτεσιανές συντεταγμένες. Έπειτα, (δ) βρείτε τον
όγκο υπολογίζοντας ένα από τα ολοκληρώματα αυτά.

42. Eκφράστε τη ροπή αδρανείας Iz του στερεού ημισφαι-
ρίου x 2 � y2 � z2 � 1, z � 0, ως ολοκλήρωμα σε (α) κυ-
λινδρικές και (β) σφαιρικές συντεταγμένες. Eν συνε-
χεία (γ) βρείτε το Iz

Όγκοι
Bρείτε τους όγκους των στερεών των Aσκήσεων 43-48.

43.

44.

45. 46.

47. 48.

49. Σφαίρα και κώνοι Bρείτε τον όγκο του τμήματος της στε-
ρεάς σφαίρας � � a το οποίο κείται μεταξύ των κώνων
f � � 3 και f � 2� 3.

50. Σφαίρα και ημιεπίπεδα Bρείτε τον όγκο του χωρίου που
αποκόπτουν από τη στερεά σφαίρα � � a τα ημιεπίπε-
δα 
 � 0 και 
 � � 6 στο πρώτο οκτημόριο.

51. Σφαίρα και επίπεδο Bρείτε τον όγκο του μικρότερου τμή-
ματος που αποκόπτει από τη στερεά σφαίρα � � 2 το
επίπεδο z � 1.

52. Kώνος και επίπεδα Bρείτε τον όγκο του στερεού που πε-
ρικλείεται από τον κώνο z � και κείται μετα-
ξύ των επιπέδων z � 1 και z � 2.

53. Kύλινδρος και παραβολοειδές Bρείτε τον όγκο του χωρίου
που είναι κάτω φραγμένο από το επίπεδο z � 0, πλευ-
ρικά φραγμένο από τον κύλινδρο x 2 � y2 � 1, και άνω
φραγμένο από το παραβολοειδές z � x 2 � y2.

54. Kύλινδρος και παραβολοειδή Bρείτε τον όγκο του χωρίου
που είναι κάτω φραγμένο από το παραβολοειδές
z � x 2 � y2, πλευρικά φραγμένο από τον κύλινδρο
x 2 � y2 � 1, και άνω φραγμένο από το παραβολοειδές
z � x 2 � y2 � 1.

55. Kύλινδρος και κώνοι Bρείτε τον όγκο του στερεού που
αποκόπτουν από τον κυλινδρικό σωλήνα (με τοιχώμα-
τα πεπερασμένου πάχους) 1 � x 2 � y2 � 2 οι κώνοι
z � �

56. Σφαίρα και κύλινδρος Bρείτε τον όγκο του χωρίου που
κείται στο εσωτερικό της σφαίρας x 2 � y2 � z2 � 2 και
στο εξωτερικό του κυλίνδρου x 2 � y2 � 1.

57. Kύλινδρος και επίπεδα Bρείτε τον όγκο του χωρίου που
περικλείεται από τον κύλινδρο x 2 � y2 � 4 και από τα
επίπεδα z � 0 και y � z � 4.

58. Kύλινδρος και επίπεδα Bρείτε τον όγκο του χωρίου που
περικλείεται από τον κύλινδρο x 2 � y2 � 4 και από τα
επίπεδα z � 0 και x � y � z � 4.

59. Xωρίο που περικλείεται από δύο παραβολοειδή Bρείτε τον
όγκο του χωρίου που είναι άνω φραγμένο από το παρα-
βολοειδές z � 5 � x 2 � y2 και κάτω φραγμένο από το
παραβολοειδές z � 4x 2 � 4y2.

60. Παραβολοειδές και κύλινδρος Bρείτε τον όγκο του χωρίου
που είναι άνω φραγμένο από το παραβολοειδές
z � 9 � x 2 � y2, κάτω φραγμένο από το επίπεδο xy, και
κείται εξωτερικά του κυλίνδρου x 2 � y2 � 1.

61. Kύλινδρος και σφαίρα Bρείτε τον όγκο του χωρίου που
αποκόπτει από τον στερεό κύλινδρο  x 2 � y2 � 1 η
σφαίρα x 2 � y2 � z2 � 4.

62. Σφαίρα και παραβολοειδές Bρείτε τον όγκο του χωρίου που
είναι άνω φραγμένο από τη σφαίρα x 2 � y2 � z2 � 2 και
κάτω φραγμένο από το παραβολοειδές z � x 2 � y2.

Mέσες τιμές
63. Bρείτε τη μέση τιμή της συναρτήσεως f (r 
 z) � r

στο χωρίο που φράσσεται από τον κύλινδρο r � 1 και
τα επίπεδα z � �1 και z � 1.

64. Bρείτε τη μέση τιμή της συναρτήσεως f (r 
 z) � r
στη στερεά σφαίρα που φράσσεται από τη σφαιρική
επιφάνεια r 2 � z2 � 1. (Πρόκειται για τη σφαίρα
x 2 � y2 � z2 � 1.)

65. Bρείτε τη μέση τιμή της συναρτήσεως f (� f, 
) � �
στη στερεά σφαίρα � � 1.

 ,

 , ,

 , ,


x2 � y 2.


x2 � y 2

 / 

 /  / 

x y

z

r � cos θ

z � 3√⎯⎯⎯⎯⎯⎯⎯⎯⎯1 � x2 � y2

z

y
x

z � √⎯⎯⎯⎯⎯⎯⎯⎯⎯1 � x2 � y2

r � sin θ

z

yx

z � √⎯⎯⎯⎯⎯⎯x2 � y2

r � –3 cos θ

z

y

x

z � �y

r � 3 cos θ

z

y

x

z � 1 � r

z � �√⎯⎯⎯⎯⎯1 � r2

z

yx

z � 4 � 4 (x2 � y2)

z � (x2 � y2) 2 �1

 .

 .
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66. Bρείτε τη μέση τιμή της συναρτήσεως f(� f, 
) �
� cos f στο άνω ήμισυ της στερεάς σφαίρας � � 1, 0 �
f � � 2.

Mάζες, ροπές και κεντροειδή
67. Kέντρο μάζας Ένα στερεό σταθερής πυκνότητας είναι

κάτω φραγμένο από το επίπεδο z � 0, άνω φραγμένο
από τον κώνο z � r r � 0, και πλευρικά φραγμένο από
τον κύλινδρο r � 1. Bρείτε το κέντρο μάζας του.

68. Kεντροειδές Bρείτε το κεντροειδές του χωρίου στο πρώ-
το οκτημόριο το οποίο είναι άνω φραγμένο από τον κώ-
νο z � , κάτω φραγμένο από το επίπεδο z � 0,
και πλευρικά φραγμένο από τον κύλινδρο x 2 � y2 � 4
και από τα επίπεδα x � 0 και y � 0.

69. Kεντροειδές Bρείτε το κεντροειδές του στερεού της
Άσκησης 38.

70. Kεντροειδές Bρείτε το κεντροειδές του στερεού που εί-
ναι άνω φραγμένο από τη σφαίρα � � a και κάτω φραγ-
μένο από τον κώνο f � � 4.

71. Kεντροειδές Bρείτε το κεντροειδές του στερεού που εί-
ναι άνω φραγμένο από την επιφάνεια z � , πλευρι-
κά φραγμένο από τον κύλινδρο r � 4, και κάτω φραγ-
μένο από το επίπεδο xy.

72. Kεντροειδές Bρείτε το κεντροειδές του χωρίου που απο-
κόπτουν από τη στερεά σφαίρα r 2 � z2 � 1 τα ημιεπί-
πεδα 
 � �� 3, r � 0, και 
 � � 3, r � 0.

73. Pοπή και ακτίνα αδρανείας Bρείτε τη ροπή αδρανείας και
την ακτίνα περιστροφής ως προς τον άξονα z ενός ορ-
θού κυκλικού κυλινδρικού σωλήνα με τοιχώματα πεπε-
ρασμένου πάχους. O σωλήνας φράσσεται εσωτερικά
από τον κύλινδρο r � 1, εξωτερικά από τον κύλινδρο r
� 2, και άνω και κάτω από τα επίπεδα z � 4 και z � 0.
(Θεωρήστε 
 � 1.)

74. Pοπές αδρανείας στερεού κυκλικού κυλίνδρου Bρείτε τη ροπή
αδρανείας ενός στερεού κυκλικού κυλίνδρου ακτίνας 1
και ύψους 2 (α) ως προς τον άξονα του κυλίνδρου και
(β) ως προς ευθεία που διέρχεται από το κεντροειδές
κάθετα στον άξονα του κυλίνδρου. (Θεωρήστε 
 � 1.)

75. Pοπή αδρανείας στερεού κώνου Bρείτε τη ροπή αδρανείας
ενός ορθού κυκλικού κώνου με ακτίνα βάσης 1 και
ύψος 1, ως προς άξονα που διέρχεται από την κορυφή
και είναι παράλληλος στη βάση του κώνου. (Θεωρήστε

 � 1.)

76. Pοπή αδρανείας στερεάς σφαίρας Bρείτε τη ροπή αδρανεί-
ας μιας στερεάς σφαίρας ακτίνας a ως προς μια διάμε-
τρό της.  (Θεωρήστε 
 � 1.)

77. Pοπή αδρανείας στερεού κώνου Bρείτε τη ροπή αδρανείας
ενός ορθού κυκλικού κώνου ακτίνας βάσης a και ύψους
h, ως προς τον άξονά του. (Yπόδειξη: Tοποθετήστε τον
κώνο έτσι ώστε η κορυφή του να βρίσκεται στην αρχή
και ο άξονάς του να είναι ο άξονας z.)

78. Mεταβαλλόμενη πυκνότητα Ένα στερεό είναι άνω φραγμέ-
νο από το παραβολοειδές z � r 2, κάτω φραγμένο από το
επίπεδο z � 0, και πλευρικά φραγμένο από τον κύλιν-
δρο r � 1. Bρείτε το κέντρο μάζας, τη ροπή αδρανείας
και την ακτίνα αδρανείας ως προς τον άξονα z αν η πυ-
κνότητά του είναι

(α) 
(r 
 z) � z

(β) 
(r 
 z) � r

79. Mεταβαλλόμενη πυκνότητα Ένα στερεό είναι κάτω φραγ-
μένο από τον κώνο z � και άνω φραγμένο από
το επίπεδο z � 1. Bρείτε το κέντρο μάζας, τη ροπή
αδρανείας και την ακτίνα αδρανείας ως προς τον άξονα
z, αν η πυκνότητά του είναι

(α) 
(r 
 z) � z

(β) 
(r 
 z) � z2.

80. Mεταβαλλόμενη πυκνότητα Mια στερεά σφαίρα φράσσεται
από την επιφάνεια � � a Bρείτε τη ροπή αδρανείας
και την ακτίνα αδρανείας ως προς τον άξονα z αν η πυ-
κνότητά της είναι

(α) 
(� f, 
) � �2

(β) 
(� f, 
) � r � � sin f.

81. Kεντροειδές στερεού ημιελλειψοειδούς Δείξτε ότι το κε-
ντροειδές του στερεού ημιελλειψοειδούς εκ περιστρο-
φής (r 2 a2) � (z2 h2) � 1, z � 0, κείται στον άξονα z σε
σημείο που απέχει από την αρχή τρία όγδοα της από-
στασης βάσης-κορυφής. H ειδική περίπτωση h � a
αντιστοιχεί σε στερεό ημισφαίριο. Έτσι, το κεντροει-
δές ενός στερεού ημισφαιρίου κείται στον άξονα συμ-
μετρίας, και απέχει από την αρχή τρία όγδοα της από-
στασης βάσης-κορυφής.

82. Kεντροειδές στερεού κώνου Δείξτε ότι το κεντροειδές
ενός στερεού ορθού κυκλικού κώνου απέχει από την
αρχή ένα τέταρτο της απόστασης βάσης-κορυφής. (Eν
γένει, το κεντροειδές στερεού κώνου ή πυραμίδας απέ-
χει από την αρχή ένα τέταρτο της απόστασης βάσης-
κορυφής.)

83. Mεταβαλλόμενη πυκνότητα Ένας στερεός ορθός κυκλικός
κύλινδρος φράσσεται από τον κύλινδρο r � a και από
τα επίπεδα z � 0 και z � h h � 0. Bρείτε το κέντρο μά-
ζας, τη ροπή αδρανείας και την ακτίνα αδρανείας ως
προς τον άξονα z, αν η πυκνότητα του στερεού κυλίν-
δρου είναι 
 (r 
 z) � z � 1.

84. Mάζα ατμόσφαιρας πλανήτη Ένας σφαιρικός πλανήτης
ακτίνας R έχει ατμόσφαιρα πυκνότητας � � �0e

�ch

όπου h είναι το ύψος από την πλανητική επιφάνεια,
�0 είναι η πυκνότητα στο επίπεδο της θάλασσας, και
c είναι μια θετική σταθερά. Bρείτε τη μάζα της ατμό-
σφαιρας του πλανήτη.

85. Πυκνότητα στο κέντρο πλανήτη Ένας πλανήτης έχει σφαι-
ρικό σχήμα ακτίνας R και ολική μάζα M με σφαιρικά
συμμετρική κατανομή πυκνότητας η οποία αυξάνεται
γραμμικά όσο πλησιάζουμε στο κέντρο του. Πόση εί-
ναι η πυκνότητα στο κέντρο του πλανήτη αν θεωρή-
σουμε ότι η πυκνότητα στην επιφάνεια είναι μηδέν;

Θεωρία και παραδείγματα
86. Kατακόρυφοι κυκλικοί κύλινδροι σε σφαιρικές συντεταγμένες

Bρείτε μια εξίσωση της μορφής � � f (
) για τον κύλιν-
δρο x 2 � y2 � a2.

87. Kατακόρυφα επίπεδα σε κυλινδρικές συντεταγμένες

(α) Δείξτε ότι επίπεδα κάθετα στον άξονα x έχουν εξι-
σώσεις της μορφής r � a sec 
 σε κυλινδρικές συ-
ντεταγμένες.

 ,

 , ,

 ,

 /  / 

 ,

 ,

 .

 , ,

 , ,


x2 � y 2

 . , ,

 , ,

 /  / 


r

 / 


x2 � y 2

 ,

 / 

 ,
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(β) Δείξτε ότι επίπεδα κάθετα στον άξονα y έχουν εξι-
σώσεις της μορφής r � b csc 


88. (Συνέχεια της Άσκησης 87) Bρείτε μια εξίσωση της
μορφής r � f (
) (δηλ. σε κυλινδρικές συντεταγμένες)
για το επίπεδο ax � by � c c � 0.

89. Mάθετε γράφοντας: Συμμετρία Tι είδους συμμετρία θα
βρούμε σε μια επιφάνεια που έχει εξίσωση της μορφής

r � f(z) σε κυλινδρικές συντεταγμένες; Aιτιολογήστε
την απάντησή σας.

90. Mάθετε γράφοντας: Συμμετρία Tι είδους συμμετρία θα
βρούμε σε μια επιφάνεια που έχει εξίσωση της μορφής
� � f (f) σε σφαιρικές συντεταγμένες; Aιτιολογήστε
την απάντησή σας.

 ,

 .
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Aντικαταστάσεις σε διπλά ολοκληρώματα • Aντικαταστάσεις σε

τριπλά ολοκληρώματα

Στην παρούσα ενότητα θα δούμε πώς μπορούμε να υπολογίζουμε  πολ-
λαπλά ολοκληρώματα με τη μέθοδο της αντικατάστασης. Όπως και
στην απλή ολοκλήρωση, σκοπός της μεθόδου είναι η αντικατάσταση
περίπλοκων ολοκληρωμάτων με άλλα που είναι εύκολο να υπολογι-
στούν. Kαι αυτό επιτυγχάνεται με απλοποίηση της ολοκληρωτέας πο-
σότητας, των ορίων ολοκλήρωσης, ή και των δύο.

Aντικαταστάσεις σε διπλά ολοκληρώματα
H μετατροπή σε πολικές συντεταγμένες που είδαμε στην Eνότητα 12.3
αποτελεί ειδική περίπτωση μιας γενικότερης μεθόδου αντικατάστα-
σης για διπλά ολοκληρώματα, μιας μεθόδου που θεωρεί τις αλλαγές
μεταβλητών ως μετασχηματισμούς χωρίων.

Έστω ότι ένα χωρίο G του επιπέδου uv μετασχηματίζεται ένα προς
ένα σε χωρίο R του επιπέδου  xy μέσω εξισώσεων της μορφής

x � g(u v), y � h(u v) ,

όπως δείχνει το Σχήμα 12.52. Kαλούμε το χωρίο  R είδωλο του  G για
τον συγκεκριμένο μετασχηματισμό, ενώ το χωρίο  G καλείται προεί-
δωλο του  R Kάθε συνάρτηση  f (x y)  ορισμένη στο  R μπορεί να θε-
ωρηθεί ως συνάρτηση  f(g(u v),  h(u v))  ορισμένη και στο G. Πώς
σχετίζεται το ολοκλήρωμα της  f (x y)  στο χωρίο  R με το ολοκλή-
ρωμα της  f(g(u v),  h(u v))  στο χωρίο  G;

H απάντηση είναι η εξής: Aν οι  g h και  f έχουν συνεχείς με-
ρικές παραγώγους και η ποσότητα  J(u v)  (που θα ορίσουμε αμέσως)
μηδενίζεται μόνο σε μεμονωμένα σημεία (ή πουθενά), τότε

(1)

O παράγοντας  J(u v) ,  του οποίου η απόλυτη τιμή εμφανίζεται
στην Eξίσωση (1), ονομάζεται Iακωβιανή του μετασχηματισμού συ-
ντεταγμένων, προς τιμήν του Γερμανού μαθηματικού Carl Jacobi.

 ,

��
R

 f (x , y) dx dy � ��
G

 f (g(u , v) , h(u , v)) � J(u ,  v) � du dv.

 ,
 , ,

 , ,
 ,

 , ,
 , .

 , ,

12.7 Aντικαταστάσεις σε πολλαπλά ολοκληρώματα

«Aντίστροφη» μετάβαση
Oι εξισώσεις μετασχηματισμού
x � g(u v)  και  y � h(u v)
«μεταβαίνουν» από το  G στο  R,  αλλά
εδώ τις χρησιμοποιούμε για να
μετατρέψουμε ένα ολοκλήρωμα
ορισμένο στο χωρίο  R σε
ολοκλήρωμα ορισμένο στο χωρίο  G .

 , ,

Oρισμός Iακωβιανή
H Iακωβιανή ορίζουσα ή, απλούστερα, Iακωβιανή του
μετασχηματισμού συντεταγμένων  x � g(u v), y � h(u v)  είναι

(2)J(u, v) � 
 ]x
]u
]y
]u

]x
]v
]y
]v


 � ]x
]u

 
]y
]v � 

]y
]u

 ]x
]v .

 , ,



H Iακωβιανή γράφεται επίσης ως

,

συμβολισμός που μας βοηθάει να θυμηθούμε πώς σχηματίζεται η
ορίζουσα της Eξίσωσης (2) από τις μερικές παραγώγους των  x και
y H απόδειξη της Eξίσωσης (1) είναι περίπλοκη και αποτελεί αντι-
κείμενο του προχωρημένου απειροστικού λογισμού. Για τον λόγο
αυτό δεν την παραθέτουμε εδώ.

Aν χρησιμοποιούμε πολικές συντεταγμένες, έχουμε  r και  
 στη
θέση των  u και  v.  Θέτοντας  x � r cos 
 και  y � r sin 
 η Iακω-
βιανή παίρνει τη μορφή

Συνεπώς, η Eξίσωση (1) γράφεται ως

(3)

που δεν είναι παρά η Eξίσωση (4) της Eνότητας 12.3.
Tο Σχήμα 12.53 δείχνει πώς οι εξισώσεις  x � r cos 
 y � r sin 


μετασχηματίζουν το ορθογώνιο χωρίο  G: 0 � r � 1,  0 � 
 � � 2  στο
τεταρτοκύκλιο  R που φράσσεται από την  x 2 � y2 � 1  στο πρώτο τε-
ταρτημόριο του επιπέδου  xy.

Προσέξτε ότι το ολοκλήρωμα του δεξιού μέλους της Eξίσωσης (3)
δεν είναι το ολοκλήρωμα της  f (r cos 
 r sin 
)  σε χωρίο του πολικού
επιπέδου. Eίναι το ολοκλήρωμα του γινομένου f (r cos 
 r sin 
)  επί  r
σε χωρίο  G του καρτεσιανού επιπέδου r
.

Aκολουθεί άλλο ένα παράδειγμα μετασχηματισμού.

Παράδειγμα 1 Eφαρμογή μετασχηματισμού σε ολοκλήρωμα

Yπολογίστε το

εφαρμόζοντας τον μετασχηματισμό

(4)

και ολοκληρώνοντας στο κατάλληλο χωρίο του επιπέδου  uv.

Λύση Σχεδιάζουμε το χωρίο ολοκλήρωσης  R στο επίπεδο  xy και
σημειώνουμε τα σύνορά του (Σχήμα 12.54).

Για να εφαρμόσουμε την Eξίσωση (1), χρειαζόμαστε το αντί-
στοιχο χωρίο  G του επιπέδου  uv, καθώς και την Iακωβιανή του με-
τασχηματισμού. Για να τα βρούμε, επιλύουμε πρώτα τις Eξισώσεις
(4) για τα  x και  y συναρτήσει των  u και  v.  Παίρνουμε λοιπόν

x � u � v y � 2v. (5)

u � 
2x � y

2
 ,   v � 

y
2

� 4

0
� x�(y / 2)�1

x�y / 2
 
2x � y

2
 dx dy

 ,
,

 / 

 ,

 � ��
G

 f (r  cos  u , r  sin  u) r dr du ,

 ��
R

 f (x, y) dx dy � ��
G

 f (r  cos  u , r  sin  u) � r � dr du

J(r , u) � 
 ]x
]r
]y
]r

]x
]u
]y
]u


 � 
  cos  u
 sin  u

�r  sin  u
r  cos  u 
 � r(cos2 u � sin2 u) � r.

 ,

 .

J(u , v) � 
](x , y)
](u , v)
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u

v
O

y

x
O

G

(u, v)

R (x, y)

K��������� ������� uv

x � g (u, v)
y � h (u, v)

K��������� ������� xy

ΣΧΗΜΑ 12.52 Oι εξισώσεις
x � g(u v)  και  y � h(u v)  μας
επιτρέπουν να μετατρέπουμε ένα
ολοκλήρωμα ορισμένο σε χωρίο
R του επιπέδου xy σε
ολοκλήρωμα ορισμένο σε χωρίο
G του επιπέδου  uv.

 , ,

για  r � 0




r
O 1

y

x
O 1

K��������� ������� ru

x � r cos 

y � r sin 


�–
2

1


 � �
�
2


 � 0

R

G

K��������� ������� xy

R

ΣΧΗΜΑ 12.53 Oι εξισώσεις  
x � r cos 
 y � r sin 

μετασχηματίζουν το χωρίο
G στο χωρίο  R .

 ,



Στη συνέχεια βρίσκουμε τα σύνορα του  G αντικαθιστώντας τις εκ-
φράσεις αυτές στις εξισώσεις των συνόρων του  R (Σχήμα 12.54).

Eξισώσεις xy του Aντίστοιχες εξισώσεις uv Aπλοποιημένες
συνόρου του R του συνόρου του G εξισώσεις uv

x � y 2 u � v � 2v 2 � v u � 0
x � (y 2) � 1 u � v � (2v 2) � 1 � v � 1 u � 1
y � 0 2v � 0 v � 0
y � 4 2v � 4 v � 2

H Iακωβιανή του μετασχηματισμού (από τις Eξισώσεις (5) και
πάλι) είναι

Tώρα μπορούμε να εφαρμόσουμε την Eξίσωση (1):

Παράδειγμα 2 Eφαρμογή μετασχηματισμού σε ολοκλήρωμα

Yπολογίστε το

Λύση Σχεδιάζουμε το χωρίο ολοκλήρωσης  R στο επίπεδο  xy
και σημειώνουμε τα σύνορά του (Σχήμα 12.55). H μορφή της ολο-
κληρωτέας ποσότητας μας υποδεικνύει τον μετασχηματισμό
u � x � y και  v � y � 2x Mετά από λίγη άλγεβρα παίρνουμε τα
x και  y συναρτήσει των  u και  v:  

 .

� 1

0
� 1�x

0
 
x � y ( y � 2x)2 dy dx .

 �� 2

0
� 1

0
(u)(2) du dv �� 2

0
�u2 � 1

0 dv �� 2

0
dv � 2.

 � 4

0
� x�( y / 2)�1

x�y / 2
 
2x � y

2
 dx dy � �v�2

v�0
 � u�1

u�0
 u� J(u , v) � du dv

J(u , v) � 
 ]x
]u
]y
]u

]x
]v
]y
]v


 � 
 ]
]u

 (u � v)

]
]u

 (2v)

]
]v (u � v)

]
]v (2v)


 � 
1
0

1
2 
 � 2 .

 /  / 

 /  / 
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v

u
0

y

x
0v  � 0 1

v  � 2

u � 0 u � 1

2

G

x � u � v
y � 2v

y � 4

y � 0
1

y � 2x

y � 2x � 2

4

R

ΣΧΗΜΑ 12.54 Oι εξισώσεις  x � u � v και  y � 2v μετασχηματίζουν
το χωρίο  G στο χωρίο  R Aντιστρέφοντας τον μετασχηματισμό με
τις εξισώσεις  u � (2x � y) 2  και  v � y 2  μετασχηματίζουμε το
χωρίο R στο χωρίο G Δείτε το Παράδειγμα 1. .

 /  / 

 .

v

u
0

y

x
0

v � u

u � 1

y � 0
1

x � 0
x � y � 1

1

R

x � u–
3

v–
3�

y � 2u—
3

v–
3�

v        � –2u

1

–2

1G

ΣΧΗΜΑ 12.55 Oι εξισώσεις
x � (u 3) � (v 3)  και  y � (2u 3) �
(v 3)  μετασχηματίζουν το χωρίο
G στο χωρίο  R Aντιστρέφοντας
τον μετασχηματισμό με τις
εξισώσεις
u � x � y και  v � y � 2x
μετασχηματίζουμε το  R στο  G
Δείτε το Παράδειγμα 2.

 .

 .
 / 

 /  /  / 



(6)

Aπό τις Eξισώσεις (6), μπορούμε να βρούμε τα σύνορα του χωρίου  G
του επιπέδου  uv (Σχήμα 12.55).

Eξισώσεις xy του Aντίστοιχες εξισώσεις uv Aπλοποιημένες
συνόρου του R του συνόρου του G εξισώσεις uv

x � y � 1 u � 1

x � 0 v � u

y � 0 v � �2u

H Iακωβιανή του μετασχηματισμού των Eξισώσεων (6) είναι

Mε εφαρμογή της Eξίσωσης (1), υπολογίζουμε το ολοκλήρωμα:

Aντικαταστάσεις σε τριπλά ολοκληρώματα
Oι αντικαταστάσεις σε κυλινδρικές και σφαιρικές συντεταγμένες
που είδαμε στην Eνότητα 12.6 αποτελούν ειδικές περιπτώσεις μιας
μεθόδου αντικατάστασης στην οποία οι αλλαγές συντεταγμένων σε
τριπλά ολοκληρώματα αντιμετωπίζονται ως μετασχηματισμοί τρι-
διάστατων χωρίων του χώρου. H μέθοδος αυτή είναι η ίδια που χρη-
σιμοποιήσαμε για διπλά ολοκληρώματα, μόνο που τώρα έχουμε να
κάνουμε με μία επιπλέον, τρίτη, διάσταση. 

Έστω ότι ένα χωρίο  G του χώρου  uvw μετασχηματίζεται ένα
προς ένα σε χωρίο  D του χώρου  xyz μέσω διαφορίσιμων εξισώσεων
της μορφής

x � g(u v , w) , y � h(u v , w) , z � k(u v , w) ,

όπως δείχνει το Σχήμα 12.56. Στην περίπτωση αυτή κάθε συνάρτηση
F(x y z)  ορισμένη στο  D  μπορεί να θεωρηθεί ως μια συνάρτηση

F(g(u v , w) , h (u v , w) , k (u v , w)) � H(u v , w)

ορισμένη στο  G Aν οι  g h και  k έχουν συνεχείς πρώτες μερικές
παραγώγους, τότε το ολοκλήρωμα της  F(x y z)  στο  D συνδέεται με
το ολοκλήρωμα της  H(u v , w)  στο  G μέσω της εξίσωσης

(7)���
D

 F(x , y , z) dx dy dz � ���
G

 H(u , v , w) � J(u , v , w) � du dv dw .

 ,
 , ,

 , , .

 , , , ,

 , ,

 , , ,

 � 1
9

 � 1

0
 u1 / 2 (u3 � 8u3) du � � 1

0
 u7 / 2 du � 2

9
 u9 / 2�

1

0

 � 2
9

 .

 � � 1

0
� u

�2u
 u1 / 2v2 �1

3� dv du � 1
3

 � 1

0
 u1 / 2 �1

3
 v3�v�u

v��2u
 du

� 1

0
� 1�x

0
 
x � y ( y � 2x)2 dy dx � � u�1

u�0
�v�u

v��2u
 u1 / 2v2 � J(u , v) � dv du

J(u , v) � 
 ]x
]u
]y
]u

]x
]v
]y
]v


 � 
 1
3
2
3

�1
3

�1
3

 � 1

3
 .

2u
3

 � v
3

 � 0

u
3

 � v
3

 � 0

�u
3

 � v
3� � �2u

3
 � v

3� � 1

x � u
3

 � v
3

 ,   y � 2u
3

 � v
3

 .
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O παράγοντας  J(u v, w) ,  του οποίου η απόλυτη τιμή εμφανίζεται στην
παραπάνω εξίσωση, είναι η Iακωβιανή ορίζουσα

(8)

H απόδειξη του τύπου αλλαγής μεταβλητών της Eξίσωσης (7) είναι πε-
ρίπλοκη και θα την παραλείψουμε (όπως κάναμε και για τη διδιάστατη
περίπτωση).

Aν θέλουμε να μετασχηματίσουμε σε κυλινδρικές συντεταγμένες,
τα  r 
 και  z παίρνουν τη θέση των  u v,  και  w O μετασχηματι-
σμός από τον καρτεσιανό χώρο  r
z στον καρτεσιανό χώρο  xyz δίνε-
ται από τις εξισώσεις

x � r cos 
 y � r sin 
 z � z

(Σχήμα 12.57). H Iακωβιανή του μετασχηματισμού είναι

� r cos2 
 � r sin2 
 � r.

H αντίστοιχη εκδοχή της Eξίσωσης (7) είναι

(9)

Για  r � 0 μπορούμε να παραλείψουμε το σύμβολο της απόλυτης τιμής.
Aν θέλουμε να μετασχηματίσουμε σε σφαιρικές συντεταγμένες,

τα  � �,  και  
 παίρνουν τη θέση των  u v ,  και  w O μετασχημα-
τισμός από τον καρτεσιανό  χώρο  ��
 στον καρτεσιανό χώρο  xyz δί-
νεται από τις σχέσεις

x � � sin � cos 
 y � � sin � sin 
 z � � cos �

(Σχήμα 12.58). H Iακωβιανή του μετασχηματισμού είναι

 , ,

 . , ,

���
D

 F(x , y , z) dx dy dz � ���
G

 H(r , u , z) � r � dr du dz .

J(r , u , z) � 
 ]x
]r
]y
]r
]z
]r

]x
]u
]y
]u

]z
]u

]x
]z
]y
]z
]z
]z


 � 
 cos u
sin u
0

�r sin u
�r cos u
�0

0
0
1



 , ,

 . , , ,

J(u , v , w) � 
 ]x
]u
]y
]u
]z
]u

]x
]v
]y
]v
]z
]v

]x
]w
]y
]w
]z
]w


 � 
](x , y , z)
](u , v , w)

 .

 ,
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y � h(u, v, w)

w

G

u K���������	 �+��	 u�w

v

x � g(u, v, w)

z � k(u, v, w)

z

D

x

y

K���������	 �+��	 xyz

ΣΧΗΜΑ 12.56 Oι εξισώσεις  x � g(u v, w) ,  y � h(u v, w) , και
z � k(u v, w)  μας επιτρέπουν να μετατρέπουμε ένα ολοκλήρωμα
ορισμένο σε χωρίο  D του καρτεσιανού χώρου xyz, σε ολοκλήρωμα
ορισμένο σε χωρίο  G του καρτεσιανού χώρου uvw.

 ,
 , ,

y � r sin 


z

G

r K���������	 �+��	 r�z




x � r cos 


z � z

K'��	 �� ������	
���������	 ����	 
�����	 �����������"�

z

D

x K���������	 �+��	 xyz

y

z � �������

r � �������


 � �������

ΣΧΗΜΑ 12.57 Oι εξισώσεις
x � r cos 
 y � r sin 
 και  z � z
μετασχηματίζουν το χωρίο  G στο
χωρίο  D .

 , ,



(10)

(Άσκηση 17). H αντίστοιχη εκδοχή της Eξίσωσης (7) είναι

(11)

Mπορούμε να παραλείψουμε το σύμβολο της απόλυτης τιμής, εφόσον
το sin � δεν είναι ποτέ αρνητικό.

Aκολουθεί άλλο ένα παράδειγμα αντικατάστασης. Tο ακόλουθο
ολοκλήρωμα υπολογίζεται και απευθείας, αλλά για διδακτικούς λό-
γους θα εφαρμόσουμε εδώ τη μέθοδο αντικατάστασης για τον υπολογι-
σμό του.

Παράδειγμα 3 Eφαρμογή μετασχηματισμού σε ολοκλήρωση

Yπολογίστε το

εφαρμόζοντας τον μετασχηματισμό

u � (2x � y) 2, v � y 2, w � z 3 (12)

και ολοκληρώνοντας στο κατάλληλο χωρίο του χώρου  uvw.

Λύση Σχεδιάζουμε το χωρίο ολοκλήρωσης  D στον χώρο  xyz και
σημειώνουμε τα σύνορά του (Σχήμα 12.59). Στην περίπτωση αυτή, οι
συνοριακές επιφάνειες είναι επίπεδα.

Προκειμένου να εφαρμόσουμε την Eξίσωση (7), χρειαζόμαστε
το αντίστοιχο χωρίο  G του χώρου  uvw και την Iακωβιανή του με-
τασχηματισμού. Για να τις βρούμε, επιλύουμε πρώτα τις Eξισώσεις
(12) ως προς  x y και  z συναρτήσει των  u v,  και  w Παίρνου-
με

x � u � v , y � 2v , z � 3w (13)

Στη συνέχεια βρίσκουμε τα σύνορα του  G αντικαθιστώντας τις εκ-
φράσεις αυτές στις εξισώσεις των συνόρων του χωρίου  D :

 .

 . , , ,

 /  /  / 

� 3

0
� 4

0
� x�( y / 2)�1

x�y / 2
 �2x � y

2
 � z

3� dx dy dz

���
D

 F(x , y , z) dx dy dz � ���
G

 H( r , f , u) � r 2  sin  f � dr df du .

J(r , f , u) � 
 ]x
]r
]y
]r

]z
]r

]x
]f
]y
]f

]z
]f

]x
]u
]y
]u

]z
]u


 � r 2  sin  f
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G

� K���������	 �+��	 �f�

�

x � � sin � cos 


K'��	 �� ������	
���������	 ����	
�����	 �����������"�

� � �������

� � �������


 � �������

y � � sin � sin 

z � � cos �

z D

x K���������	 �+��	 xyz

y

(x, y, z)




�

�

ΣΧΗΜΑ 12.58 Oι εξισώσεις  x � � sin � cos 
 y � � sin � sin 
 και  
z � � cos � μετασχηματίζουν το χωρίο  G στο χωρίο  D .

 , ,

y � 2v

w

2

u

v

x � u � v

z � 3w

z

x

y

E���"�� ���" ��������:

4

1

1

G

E���"�� �������� ��������:

x �     � 1, ���. y � 2x � 2

D

3

1

y
–
2

x �     , ���. y � 2x
y
–
2

ΣΧΗΜΑ 12.59 Oι εξισώσεις
x � u � v,  y � 2v, και  z � 3w
μετασχηματίζουν το χωρίο  G στο
χωρίο  D Aντιστρέφοντας τον
μετασχηματισμό μέσω των
εξισώσεων  u � (2x � y) 2,
v � y 2, και  w � z 3
μετασχηματίζουμε το  D στο G
Δείτε το Παράδειγμα 3.

 .
 /  / 

 / 

 .



Eξισώσεις xyz του Aντίστοιχες εξισώσεις uvw Aπλοποιημένες
συνόρου του D του συνόρου του G εξισώσεις uvw

x � y 2 u � v � 2v 2 � v u � 0
x � (y 2) � 1 u � v � (2v 2) � 1 � v � 1 u � 1
y � 0 2v � 0 v � 0
y � 4 2v � 4 v � 2
z � 0 3w � 0 w � 0
z � 3 3w � 3 w � 1

H Iακωβιανή του μετασχηματισμού, βάσει των Eξισώσεων (13), εί-
ναι

Tώρα είμαστε έτοιμοι να εφαρμόσουμε την Eξίσωση (7):

Tο θεώρημα αντικατάστασης, εφαρμοζόμενο σε πολλαπλά ολο-
κληρώματα, μπορεί να οδηγήσει σε υπολογιστικές περιπλοκές, όταν ο
μετασχηματισμός συντεταγμένων είναι μη γραμμικός. H παρούσα ενό-
τητα αποσκοπούσε απλώς στο να εισαγάγει τις κεντρικές έννοιες. Σε
προχωρημένα μαθήματα απειροστικού λογισμού, και αφού θα έχετε
ήδη διδαχθεί γραμμική άλγεβρα, μπορείτε να αναζητήσετε μια διεξο-
δικότερη ανάλυση των μετασχηματισμών, της Iακωβιανής, και της
αντικατάστασης με πολλές μεταβλητές. 

ΑΣΚΗΣΕΙΣ 12.7
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Bιογραφικά στοιχεία
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Jacob Jacobi
(1804-1851)

CD-ROM
Δικτυότοπος

Eύρεση Iακωβιανών δύο μεταβλητών και
μετασχηματισμοί χωρίων

1. (α) Eπιλύστε το σύστημα

u � x � y v � 2x � y

ως προς x και y συναρτήσει των u και v. Στη συνέ-
χεια βρείτε την τιμή της Iακωβιανής �(x y) �(u
v) .

(β) Bρείτε σε τι μετασχηματίζεται το τριγωνικό χωρίο
του επιπέδου xy που έχει κορυφές (0, 0), (1, 1), και
(1, �2), αν εφαρμόσουμε τον μετασχηματισμό
u � x � y v � 2x � y. Σχεδιάστε το μετασχηματι-
σμένο χωρίο στο επίπεδο  uv.

2. (α) Eπιλύστε το σύστημα

u � x � 2y v � x � y

ως προς x και y συναρτήσει των u και v. Στη συνέ-

 ,

 ,

 , /  ,

 ,



χεια βρείτε την τιμή της Iακωβιανής �(x y) �(u
v) .

(β) Bρείτε σε τι μετασχηματίζεται το τριγωνικό χωρίο
του επιπέδου xy που φράσσεται από τις ευθείες
y � 0, y � x και x � 2y � 2, αν εφαρμόσουμε τον
μετασχηματισμό u � x � 2y v � x � y. Σχεδιάστε
το μετασχηματισμένο χωρίο στο επίπεδο uv.

3. (α) Eπιλύστε το σύστημα

u � 3x � 2y v � x � 4y

ως προς x και y συναρτήσει των u και v. Στη συνέ-
χεια βρείτε την τιμή της Iακωβιανής �(x y) �(u
v) .

(β) Bρείτε σε τι μετασχηματίζεται το τριγωνικό χωρίο
του επιπέδου xy που φράσσεται από τον άξονα x,
τον άξονα y, και την ευθεία x � y � 1, αν εφαρμό-
σουμε τον μετασχηματισμό u � 3x � 2y v � x �
4y. Σχεδιάστε το μετασχηματισμένο χωρίο στο
επίπεδο uv.

4. (α) Eπιλύστε το σύστημα

u � 2x � 3y v � �x � y

ως προς x και y συναρτήσει των u και v. Στη συνέ-
χεια βρείτε την τιμή της Iακωβιανής �(x y) �(u
v) .

(β) Bρείτε σε τι μετασχηματίζεται το παραλληλό-
γραμμο χωρίο του επιπέδου xy που έχει σύνορα τις
ευθείες x � �3, x � 0, y � x και y � x � 1, αν
εφαρμόσουμε τον μετασχηματισμό u � 2x � 3y
v � �x � y. Σχεδιάστε το μετασχηματισμένο χω-
ρίο στο επίπεδο uv.

Eφαρμογή μετασχηματισμών για τον
υπολογισμό διπλών ολοκληρωμάτων
5. Yπολογίστε το ολοκλήρωμα

από το Παράδειγμα 1 με απευθείας ολοκλήρωση ως
προς x και y, και επαληθεύστε ότι η τιμή του ισούται
με 2.

6. Xρησιμοποιήστε τον μετασχηματισμό της Άσκησης 1
για να υπολογίσετε το ολοκλήρωμα

όπου το χωρίο R στο πρώτο τεταρτημόριο φράσσεται
από τις ευθείες y � �2x � 4, y � �2x � 7, y � x � 2,
και y � x � 1.

7. Xρησιμοποιήστε τον μετασχηματισμό της Άσκησης 3
για να υπολογίσετε το ολοκλήρωμα

όπου το χωρίο R στο πρώτο τεταρτημόριο φράσσεται
από τις ευθείες y � �(3 2)x � 1, y � �(3 2)x � 3,
y � �(1 4)x και y � �(1 4)x � 1.

8. Xρησιμοποιήστε τον μετασχηματισμό και το παραλ-
ληλόγραμμο R της Άσκησης 4 για να υπολογίσετε το
ολοκλήρωμα

9. Έστω R το χωρίο στο πρώτο τεταρτημόριο του επιπέ-
δου xy, το οποίο φράσσεται από τις υπερβολές xy � 1,
xy � 9, και από τις ευθείες y � x y � 4x Xρησιμο-
ποιήστε τον μετασχηματισμό x � u v, y � uv για u � 0
και v � 0 προκειμένου να γράψετε το 

ως ολοκλήρωμα ορισμένο σε χωρίο G του επιπέδου uv.
Στη συνέχεια υπολογίστε το ολοκλήρωμα αυτό στο
χωρίο G

10. (α) Bρείτε την Iακωβιανή του μετασχηματισμού
x � u y � uv, και σχεδιάστε το χωρίο G: 1 � u �
2, 1 � uv � 2 του επιπέδου uv.

(β) Στη συνέχεια, χρησιμοποιήστε την Eξίσωση (1)
προκειμένου να μετασχηματίσετε το ολοκλήρωμα

σε ολοκλήρωμα ορισμένο σε χωρίο G. Yπολογίστε
και τα δύο ολοκληρώματα.

11. Pοπή αδρανείας ελλειπτικής πλάκας Mια λεπτή πλάκα στα-
θερής πυκνότητας καλύπτει το χωρίο που φράσσεται
από την έλλειψη x2 a2 � y2 b2 � 1, a � 0, b � 0, στο επί-
πεδο xy. Bρείτε τη ροπή αδρανείας της πλάκας ως προς
την αρχή. (Yπόδειξη: Xρησιμοποιήστε τον μετασχημα-
τισμό x � ar cos 
 y � br sin 
 )

12. Eύρεση εμβαδού ελλείψεως Tο εμβαδόν �ab της έλλειψης
x 2 a2 � y2 b2 � 1 μπορεί να βρεθεί αν ολοκληρώσουμε
τη συνάρτηση f(x y) � 1 στο χωρίο που περικλείεται
από την έλλειψη στο επίπεδο xy. O απευθείας υπολο-
γισμός του ολοκληρώματος απαιτεί τριγωνομετρική
αντικατάσταση. Ένας ευκολότερος τρόπος υπολογι-
σμού του ολοκληρώματος είναι να χρησιμοποιήσουμε
τον μετασχματισμό x � au y � bv και να υπολογίσου-
με το μετασχηματισμένο ολοκλήρωμα στο χωρίο του
κυκλικού δίσκου G: u2 � v2 � 1 του επιπέδου uv. Bρεί-
τε το εμβαδόν με τον τρόπο αυτόν.

13. Xρησιμοποιήστε τον μετασχηματισμό της Άσκησης 2
για να υπολογίσετε το ολοκλήρωμα

γράφοντάς το πρώτα ως ολοκλήρωμα σε χωρίο G του
επιπέδου uv.

14. Xρησιμοποιήστε τον μετασχηματισμό x � u � (1 2)v,
y � v για να υπολογίσετε το ολοκλήρωμα

� 2
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γράφοντάς το πρώτα ως ολοκλήρωμα σε χωρίο G του
επιπέδου uv.

Eύρεση Iακωβιανών

15. Bρείτε την Iακωβιανή �(x y) �(u v) του μετασχηματι-
σμού

(α) x � u cos v, y � u sin v

(β) x � u sin v, y � u cos v.

16. Bρείτε την Iακωβιανή �(x y z) �(u v, w) του μετα-
σχηματισμού

(α) x � u cos v, y � u sin v , z � w

(β) x � 2u � 1, y � 3v � 4, z � (1 2)(w � 4).

17. Yπολογίστε την ορίζουσα της Eξίσωσης (10) προκει-
μένου να δείξετε ότι η Iακωβιανή του μετασχηματι-
σμού από τον καρτεσιανό χώρο �f
 στον καρτεσιανό
χώρο xyz είναι �2 sin f.

18. Aντικαταστάσεις σε απλά ολοκληρώματα Πώς μπορούν οι
αντικαταστάσεις που κάνουμε σε απλά ολοκληρώματα
να θεωρηθούν ως μετασχηματισμοί περιοχών; Ποια εί-
ναι η Iακωβιανή σε τέτοιες περιπτώσεις; Δείξτε τι
συμβαίνει με ένα παράδειγμα.

Eφαρμογή μετασχηματισμών για τον
υπολογισμό τριπλών ολοκληρωμάτων 
19. Yπολογίστε το ολοκλήρωμα του Παραδείγματος 3

ολοκληρώνοντας ως προς x y και z

20. Όγκος ελλειψοειδούς Bρείτε τον όγκο του ελλειψοειδούς

(Yπόδειξη: Θέστε x � au y � bv, και z � cw Στη συ-
νέχεια βρείτε τον όγκο του κατάλληλου χωρίου στον
χώρο uvw.)

21. Yπολογίστε το

στο χωρίο που καλύπτει το στερεό ελλειψοειδές

(Yπόδειξη: Θέστε x � au y � bv, και z � cw Στη συ-
νέχεια ολοκληρώστε στο κατάλληλο χωρίο του χώρου
uvw.)

22. Έστω D χωρίο του χώρου xyz που ορίζεται από τις ανι-
σότητες

1 � x � 2, 0 � xy � 2, 0 � z � 1.

Yπολογίστε το

εφαρμόζοντας τον μετασχηματισμό

u � x v � xy w � 3z

και ολοκληρώνοντας στο κατάλληλο χωρίο G του χώ-
ρου uvw.

23. Kεντροειδές στερεού ημιελλειψοειδούς Θεωρήστε ως δε-
δομένο ότι το κεντροειδές ενός στερεού ημισφαιρίου
κείται στον άξονα συμμετρίας και απέχει από τη βά-
ση τρία όγδοα της απόστασης βάσης-κορυφής. Στη
συνέχεια δείξτε, μετασχηματίζοντας τα κατάλληλα
ολοκληρώματα, ότι το κέντρο μάζας του στερεού ημι-
ελλειψοειδούς (x 2 a2) � (y2 b2) � (z2 c2) � 1, z � 0,
ανήκει στον άξονα z και απέχει από τη βάση τρία
όγδοα της απόστασης βάσης-κορυφής. (Mπορείτε να
το δείξετε αυτό χωρίς να υπολογίσετε κανένα ολο-
κλήρωμα.)

24. Kυλινδρικά κελύφη Στην Eνότητα 5.2, είδαμε πώς να βρί-
σκουμε τον όγκο στερεού εκ περιστροφής με τη μέθο-
δο των φλοιώνØ συγκεκριμένα, αν το χωρίο που περι-
κλείεται από την καμπύλη y � f (x) και τον άξονα x από
a έως b (0 	 a 	 b) περιστραφεί ως προς τον άξονα y, ο
όγκος του στερεού που προκύπτει είναι f(x)dx.
Δείξτε ότι ο υπολογισμός όγκων μέσω τριπλών ολο-
κληρωμάτων δίνει το ίδιο αποτέλεσμα. (Yπόδειξη:
Xρησιμοποιήστε κυλινδρικές συντεταγμένες, με το z
στη θέση του y.)
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Eπαναληπτικές ερωτήσεις 

1. Oρίστε το διπλό ολοκλήρωμα συναρτήσεως δύο μετα-
βλητών σε φραγμένο χωρίο του επιπέδου συντεταγμέ-
νων.

2. Πώς υπολογίζουμε διπλά ολοκληρώματα με διαδοχική
ολοκλήρωση; Έχει σημασία η σειρά ολοκλήρωσης;
Πώς καθορίζονται τα όρια ολοκλήρωσης; Δώστε παρα-
δείγματα.

3. Πώς χρησιμοποιούμε διπλά ολοκληρώματα για τον
υπολογισμό εμβαδών, μέσων τιμών, μαζών, ροπών, κέ-
ντρων μάζας, και ακτίνων αδρανείας; Δώστε παραδείγ-
ματα.

4. Πώς μπορούμε να μετατρέψουμε ένα διπλό ολοκλήρω-

μα σε καρτεσιανές συντεταγμένες, σε ολοκλήρωμα σε
πολικές συντεταγμένες; Για ποιον λόγο θα άξιζε τον
κόπο η μετατροπή αυτή; Δώστε ένα παράδειγμα.

5. Oρίστε το τριπλό ολοκλήρωμα συνάρτησης f (x y z)
σε μια φραγμένη περιοχή του χώρου.

6. Πώς υπολογίζουμε τριπλά ολοκληρώματα σε καρτε-
σιανές συντεταγμένες; Πώς προκύπτουν τα όρια ολο-
κλήρωσης; Δώστε ένα παράδειγμα.

7. Πώς χρησιμοποιούμε τριπλά ολοκληρώματα σε καρτε-
σιανές συντεταγμένες για τον υπολογισμό όγκων, μέ-
σων τιμών, ροπών, κέντρων μάζας, και ακτίνων περι-
στροφής; Δώστε παραδείγματα.

 , ,



8. Πώς ορίζονται τα τριπλά ολοκληρώματα σε κυλινδρι-
κές και σφαιρικές συντεταγμένες; Ποιον λόγο έχουμε
να προτιμήσουμε τις συντεταγμένες αυτές σε σχέση με
τις καρτεσιανές συντεταγμένες;

9. Πώς υπολογίζονται τα τριπλά ολοκληρώματα σε κυ-
λινδρικές και σφαιρικές συντεταγμένες; Πώς βρίσκο-
νται τα όρια ολοκλήρωσης; Δώστε παραδείγματα.

10. Πώς μπορούν οι αντικαταστάσεις μεταβλητών σε δι-
πλά ολοκληρώματα να θεωρηθούν ως μετασχηματι-
σμοί διδιάστατων χωρίων; Δώστε έναν υποδειγματικό
υπολογισμό.

11. Πώς μπορούν οι αντικαταστάσεις μεταβλητών σε τρι-
πλά ολοκληρώματα να θεωρηθούν ως μετασχηματι-
σμοί τριδιάστατων χωρίων; Δώστε έναν υποδειγματικό
υπολογισμό.
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Aσκήσεις κεφαλαίου

Eπίπεδα χωρία ολοκλήρωσης

Στις Aσκήσεις 1-4, σχεδιάστε το χωρίο ολοκλήρωσης και
υπολογίστε το διπλό ολοκλήρωμα.

1. 2.

3. 4.

Aντιστρέφοντας τη σειρά ολοκλήρωσης

Στις Aσκήσεις 5-8, σχεδιάστε το χωρίο ολοκλήρωσης και
γράψτε ένα ισοδύναμο ολοκλήρωμα με τη σειρά ολοκλή-
ρωσης αντεστραμμένη. Στη συνέχεια υπολογίστε και τα
δύο ολοκληρώματα.

5. 6.

7. 8.

Yπολογισμός διπλών ολοκληρωμάτων 

Yπολογίστε τα ολοκληρώματα των Aσκήσεων 9-12.

9. 10.

11. 12.

Eμβαδά και όγκοι

13. Eμβαδόν μεταξύ ευθείας και παραβολής Bρείτε το εμβαδόν
του χωρίου που περικλείεται από την ευθεία y � 2x �
4 και από την παραβολή y � 4 � x 2 στο επίπεδο xy.

14. Eμβαδόν χωρίου που φράσσεται από ευθείες και από παραβολή

Bρείτε το εμβαδόν του «τριγωνικού» χωρίου του επι-
πέδου xy, το οποίο φράσσεται από δεξιά από την πα-
ραβολή y � x 2, από αριστερά από την ευθεία x � y �
2, και από πάνω από την ευθεία y � 4.

15. Όγκος χωρίου κάτω από παραβολοειδές Bρείτε τον όγκο του
χωρίου που κείται κάτω από το παραβολοειδές
z � x 2 � y2 και πάνω από το τρίγωνο που περικλείεται
από τις ευθείες y � x x � 0, και x � y � 2, στο επίπε-
δο xy.

16. Όγκος χωρίου κάτω από παραβολικό κύλινδρο Bρείτε τον
όγκο του χωρίου που κείται κάτω από τον παραβολικό
κύλινδρο z � x 2 και πάνω από το χωρίο που περικλεί-
ουν η παραβολή y � 6 � x 2 και η ευθεία y � x του επι-
πέδου xy.

Mέσες τιμές

Bρείτε τη μέση τιμή της f (x y) � xy στα χωρία των Aσκή-
σεων 17 και 18.

17. Tο τετράγωνο που φράσσεται από τις ευθείες x � 1,
y � 1 στο πρώτο τεταρτημόριο.

18. Tο τεταρτοκύκλιο x 2 � y2 � 1 στο πρώτο τεταρτημό-
ριο.

Mάζες και ροπές

19. Kεντροειδές Bρείτε το κεντροειδές της «τριγωνικής»
περιοχής που φράσσεται από τις ευθείες x � 2, y � 2
και από την υπερβολή xy � 2 στο επίπεδο xy.

20. Kεντροειδές Bρείτε το κεντροειδές της περιοχής που
περικλείεται από την παραβολή x � y2 � 2y � 0 και
από την ευθεία x � 2y � 0 στο επίπεδο xy.

21. Pοπή αδρανείας Bρείτε τη ροπή αδρανείας ως προς την
αρχή των αξόνων, μιας λεπτής τριγωνικής πλάκας στα-
θερής πυκνότητας 
 � 3, η οποία φράσσεται από τον
άξονα y και από τις ευθείες y � 2x και y � 4 του επι-
πέδου xy.

22. Pοπή αδρανείας Bρείτε τη ροπή αδρανείας ως προς το
κέντρο ενός λεπτού ορθογώνιου στρώματος σταθερής
πυκνότητας 
 � 1 το οποίο φράσσεται από τις ευθείες

(α) x � �2, y � �1 στο επίπεδο xy

(β) x � �a y � �b στο επίπεδο xy.

(Yπόδειξη: Bρείτε το Ix Στη συνέχεια χρησιμοποιήστε
τον τύπο του Ix προκειμένου να βρείτε το Iy και προ-
σθέστε τα Ix και  Iy αυτά για να βρείτε το I0.)

23. Pοπή αδρανείας και ακτίνα αδρανείας Bρείτε τη ροπή αδρα-
νείας και την ακτίνα αδρανείας ως προς τον άξονα x,
μιας λεπτής τριγωνικής πλάκας σταθερής πυκνότητας

, η οποία έχει κορυφές τα σημεία (0, 0), (3, 0), και (3,
2) στο επίπεδο xy.

24. Πλάκα με μεταβαλλόμενη πυκνότητα Bρείτε το κέντρο μά-
ζας, τις ροπές αδρανείας, και τις ακτίνες αδρανείας ως
προς τους άξονες συντεταγμένων, μιας λεπτής πλάκας
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που φράσσεται από την ευθεία y � x και από την πα-
ραβολή y � x 2 στο επίπεδο xy, και έχει πυκνότητα 
(x
y) � x � 1.

25. Πλάκα με μεταβαλλόμενη πυκνότητα Bρείτε τη μάζα και τις
ροπές αδρανείας ως προς τους άξονες συντεταγμένων
μιας λεπτής τετράγωνης πλάκας η οποία φράσσεται
από τις ευθείες x � �1, y � �1 στο επίπεδο xy, και
έχει πυκνότητα 
(x y) � x 2 � y2 � 1 3.

26. Tρίγωνα με την ίδια ροπή αδρανείας και ακτίνα αδρανείας Bρεί-
τε τη ροπή αδρανείας και την ακτίνα αδρανείας ως προς
τον άξονα x μιας λεπτής τριγωνικής πλάκας σταθερής
πυκνότητας 
, της οποίας η βάση καλύπτει το διάστημα
[0, b] του άξονα x, και η κορυφή ανήκει στην ευθεία y
� h κατακόρυφα πάνω από τον άξονα x. Όπως θα δείτε,
δεν έχει σημασία σε ποιο σημείο επί της ευθείας αυτής
κείται η κορυφή της τριγωνικής πλάκας.  Όλες οι τρι-
γωνικές πλάκες τέτοιου είδους θα έχουν την ίδια ροπή
αδρανείας και ακτίνα αδρανείας ως προς τον άξονα x.

Πολικές συντεταγμένες

Yπολογίστε τα ολοκληρώματα των Aσκήσεων 27 και 28
μεταβαίνοντας σε πολικές συντεταγμένες.

27.

28.

29. Kεντροειδές Bρείτε το κεντροειδές της περιοχής του πο-
λικού επιπέδου η οποία ορίζεται από τις ανισότητες
0 � r � 3, �� 3 � 
 � � 3.

30. Kεντροειδές Bρείτε το κεντροειδές της περιοχής του
πρώτου τεταρτημορίου η οποία φράσσεται από τις πο-
λικές ευθείες  
 � 0 και 
 � � 2 και από τους κύκλους
r � 1 και r � 3.

31. (α) Kεντροειδές Bρείτε το κεντροειδές της περιοχής
του πολικού επιπέδου η οποία κείται στο εσωτερικό
της καρδιοειδούς r � 1 � cos 
 και στο εξωτερικό του
κύκλου r � 1.

(β) Σχεδιάστε την περιοχή αυτή και σημειώστε το κε-
ντροειδές στο σχήμα σας.

32. (α) Mάθετε γράφοντας: Kεντροειδές Bρείτε το κεντροει-
δές της περιοχής του επιπέδου που ορίζουν οι πο-
λικές ανισότητες  0 � r � a �� � 
 � � (0 	 � �
�). Πώς μετατοπίζεται το κεντροειδές αυτό καθώς
� l ��;

(β) Σχεδιάστε την περιοχή για � � 5� 6 και σημειώ-
στε το κεντροειδές στο σχήμα σας.

33. Oλοκλήρωση επί λημνίσκου Oλοκληρώστε τη συνάρτηση
f(x y) � 1 (1 � x 2 � y2)2 στην περιοχή που περικλεί-
εται από τον ένα βρόχο του λημνίσκου (x 2 � y2)2 �
(x 2 � y2) � 0.

34. Oλοκληρώστε την f(x y) � 1 (1 � x 2 � y2)2 στις εξής
περιοχές:

(α) Tριγωνική περιοχή Tο τρίγωνο με κορυφές (0, 0),
(1, 0), (1, )

(β) Πρώτο τεταρτημόριο Tο πρώτο τεταρτημόριο του επι-
πέδου xy.

Tριπλά ολοκληρώματα σε καρτεσιανές συντεταγμένες

Yπολογίστε τα ολοκληρώματα των Aσκήσεων 35-38.

35.

36.

37.

38.

39. Όγκος Bρείτε τον όγκο της σφηνοειδούς περιοχής που
φράσσεται πλευρικά από τον κύλινδρο x � �cos y
�� 2 � y � � 2, από πάνω από το επίπεδο z � �2x
και από κάτω από το επίπεδο xy.

40. Όγκος Bρείτε τον όγκο του στερεού που φράσσεται από
πάνω από τον κύλινδρο z � 4 � x 2, πλευρικά από τον
κύλινδρο x 2 � y2 � 4, και από κάτω από το επίπεδο xy.

41. Mέση τιμή Bρείτε τη μέση τιμή της f (x y z) �
30xz στο ορθογώνιο στερεό του πρώτου οκτη-
μορίου που φράσσεται από τα επίπεδα που ανά δύο ορί-
ζουν οι άξονες συντεταγμένων, και από τα επίπεδα
x � 1, y � 3, z � 1.

42. Mέση τιμή Bρείτε τη μέση τιμή του � στη στερεά σφαί-
ρα � � a (σφαιρικές συντεταγμένες).

Kυλινδρικές και σφαιρικές συντεταγμένες

43. Aπό κυλινδρικές σε ορθογώνιες συντεταγμένες Eκφράστε το

σε (α) ορθογώνιες συντεταγμένες με σειρά ολοκλήρω-
σης dz dx dy και (β) σε σφαιρικές συντεταγμένες. Στη
συνέχεια (γ) υπολογίστε ένα από τα ολοκληρώματα αυ-
τά.

44. Aπό καρτεσιανές σε κυλινδρικές συντεταγμένες (α) Eκφράστε
το ακόλουθο ολοκλήρωμα σε κυλινδρικές συντεταγμέ-
νες. Στη συνέχεια (β) υπολογίστε το νέο αυτό ολοκλή-
ρωμα. 

45. Aπό καρτεσιανές σε σφαιρικές συντεταγμένες (α) Eκφράστε
το ακόλουθο ολοκλήρωμα σε σφαιρικές συντεταγμέ-
νες. Στη συνέχεια (β) υπολογίστε αυτό το νέο ολοκλή-
ρωμα.
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x2 � y2 � 4

z

y

x

z � 4 � x2



46. Kαρτεσιανές, κυλινδρικές και σφαιρικές συντεταγμένες Γράψτε
το τριπλό ολοκλήρωμα της f (x y z) � 6 � 4y στην πε-
ριοχή του πρώτου οκτημορίου η οποία φράσσεται από
τον κώνο z � , από τον κύλινδρο x 2 � y2 � 1,
και από τα επίπεδα που ανά δύο ορίζουν οι άξονες συ-
ντεταγμένων σε (α) καρτεσιανές συντεταγμένες, (β)
κυλινδρικές συντεταγμένες, και (γ) σφαιρικές συντε-
ταγμένες. Στη συνέχεια (δ) βρείτε το ολοκλήρωμα της
f υπολογίζοντας ένα από τα τριπλά ολοκληρώματα.

47. Aπό κυλινδρικές σε καρτεσιανές συντεταγμένες Σχηματίστε
ένα ολοκλήρωμα σε καρτεσιανές συντεταγμένες το
οποίο να ισοδυναμεί με το

Διευθετήστε το ολοκλήρωμά σας έτσι ώστε η σειρά
ολοκλήρωσης να είναι πρώτα ως προς z, έπειτα ως
προς y και τέλος ως προς x

48. Aπό καρτεσιανές σε κυλινδρικές συντεταγμένες O όγκος ενός
στερεού είναι

(α) Περιγράψτε το στερεό δίνοντας τις εξισώσεις των
συνοριακών επιφανειών του.

(β) Eκφράστε το ολοκλήρωμα σε κυλινδρικές συντε-
ταγμένες, αλλά μην το υπολογίσετε.

49. Σφαιρικές συντεταγμένες έναντι κυλινδρικών Tριπλά ολοκλη-
ρώματα που αφορούν σφαιρικά σχήματα δεν απαιτούν

πάντα σφαιρικές συντεταγμένες για τον ευχερή υπολο-
γισμό τους. Mερικές φορές ο υπολογισμός γίνεται ευ-
κολότερα σε κυλινδρικές συντεταγμένες. Για παρά-
δειγμα, βρείτε τον όγκο του χωρίου που είναι άνω
φραγμένο από τη σφαίρα x 2 � y2 � z2 � 8 και κάτω
φραγμένο από το επίπεδο z � 2, χρησιμοποιώντας (α)
κυλινδρικές συντεταγμένες και (β) σφαιρικές συντε-
ταγμένες.

50. Eύρεση του Iz σε σφαιρικές συντεταγμένες Bρείτε τη ροπή
αδρανείας ως προς τον άξονα z του στερεού σταθερής
πυκνότητας 
 � 1 που είναι άνω φραγμένο από τη σφαί-
ρα � � 2 και κάτω φραγμένο από τον κώνο f � � 3 (οι
συντεταγμένες είναι σφαιρικές).

51. Pοπή αδρανείας σφαιρικού φλοιού πεπερασμένου πάχους Ένα
στερεό έχει σταθερή πυκνότητα 
 και φράσσεται από
δύο ομόκεντρες σφαίρες ακτίνων a και b (a 	 b). Bρεί-
τε τη ροπή αδρανείας του στερεού ως προς μια διάμε-
τρό του.

52. Pοπή αδρανείας ενός μήλου Bρείτε τη ροπή αδρανείας ως
προς τον άξονα z ενός στερεού πυκνότητας 
 � 1 που
περικλείεται από την επιφάνεια (σε σφαιρικές συντε-
ταγμένες)  � � 1 � cos f.
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Όγκοι

1. Aμμόλοφος: διπλά και τριπλά ολοκληρώματα H βάση ενός αμ-
μόλοφου καλύπτει την περιοχή του επιπέδου xy που
φράσσεται από την παραβολή x 2 � y � 6 και από την
ευθεία y � x Tο ύψος του αμμόλοφου πάνω από το ση-
μείο (x y) είναι x 2. Eκφράστε τον όγκο του αμμόλοφου
ως (α) διπλό ολοκλήρωμα, (β) τριπλό ολοκλήρωμα. Στη
συνέχεια (γ) υπολογίστε τον όγκο αυτό.

2. Nερό σε ημισφαιρικό δοχείο Ένα ημισφαιρικό δοχείο ακτί-
νας 5 cm περιέχει νερό μέχρι 3 cm από το άνω χείλος
του. Bρείτε τον όγκο του νερού στο δοχείο.

3. Στερεή κυλινδρική περιοχή μεταξύ δύο επιπέδων Bρείτε τον
όγκο του τμήματος του στερεού κυλίνδρου x2 � y2 � 1
που κείται μεταξύ των επιπέδων z � 0 και x � y � z � 2.

4. Σφαίρα και παραβολοειδές Bρείτε τον όγκο του χωρίου που
είναι άνω φραγμένο από τη σφαίρα x2 � y2 � z2 � 2 και
κάτω φραγμένο από το παραβολοειδές z � x2 � y2.

5. Δύο παραβολοειδή Bρείτε τον όγκο του χωρίου που είναι
άνω φραγμένο από το παραβολοειδές z � 3 � x 2 � y2

και κάτω φραγμένο από το παραβολοειδές z � 2x 2 �
2y2.

6. Σφαιρικές συντεταγμένες Bρείτε τον όγκο του χωρίου που
περικλείεται από την επιφάνεια (σε σφαιρικές συντε-
ταγμένες) � � 2 sin f (δείτε το ακόλουθο σχήμα).

z

x

� � 2 sin �

y

 ,
 .



7. Oπή σε σφαίρα Σε στερεά σφαίρα ανοίγουμε διαμπερώς
μια κυκλική κυλινδρική οπή, ο άξονας της οποίας είναι
μια διάμετρος της σφαίρας. O όγκος του στερεού που
απομένει είναι

(α) Bρείτε την ακτίνα της οπής και την ακτίνα της
σφαίρας.

(β) Yπολογίστε το ολοκλήρωμα.

8. Σφαίρα και κύλινδρος Bρείτε τον όγκο του υλικού που
αποκόπτει από τη στερεά σφαίρα r 2 � z2 � 9 ο κύλιν-
δρος r � 3 sin 
.

9. Δύο παραβολοειδή Bρείτε τον όγκο του χωρίου που περι-
κλείεται από τις επιφάνειες z � x 2 � y2 και z � (x 2 �
y2 � 1) 2.

10. Kύλινδρος και επιφάνεια z � xy Bρείτε τον όγκο του χωρί-
ου του πρώτου οκτημορίου που κείται μεταξύ των κυ-
λίνδρων r � 1 και r � 2 και είναι κάτω φραγμένο από
το επίπεδο xy και άνω φραγμένο από την επιφάνεια
z � xy

Aλλαγή της σειράς ολοκλήρωσης

11. Yπολογίστε το ολοκλήρωμα

(Yπόδειξη: Xρησιμοποιήστε τη σχέση

για να σχηματίσετε ένα διπλό ολοκλήρωμα το οποίο
και υπολογίστε αλλάζοντας τη σειρά ολοκλήρωσης.)

12. (α) Πολικές συντεταγμένες Δείξτε, μεταβαίνοντας σε πο-
λικές συντεταγμένες, ότι

όπου a � 0 και 0 	 � 	 � 2.

(β) Ξαναγράψτε το καρτεσιανό ολοκλήρωμα με τη
σειρά ολοκλήρωσης αντεστραμμένη.

13. Aναγωγή διπλού ολοκληρώματος σε απλό Aλλάξτε τη σειρά
ολοκλήρωσης προκειμένου να δείξετε ότι το ακόλου-
θο διπλό ολοκλήρωμα μπορεί να αναχθεί σε απλό ολο-
κλήρωμα:

Oμοίως, μπορεί να δειχθεί ότι

14. Mετασχηματισμός διπλού ολοκληρώματος προκειμένου να πάρου-

με σταθερά όρια ολοκλήρωσης Mερικές φορές ένα πολλα-
πλό ολοκλήρωμα με μεταβλητά όρια μπορεί να αναχθεί
σε απλό ολοκλήρωμα με σταθερά όρια. Aλλάξτε τη
σειρά ολοκλήρωσης, προκειμένου να δείξετε ότι 

Mάζες και ροπές

15. Eλαχιστοποίηση ροπής αδρανείας Mια λεπτή πλάκα στα-
θερής πυκνότητας καταλαμβάνει την τριγωνική πε-
ριοχή στο πρώτο τεταρτημόριο του επιπέδου xy η
οποία έχει κορυφές (0, 0) , (a 0) , και (a 1 a) . Για
ποια τιμή του a θα ελαχιστοποιηθεί η ροπή αδρανεί-
ας της πλάκας ως προς την αρχή;

16. Pοπή αδρανείας μιας τριγωνικής πλάκας Bρείτε τη ροπή
αδρανείας ως προς την αρχή μιας λεπτής τριγωνικής
πλάκας σταθερής πυκνότητας 
 � 3, η οποία φράσσε-
ται από τον άξονα y και από τις ευθείες y � 2x και y �
4 στο επίπεδο xy.

17. Mάζα και ροπή αδρανείας αντίβαρου Tο αντίβαρο μιας φτε-
ρωτής σταθερής πυκνότητας 1 έχει το σχήμα του μι-
κρότερου τμήματος που αποκόπτει από κυκλικό δίσκο
ακτίνας a μια χορδή η οποία απέχει b από το κέντρο
του (b 	 a) . Bρείτε τη μάζα του αντίβαρου και τη ροπή
αδρανείας του ως προς το κέντρο του τροχού της φτε-
ρωτής.

18. Kεντροειδές ενός μπούμερανγκ Bρείτε το κεντροειδές ενός
χωρίου σχήματος μπούμερανγκ που κείται μεταξύ των
παραβολών y2 � �4(x � 1) και y2 � �2(x � 2) στο επί-
πεδο xy.

Θεωρία και εφαρμογές

19. Yπολογίστε το

όπου a και b είναι θετικοί ακέραιοι και 

max(b2x 2, a2y2) �

20. Δείξτε ότι το ολοκλήρωμα 

που ορίζεται στο ορθογώνιο χωρίο x0 � x � x1, y0 � y
� y1, ισούται με

21. Έστω ότι η f (x y) μπορεί να γραφεί ως το γινόμενο
f(x y) � F(x)G( y) μιας συνάρτησης του x επί μια συ-
νάρτηση του y Στην περίπτωση αυτή, το ολοκλήρωμα
της f στο ορθογώνιο χωρίο R: a � x � b c � y � d μπο-
ρεί να γραφεί ως το γινόμενο

(1)

H σχετική επιχειρηματολογία έχει ως εξής:

��
R

 f (x , y) dA � ��
b
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c
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 .
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(i)   

(ii)   

(iii)  

(iv)   

(α) Mάθετε γράφοντας Aιτιολογήστε τα βήματα i έως και
iv.

Στις περιπτώσεις όπου βρίσκει εφαρμογή, η Eξίσωση
(1) διευκολύνει τους υπολογισμούς μας. Eφαρμόστε
την για τον υπολογισμό των ακόλουθων ολοκληρωμά-
των.

(β)

(γ)

22. Έστω Du f η παράγωγος της f (x y) � (x 2 � y2) 2 στην
κατεύθυνση του μοναδιαίου διανύσματος u � u1i � u2j .

(α) Eύρεση μέσης τιμής Bρείτε τη μέση τιμή της Du f στο
τριγωνικό χωρίο που αποκόπτει από το πρώτο τε-
ταρτημόριο η ευθεία x � y � 1.

(β) Mέση τιμή και κεντροειδές Δείξτε ότι εν γένει η μέση
τιμή της Du f σε ένα χωρίο του επιπέδου xy είναι η
τιμή της Du f στο κεντροειδές του χωρίου.

23. H τιμή του �(1/2) H συνάρτηση γάμμα,

επεκτείνει το πεδίο ορισμού της συνάρτησης παραγο-
ντικού από μη αρνητικούς ακεραίους στους πραγματι-
κούς αριθμούς. Iδιαίτερο ενδιαφέρον για τη θεωρία
των διαφορικών εξισώσεων έχει ο αριθμός

(2)

(α) Aν δεν έχετε ήδη λύσει την Άσκηση 37 της Eνό-
τητας 12.3, λύστε την τώρα για να δείξετε ότι

(β) Aντικαταστήστε y � στην Eξίσωση (2) για να
δείξετε ότι �(1 2) � 2I �

24. Oλικό ηλεκτρικό φορτίο σε κυκλική πλάκα H κατανομή ηλε-

κτρικού φορτίου σε μια κυκλική πλάκα ακτίνας R (σε
m) είναι �(r 
) � kr(1 � sin 
) coulomb m2 (k είναι μια
σταθερά). Oλοκληρώστε τη � σε όλη την έκταση της
πλάκας για να βρείτε το ολικό φορτίο Q

25. Παραβολικός μετρητής βροχοπτώσεως Ένα δοχείο έχει το
σχήμα της γραφικής παράστασης της z � x 2 � y2 από
z � 0 έως z � 10 cm. Eπιθυμείτε να βαθμονομήσετε το
δοχείο ώστε να το χρησιμοποιήσετε ως βροχομετρη-
τή. Πόσο θα είναι το ύψος του νερού στο δοχείο που θα
αντιστοιχεί σε βροχόπτωση 1 cm; Tο ίδιο ερώτημα για
βροχόπτωση 3 cm.

26. Nερό σε δορυφορικό «πιάτο» Ένα παραβολικό δορυφορι-
κό «πιάτο» έχει πλάτος 2 m και βάθος 1 2 m. O άξονας
συμμετρίας του έχει κλίση 30° σε σχέση με την κατα-
κόρυφο. 

(α) Σχηματίστε, χωρίς να υπολογίσετε, ένα τριπλό
ολοκλήρωμα σε καρτεσιανές συντεταγμένες, που
να δίνει τον όγκο του νερού που μπορεί να συ-
γκρατήσει το δορυφορικό «πιάτο». (Yπόδειξη: Tο-
ποθετήστε το σύστημα συντεταγμένων σας έτσι
ώστε το «πιάτο» να είναι στην «όρθια θέση» και το
επίπεδο του περιεχόμενου νερού να είναι κεκλιμέ-
νο.) (Προσοχή: Tο δύσκολο σημείο της άσκησης
έγκειται στα όρια ολοκλήρωσης.)

(β) Ποια είναι η ελάχιστη κλίση που πρέπει να δώ-
σουμε στο «πιάτο» ώστε να μην συγκρατεί καθό-
λου νερό;

27. Άπειρος ημικύλινδρος Έστω D το εσωτερικό ενός άπειρου
ορθού κυκλικού ημικυλίνδρου ακτίνας 1 του οποίου η
μοναδική βάση απέχει 1 μονάδα μήκους πάνω από την
αρχή. Άξονας του ημικυλίνδρου είναι η ημιευθεία που
ξεκινά από το (0, 0, 1) και προεκτείνεται στο άπειρο.
Xρησιμοποιήστε κυλινδρικές συντεταγμένες για να
υπολογίσετε το

28. Yπερόγκος Όπως έχουμε ήδη μάθει, είναι το μή-
κος του διαστήματος [a b] στην ευθεία των αριθμών
(μονοδιάστατος χώρος), ��R 1 dA είναι το εμβαδόν του
χωρίου R του επιπέδου xy (διδιάστατος χώρος), και
���D 1 dV είναι ο όγκος του χωρίου D του τριδιάστατου
χώρου (χώρος xyz). Mπορούμε να συνεχίσουμε με τον
ίδιο τρόπο: Aν Q είναι ένα χωρίο του τετραδιάστατου
χώρου (χώρος xyzw), τότε το ����Q 1 dV είναι ο «υπε-
ρόγκος» του Q Xρησιμοποιήστε ένα καρτεσιανό σύ-
στημα συντεταγμένων στον τετραδιάστατο χώρο προ-
κειμένου να βρείτε τον υπερόγκο του χωρίου που κα-
λύπτει το εσωτερικό της μοναδιαίας τετραδιάστατης
σφαίρας x 2 � y2 � z2 � w2 � 1.
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