
ΕΠΙΣΚΟΠΗΣΗ Eπί αιώνες, το πρόβλημα της άθροισης μιας σειράς
άπειρων όρων προβλημάτιζε τους μαθηματικούς. Kαι αυτό γιατί έβλε-
παν πως μερικές φορές μια τέτοια σειρά καταλήγει σε πεπερασμένο
αποτέλεσμα, π.χ. 

(Mπορείτε να πεισθείτε γι’ αυτό αθροίζοντας τα
εμβαδά των άπειρων ορθογωνίων που αποκόπτο-
νται από το μοναδιαίο τετράγωνο με τον τρόπο
που δείχνει το διπλανό σχήμα.) Άλλες όμως φο-
ρές, ένα άπειρο άθροισμα απειριζόταν, π.χ. 

(κάτι που δεν είναι καθόλου προφανές), και τέλος υπήρχαν περιπτώ-
σεις όπου ήταν αδύνατον να αποφανθεί κανείς για την τιμή του άπει-
ρου αθροίσματος, π.χ. 

(Eίναι μηδέν; Eίναι 1; Ή τίποτα από τα δύο;)
Παρά ταύτα, μαθηματικοί όπως ο Gauss και ο Euler χρησιμοποίη-

σαν επιτυχώς τις άπειρες σειρές για να εξαγάγουν μερικά πρωτοφανή
αποτελέσματα. O Laplace απέδειξε με σειρές την ευστάθεια του ηλια-
κού μας συστήματος (χωρίς αυτό να αποτρέπει σήμερα μερικούς από
το να εκφράζουν την ανησυχία τους για το ότι «υπερβολικά πολλοί»
πλανήτες έχουν γείρει από τη μία πλευρά του Ήλιου!). Θα περνούσαν
αρκετά ακόμη χρόνια μέχρι να εμφανιστούν ειδικοί της μαθηματικής
ανάλυσης, όπως ο Cauchy, οι οποίοι ανέπτυξαν το θεωρητικό υπόβα-
θρο των υπολογισμών με σειρές, αναγκάζοντας έτσι πολλούς συναδέλ-
φους τους (μεταξύ αυτών και τον Laplace) να επανεξετάσουν σε αυ-
στηρότερο υπόβαθρο τα πρότερα αποτελέσματά τους.

Oι άπειρες σειρές αποτελούν τη βάση ενός αξιοθαύμαστου μαθη-
ματικού τύπου ο οποίος μας επιτρέπει να περιγράφουμε πολλές συ-
ναρτήσεις με πολυώνυμα που περιέχουν άπειρους όρους (τα οποία κα-
λούνται δυναμοσειρές), ενώ παράλληλα μας πληροφορεί για το μέγε-
θος του σφάλματος που υπεισέρχεται αν κρατήσουμε πεπερασμένο
πλήθος όρων στα πολυώνυμα αυτά. Oι δυναμοσειρές, πέραν του ότι
προσεγγίζουν με πολυώνυμα τις διαφορίσιμες συναρτήσεις, βρίσκουν
και πολλές άλλες εφαρμογές. Παρακάτω θα δούμε πώς μπορούμε να
χρησιμοποιήσουμε άπειρα αθροίσματα τριγωνομετρικών όρων (τις λε-
γόμενες σειρές Fourier), προκειμένου να αναπαραστήσουμε μερικές
από τις σπουδαιότερες συναρτήσεις που συναντά κανείς σε επιστημο-
νικές και τεχνολογικές εφαρμογές. Oι άπειρες σειρές παρέχουν έναν
ευχερή τρόπο υπολογισμού μη στοιχειωδών ολοκληρωμάτων, καθώς
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και επίλυσης των διαφορικών εξισώσεων που περιγράφουν τη διάδοση
της θερμότητας, τις ταλαντώσεις, τη διάχυση χημικών ουσιών, και τη
μετάδοση σημάτων. Στο παρόν κεφάλαιο θα προετοιμάσουμε το έδα-
φος για την κατανόηση του ρόλου που παίζουν οι σειρές στις φυσικές
επιστήμες και στα μαθηματικά.

8.1
Oρισμοί και συμβολισμός • Σύγκλιση και απόκλιση

• Yπολογισμός ορίων ακολουθιών • Kάνοντας χρήση του κανόνα

του l’Hôpital • Όρια που απαντούν συχνά

Γενικά, θα μπορούσαμε να πούμε ότι ακολουθία είναι μια διατεταγμέ-
νη διάταξη τυχόντων αντικειμένων, όμως στο παρόν κεφάλαιο τα αντι-
κείμενα που θα μας απασχολήσουν είναι αριθμοί. Ήδη έχουμε συνα-
ντήσει ακολουθίες, π.χ. αυτή των αριθμών x0, x1, . . . , xn, . . . που προ-
κύπτει από τη μέθοδο του Nεύτωνα. Aργότερα θα δούμε ακολουθίες
δυνάμεων του x, καθώς και ακολουθίες τριγωνομετρικών όρων, π.χ.
sinx , cos x , sin 2x , cos 2x , . . . , sin nx , cos nx , . . . . Ένα ζήτημα κεντρι-
κής σημασίας είναι αν μια ακολουθία διαθέτει όριο ή όχι.

Oρισμοί και συμβολισμός
Mπορούμε να διατάξουμε τα ακέραια πολλαπλάσια του 3 ως εξής:

O πρώτος αριθμός στη σειρά είναι το 3, έπειτα το 6, έπειτα το 9, κ.ο.κ.
H συνάρτηση λοιπόν που δρα εδώ αποδίδει την τιμή 3n στη n-οστή θέ-
ση. Aυτή είναι η βασική ιδέα της κατασκευής ακολουθιών: Yπάρχει
μια συνάρτηση που τοποθετεί τον κάθε αριθμό της ακολουθίας στην
κατάλληλη διατεταγμένη θέση του.

Συνήθως, το n0 είναι 1 και το πεδίο ορισμού της ακολουθίας είναι
το σύνολο των θετικών ακεραίων. Mερικές φορές, ωστόσο, επιθυμού-
με η ακολουθία να ξεκινά από άλλον αριθμό. Π.χ., στη μέθοδο του
Nεύτωνα παίρνουμε n0 � 0. Aν πάλι θέλαμε να ορίσουμε μια ακολου-
θία πολυγώνων με πλήθος πλευρών n, θα παίρναμε n0 � 3.

Oι ακολουθίες ορίζονται όπως και οι υπόλοιπες συναρτήσεις, για
παράδειγμα

a(n) �

(Παράδειγμα 1 και Σχήμα 8.1). Για να δηλώσουμε ότι το πεδίο ορι-
σμού των ακολουθιών περιλαμβάνει ακεραίους, χρησιμοποιούμε το

�n ,   a(n) � (�1)n�1 1n ,   a(n) � n � 1
n

Πεδίο ορισμού: 1 2 3 . . . n . . .
↓ ↓ ↓ ↓

Πεδίο τιμών: 3 6 9 3n
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Oρισμός Aκολουθία
Άπειρη ακολουθία αριθμών είναι μια συνάρτηση με πεδίο ορι-
σμού το σύνολο των ακεραίων που είναι μεγαλύτεροι ή ίσοι
ενός ακεραίου n0.

Iστορικά στοιχεία

Aκολουθίες και
σειρές

CD-ROM
Δικτυότοπος

8.1 Όρια ακολουθιών



γράμμα n ως δηλωτικό της ανεξάρτητης μεταβλητής, αντί των x , y ,
z και t που χρησιμοποιούμε συνήθως όταν η ανεξάρτητη μεταβλητή
παίρνει πραγματικές τιμές. Ωστόσο, συχνά οι μαθηματικοί τύποι που
ορίζουν ακολουθίες, όπως οι ανωτέρω, ισχύουν και για πεδία ορι-
σμού μεγαλύτερα του συνόλου των θετικών ακεραίων. Όπως θα δού-

 ,
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(α) Oι όροι an � υπερβαίνουν
τελικά κάθε ακέραιο, οπότε η
ακολουθία {an} αποκλίνει, . . .

�n

(β) . . . όμως οι όροι an � 1 n
μικραίνουν διαρκώς και
προσεγγίζουν αυθαίρετα το 0 καθώς
το n αυξάνεται, οπότε η ακολουθία
{an} συγκλίνει στο 0.

 /

(γ) Oι όροι an � (�1)n�1(1 n)
εναλλάσσουν τα πρόσημά τους,
ωστόσο συγκλίνουν στο 0.

 /

(δ) Oι όροι an � (n � 1) n
προσεγγίζουν αυθαίρετα το 1 καθώς
το n αυξάνεται, οπότε η ακολουθία
{an} συγκλίνει στο 1.

 /

(ε) Oι όροι an � (�1)n�1[(n � 1) n]
εναλλάσσουν τα πρόσημά τους. Oι
θετικοί όροι τείνουν στο 1.
Ωστόσο, οι αρνητικοί όροι τείνουν
στο �1 καθώς το n αυξάνεται,
οπότε η ακολουθία {an} αποκλίνει.

 /

(στ) Oι όροι της ακολουθίας
σταθερών αριθμών an � 3 έχουν την
ίδια τιμή ανεξαρτήτως του n , οπότε
η ακολουθία {an} συγκλίνει στο 3.

ΣXHMA 8.1 Oι ακολουθίες του Παραδείγματος 1 απεικονίζονται εδώ με δύο τρόπους: τοποθετώντας τους
αριθμούς an στον οριζόντιο άξονα, και τα σημεία (n , an) στο επίπεδο.



με, κάτι τέτοιο μπορεί να μας εξυπηρετεί. O αριθμός a(n) καλείται n-
οστός όρος της ακολουθίας, ή αλλιώς όρος με δείκτη n . Έτσι για a(n)
� (n � 1)/n, θα έχουμε

Πρώτος όρος Δεύτερος όρος Tρίτος όρος n-οστός όρος

a(1) � 0 a(2) � a(3) � . . . , a(n) �

Aν συμβολίσουμε ως an το a(n) , η ακολουθία γράφεται ως εξής:

a1 � 0, a2 � a3 � . . . , an �

Συνηθίζεται να περιγράφουμε μια ακολουθία παραθέτοντας μερικούς
από τους πρώτους όρους της, καθώς και τον τύπο που δίνει τον n-οστό
όρο.

Παράδειγμα 1 Περιγραφή ακολουθιών

Συμβολισμός Για να αναφερθούμε στην ακολουθία n-οστού όρου an

γράφουμε {an} (και διαβάζουμε «ακολουθία a δείκτης n»). Έτσι, η δεύ-
τερη ακολουθία του Παραδείγματος 1 είναι η {1/n} («ακολουθία 1 διά
n») Ø η τελευταία ακολουθία είναι η {3} («σταθερή ακολουθία 3»).

Σύγκλιση και απόκλιση
Όπως δείχνει το Σχήμα 8.1, οι ακολουθίες στο Παράδειγμα 1 δεν έχουν
όλες την ίδια συμπεριφορά. Oι {1/n}, {(�1)n�1(1/n)}, και {(n � 1)/n}
δείχνουν να προσεγγίζουν μια μοναδική οριακή τιμή καθώς το n αυξά-
νεται, και μάλιστα η {3} έχει καταλήξει στην οριακή της τιμή από τον
πρώτο ήδη όρο. Aπό την άλλη, οι όροι της ακολουθίας
{(�1)n�1(n � 1)/n} δείχνουν να «συνωστίζονται» σε δύο διαφορετικές
τιμές, τις �1 και 1, ενώ οι όροι της { } αυξάνονται απεριόριστα και
δεν συγκλίνουν πουθενά.

O ακόλουθος ορισμός διαχωρίζει τις ακολουθίες που προσεγγί-
ζουν μια μοναδική οριακή L , καθώς το n αυξάνεται, από εκείνες που
δεν εμφανίζουν τέτοια συμπεριφορά.

�n

n � 1
n  .2

3
 ,1

2
 ,

n � 1
n  .2

3
 ,1

2
 ,
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Όροι ακολουθίας Tύπος ακολουθίας
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Παράδειγμα 2 Έλεγχος του ορισμού

Δείξτε ότι

(α)  

(β) (τυχούσα σταθερά k) .

Λύση

(α) Έστω e � 0. Πρέπει να δείξουμε ότι υπάρχει ακέραιος N τέτοιος
ώστε για κάθε n ,

n � N ⇒ � e.

H πρόταση αυτή θα ισχύει για (1/n) � e, δηλαδή για n � 1/e. Έτσι,
αν N είναι τυχών ακέραιος μεγαλύτερος του 1/e, η πρόταση θα
ισχύει για κάθε n � N. Aυτό σημαίνει ότι limnl� (1/n) � 0.

(β) Έστω e � 0. Πρέπει να δείξουμε ότι υπάρχει ακέραιος N τέτοιος
ώστε για κάθε n ,

n � N ⇒ �k � k � � e.

Eφόσον k � k � 0, για κάθε ακέραια τιμή του N η πρόταση θα εξακο-
λουθεί να ισχύει. Aυτό σημαίνει ότι limnl� k � k για κάθε σταθερό
αριθμό k .

Παράδειγμα 3 Aποκλίνουσα ακολουθία

Δείξτε ότι η {(�1)n�1[(n � 1)/n]} αποκλίνει.

Λύση Έστω e θετικός αριθμός μικρότερος του 1, τέτοιος ώστε να
μην αλληλεπικαλύπτονται οι λωρίδες γύρω από τις ευθείες y � 1 και
y � �1 που φαίνονται στο Σχήμα 8.3. Kάθε e � 1 ικανοποιεί την προ-
ϋπόθεση αυτή. H σύγκλιση στο 1 θα σήμαινε ότι κάθε σημείο του

� 1
n � 0�

lim
nl�

  k � k

lim
nl�

  1n � 0
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Oρισμοί Σύγκλιση, απόκλιση, όριο
H ακολουθία {an} συγκλίνει στον αριθμό L αν σε κάθε θετικό
αριθμό e αντιστοιχεί ακέραιος N τέτοιος ώστε για κάθε n

n � N ⇒ �an � L � � e.

Aν δεν υπάρχει τέτοιος αριθμός L, λέμε ότι η {an} αποκλίνει.
Aν η {an} συγκλίνει στο L , γράφουμε limnl� an � L , ή

απλούστερα an l L , και καλούμε το L όριο της ακολουθίας (Σχήμα
8.2).

 ,

aN

(N, aN)

n

an

0 1 32 N n

L

L � �

L � �

(n, an)

0 a2 a3 a1 an

L � �L � � L

ΣXHMA 8.2 an l L εάν y � L
είναι μια οριζόντια
ασύμπτωτη της ακολουθίας
σημείων {(n, an)}. Όπως
βλέπουμε στο σχήμα, όλα τα
an μετά το aN κείνται σε
απόσταση μικρότερη του �
από το L.

Bιογραφικά στοιχεία

Nicole Oresme
(περ. 1320-1382)
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γραφήματος πέραν ενός δεδομένου δείκτη N κείται στην άνω λωρί-
δα, όμως αυτό δεν συμβαίνει. Kαι αυτό διότι μόλις το σημείο (n , an)
«εισέλθει» στην άνω λωρίδα, τότε το (n � 1, an�1) και όλα τα επόμε-
να σημεία ανά δύο εισέρχονται στην κάτω λωρίδα. Συνεπώς, η ακο-
λουθία δεν μπορεί να συγκλίνει στο 1. Oμοίως, δεν μπορεί να συ-
γκλίνει στο �1. Aπό την άλλη, εφόσον οι όροι της ακολουθίας προ-
σεγγίζουν εναλλάξ όλο και περισσότερο τις τιμές 1 και �1, δεν τεί-
νουν ποτέ σε κάποια άλλη τιμή. Συνεπώς, η ακολουθία αποκλίνει.

H συμπεριφορά της {(�1)n�1[(n � 1)/n]} είναι ποιοτικά διαφορετι-
κή από αυτήν της { }, η οποία αποκλίνει διότι υπερβαίνει κάθε θε-
τικό αριθμό L . Για να περιγράψουμε τη συμπεριφορά της { }, γρά-
φουμε

Λέγοντας πως όριο της {an} είναι το άπειρο, δεν εννοούμε βέβαια ότι η
διαφορά μεταξύ του an και του απείρου μειώνεται καθώς το n αυξάνεται.
Eννοούμε απλώς ότι το an μεγαλώνει αριθμητικά με την αύξηση του n.

Yπολογισμός ορίων ακολουθιών
H μελέτη των ορίων θα καταντούσε αρκετά επίπονη αν έπρεπε να απα-
ντήσουμε σε κάθε ερώτημα σχετικό με τη σύγκλιση, εφαρμόζοντας
τον ορισμό. Για καλή μας τύχη, υπάρχουν τρία θεωρήματα που διευκο-
λύνουν την όλη διαδικασία. Tο πρώτο από αυτά έρχεται ως φυσιολογι-
κή συνέχεια των όσων είπαμε όταν μελετούσαμε τα όρια. Oι αποδεί-
ξεις παραλείπονται.

lim
nl�

  (�n) � �.

�n
�n
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ΣXHMA 8.3 H ακολουθία
{(�1)n�1[(n � 1) n]}
αποκλίνει.

 / 

Θεώρημα 1 Iδιότητες ορίων ακολουθιών
Έστω {an} και {bn} ακολουθίες πραγματικών αριθμών και A και B
πραγματικοί αριθμοί. Έστω limnl� an � A και limnl� bn � B.
Iσχύουν τότε οι ακόλουθες ιδιότητες:

1. Όριο αθροίσματος: limnl� (an � bn) � A � B

2. Όριο διαφοράς: limnl� (an � bn) � A � B

3. Όριο γινομένου: limnl� (an � bn) � A � B

4. Όριο σταθερού πολλαπλασίου: limnl� (k � bn) � k � B (τυχών αριθμός k)

5. Όριο πηλίκου: limnl� εφόσον B � 0
an

bn
 � A

B



Παράδειγμα 4 Eφαρμογή των ιδιοτήτων ορίων ακολουθιών

Συνδυάζοντας το Θεώρημα 1 και τα αποτελέσματα του Παραδείγμα-
τος 2, έχουμε

(α)  

(β)  

(γ)  

(δ)  

Παράδειγμα 5 Tα σταθερά πολλαπλάσια αποκλίνουσας
ακολουθίας αποκλίνουν

Kάθε μη μηδενικό πολλαπλάσιο μιας αποκλίνουσας ακολουθίας
{an} αποκλίνει. Για να αποδειχθεί αυτό, ας υποθέσουμε ότι η {can}
συγκλίνει σε κάποιον αριθμό c � 0. Tότε, αν θέσουμε k � 1/c στον
τύπο του ορίου σταθερού πολλαπλασίου του Θεωρήματος 1, βλέπου-
με ότι η ακολουθία

συγκλίνει. Aυτό σημαίνει ότι η {can} δεν μπορεί να συγκλίνει παρά
μόνον αν και η {an} συγκλίνει. Aν η {an} δεν συγκλίνει, τότε ούτε η
{can} θα συγκλίνει.

Στην Άσκηση 69 καλείστε να αποδείξετε το ακόλουθο θεώρημα.

Mια άμεση συνέπεια του Θεωρήματος 2 είναι ότι αν �bn � � cn και
cn l 0, τότε bn l 0 εφόσον �cn � bn � cn. Xρησιμοποιούμε το αποτέ-
λεσμα αυτό στο ακόλουθο παράδειγμα.

Παράδειγμα 6 Xρήση του θεωρήματος «σάντουιτς»

Eφόσον 1/n l 0, γνωρίζουμε ότι

(α)  

(β)  

(γ)  

Tα Θεωρήματα 1 και 2 βρίσκουν πολλές εφαρμογές χάρη σε ένα
τρίτο θεώρημα που μας λέει ότι αν εφαρμόσουμε μια συνεχή συνάρτη-
ση σε μια συγκλίνουσα ακολουθία, θα προκύψει μια ακολουθία που

(�1)n 1n l 0    �	��	    � (�1)n 1n � � 1n .

1
2n l 0    �	��	   1

 2n � 1n

 cos  n
n  l 0    �	��	    �  cos  n

n � � 
�  cos  n �

n  � 1n

�1
c � can� � �an�

lim
nl�

  4 � 7n 6

n 6 � 3
 � lim

nl�
  

(4 / n 6) � 7

1 � (3 / n 6)
 � 0 � 7

1 � 0
 � �7.

lim
nl�

  5
n 2

 � 5 � lim
nl�

  1n � lim
nl�

  1n � 5 � 0 � 0 � 0

lim
nl�

  �n � 1
n � � lim

nl�
  �1 � 1n� � lim

nl�
 1 � lim

nl�
  1n � 1 � 0 � 1

lim
nl�

  ��1
n� � �1 � lim

nl�
  1n � �1 � 0 � 0
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Θεώρημα 2 Θεώρημα «σάντουιτς» για ακολουθίες
Έστω {an}, {bn}, και {cn} ακολουθίες πραγματικών αριθμών. Aν an

� bn � cn για κάθε n πέραν κάποιου N και αν limnl� an � limnl�

cn � L, τότε θα ισχύει επίσης limnl� bn � L.



επίσης συγκλίνει. Παραθέτουμε εδώ το θεώρημα χωρίς απόδειξη
(Ασκηση 70).

Παράδειγμα 7 Eφαρμογή του Θεωρήματος 3

Δείξτε ότι 

Λύση Γνωρίζουμε ότι (n � 1) n l 1. Θέτοντας f (x) � και L � 1
στο Θεώρημα 3 έχουμε 

Παράδειγμα 8 H ακολουθία {21/n}

H ακολουθία {1/n} συγκλίνει στο 0. Θέτοντας an � 1/n , f (x) � 2x, και
L � 0 στο Θεώρημα 3, βλέπουμε ότι � f (1/n) l f (L) � 20 � 1. H
ακολουθία {  } συγκλίνει στο 1 (Σχήμα 8.4).

Kάνοντας χρήση του κανόνα του l’Hôpital
Tο θεώρημα που ακολουθεί μας επιτρέπει να εφαρμόζουμε τον κανόνα
του l’Hôpital προκειμένου να βρούμε τα όρια μερικών ακολουθιών. Tο
θεώρημα αντιστοιχίζει τιμές μιας (συνήθως διαφορίσιμης) συνάρτη-
σης με τις τιμές δεδομένης ακολουθίας.

Παράδειγμα 9 Eφαρμογή του κανόνα του l’Hôpital

Δείξτε ότι

� 0.

Λύση H συνάρτηση (ln x) x ορίζεται για κάθε x � 1 και για θετικούς
ακεραίους παίρνει ίδιες τιμές με την ακολουθία. Συνεπώς, βάσει του
Θεωρήματος 4, το limnl� (ln n) n θα ισούται με το limxl� (ln x) x εφό-
σον το τελευταίο υπάρχει. Eφαρμόζοντας τον κανόνα του l’Hôpital
μία φορά παίρνουμε

Συμπεραίνουμε λοιπόν ότι limnl� (ln n) n � 0.

Όταν χρησιμοποιούμε τον κανόνα του l’Hôpital για την εύρεση του

 / 

lim
xl�

  ln x
x  � lim

xl�
  

1 / x
1

 � 0
1

 � 0.

 /  / 

 / 

ln n
nlim

nl�

21 / n
21 / n

�(n � 1) / n l �1 � 1.
�x / 

�(n � 1) / n l 1.
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Θεώρημα 3
Έστω {an} μια ακολουθία πραγματικών αριθμών. Aν an l L και
η f είναι μια συνάρτηση συνεχής στο L και ορισμένη για κάθε
an, τότε f (an) l f (L) .

1–
3

x

y

0

1

(1, 2)

y � 2x

11–
2

2

, 21/31–
3

⎛
⎝

⎛
⎝

, 21/21–
2

⎛
⎝

⎛
⎝

ΣXHMA 8.4 Kαθώς n l �, 1/n l 0
και 2 l 20.1 / n

Θεώρημα 4
Έστω f (x) συνάρτηση ορισμένη για κάθε x � n0 και {an}
ακολουθία πραγματικών αριθμών τέτοια ώστε an � f (n) για n � n0.
Στην περίπτωση αυτή

lim
xl�

  f (x) � L  ⇒  lim
nl�

  an � L .



ορίου μιας ακολουθίας,  μπορούμε να θεωρήσουμε ότι ο n παίρνει συ-
νεχείς πραγματικές τιμές, και να παραγωγίσουμε ως προς n. Δείτε σχε-
τικά το Παράδειγμα 10.

Παράδειγμα 10 Eφαρμογή του κανόνα του l’Hôpital

Nα βρεθεί το

Λύση Eφαρμόζοντας τον κανόνα του l’Hôpital (παραγωγίζοντας ως
προς n) ,

Aπόδειξη Θεωρήματος 4 Έστω ότι limxl� f(x) � L Tότε για κάθε θε-
τικό αριθμό e θα υπάρχει αριθμός M τέτοιος ώστε για κάθε x ,

x � M ⇒ � f (x) � L � � e.

Έστω N ακέραιος, μεγαλύτερος του M και μεγαλύτερος ή ίσος του n0.
Tότε

n � N ⇒ an � f (n) και �an � L � � � f (n) � L � � e.

Παράδειγμα 11 Eφαρμογή του κανόνα του l’Hôpital για τον
προσδιορισμό σύγκλισης

Συγκλίνει η ακολουθία με n-οστό όρο

an � ;

Aν ναι, να βρεθεί το limnl� an.

Λύση Tο όριο καταλήγει στην απροσδιόριστη μορφή 1� . Mπο-
ρούμε να εφαρμόσουμε τον κανόνα του l’Hôpital στη μορφή � � 0,
η οποία προκύπτει από την παραπάνω αν πάρουμε τον φυσικό λο-
γάριθμο του an:

Tότε,

 � lim
nl�

  2n 2

n 2 � 1
 � 2.

 � lim
nl�

  
�2 / (n 2 � 1)

�1 / n 2

 � lim
nl�

  

ln  �n � 1
n � 1�
1 / n

 lim
nl�

  ln  an � lim
nl�

 n ln  �n � 1
n � 1�

 � n ln  �n � 1
n � 1� .

 ln  an � ln  �n � 1
n � 1�

n

�n � 1
n � 1�

n

 .

 � �.

 lim
nl�

  2
n

5n
 � lim

nl�
  2

n � ln  2
5

lim
nl�

  2
n

5n
 .

5958.1. Όρια ακολουθιών

� � 0

0
–0

Kανόνας του l’Hôpital



Eφόσον ln an l 2 και η f(x) � ex είναι συνεχής, το Θεώρημα 3 μας λέ-
ει ότι

an � l e2.

Συνεπώς, η ακολουθία {an} συγκλίνει στο e2.

Όρια που απαντούν συχνά
Mερικά από τα όρια που απαντούν συχνότερα παρατίθενται στον Πί-
νακα 8.1. Tο πρώτο από αυτά το συναντήσαμε στο Παράδειγμα 9. Tα
δύο επόμενα προκύπτουν παίρνοντας λογαρίθμους και εφαρμόζοντας
το Θεώρημα 3 (Aσκήσεις 67 και 68). Tα υπόλοιπα όρια αποδεικνύονται
στο Παράρτημα 7.

Παράδειγμα 12 Όρια του Πίνακα 8.1

(α)  

(β)

(γ)

(δ)

(ε)

(στ)  

ΑΣΚΗΣΕΙΣ 8.1

100 n

n!
 l 0

�n � 2
n �

n

 � �1 � �2
n �

n

 l e�2

��1
2�

n

 l 0

�n 3n � 31 / n(n 1 / n) l 1 � 1 � 1

�n n 2 � n 2 / n � (n 1 / n)2 l (1)2 � 1

ln  (n 2)
n  � 2 ln  n

n  l 2 � 0 � 0

eln an
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Tύπος 1

Tύπος 2

Tύπος 3 για x � 3 και Tύπος 2

Tύπος 4 για x � –
2
–1

Tύπος 5 για x � �2

Tύπος 6 για x � 100

Πίνακας 8.1

1.

2.

3.

4.

5. (τυχόν x)

6. (τυχόν x)

Στους τύπους (3) έως (6), το x
μένει σταθερό καθώς n l �.

lim
nl�

 x
n

n!
 � 0

lim
nl�

 �1 � xn�
n

 � ex

lim
nl�

 xn � 0   (� x � � 1)

lim
nl�

 x1 / n � 1   (x � 0)

lim
nl�

 �n n � 1

lim
nl�

 ln  n
n  � 0

Eύρεση όρων ακολουθίας
Σε καθεμία από τις Aσκήσεις 1-4 δίνεται ο τύπος του n-
οστού όρου an μιας ακολουθίας {an}. Nα βρεθούν οι τιμές
των a1, a2, a3, και a4.

1. an � 2. an �

3. an � 4. an �

Eύρεση τύπων ακολουθιών
Στις Aσκήσεις 5-12, να βρεθεί ο τύπος του n-οστού όρου
της ακολουθίας.

5. H ακολουθία  1, �1, 1, �1, 1, . . .

6. H ακολουθία 1, �4, 9, �16, 25, . . .

7. H ακολουθία 0, 3, 8, 15, 24, . . .

8. H ακολουθία �3, �2, �1, 0, 1, . . .

9. H ακολουθία 1, 5, 9, 13, 17, . . .

10. H ακολουθία 2, 6, 10, 14, 18, . . .

11. H ακολουθία 1, 0, 1, 0, 1, . . .

12. H ακολουθία 0, 1, 1, 2, 2, 3, 3, 4, . . .

Eύρεση ορίων
Ποιες από τις ακολουθίες {an} στις Aσκήσεις 13-56 συ-
γκλίνουν, και ποιες αποκλίνουν; Nα βρεθεί το όριο κάθε
συγκλίνουσας ακολουθίας.

13. an � 2 � (0,1)n 14. an �

15. an � 16. an �
1 � 5n 4

n 4 � 8n 3

1 � 2n
1 � 2n

n � (�1)n

n

2 n

2 n�1

(�1)n�1

2n � 1

1
n!

1 � n
n 2

Oι ακέραιοι από το
�3 και εφεξής

Περιττοί θετικοί ακέ-
ραιοι ανά δύο

Άρτιοι θετικοί ακέ-
ραιοι ανά δύο

Eναλλάξ 1 και 0

Kάθε θετικός ακέ-
ραιος επαναλαμβανό-
μενος

Mονάδες με εναλλασ-
σόμενα πρόσημα

Tετράγωνα θετικών
ακεραίων, με εναλλασ-
σόμενα πρόσημα

Tετράγωνα θετικών
ακεραίων ελαττωμένα
κατά 1



17. an � 18. an �

19. an � 1 � (�1)n 20. an � (�1)n

21. an � 22. an �

23. an � 24. an � sin 

25. an � 26. an �

27. an � 28. an �

29. an � 30. an � ln n � ln (n + 1)

31. an � 32. an �

33. an � 34. an �

35. an � 36. an � (n � 4)

37. an � 38. an �

39. an � (Yπόδειξη: Συγκρίνετε με το 1 n.)

40. an � 41. an �

42. an � 43. an �

44. an � ln 45. an �

46. an � 47. an � , x � 0

48. an � 49. an �

50. an � 51. an � tan�1 n

52. an � 53. an �

54. an � 55. an �

56. an � n �

Διερεύνηση ορίων με κομπιουτεράκι
Στις Aσκήσεις 57-60, δοκιμάστε να βρείτε με κομπιουτε-
ράκι την τιμή του N που ικανοποιεί την εκάστοτε ανισότη-
τα για n � N. Δεδομένου ότι η κάθε ανισότητα προέρχεται
από τον αυστηρό ορισμό του ορίου κάποιας ακολουθίας,
βρείτε ποια είναι η ακολουθία αυτή και σε ποιο όριο συ-
γκλίνει.

57. � � 1 � � 10�3 58. �

59. (0,9)n � 10�3 60. (2n n!) � 10�7

Θεωρία και παραδείγματα
61. Δίνεται η εξής ακολουθία ρητών αριθμών:

Eδώ οι αριθμητές από μόνοι τους σχηματίζουν μια ακο-
λουθία, οι παρονομαστές επίσης σχηματίζουν μια ακο-
λουθία, και τέλος οι λόγοι τους σχηματίζουν μια τρίτη
ακολουθία. Έστω xn και yn αντίστοιχα, ο αριθμητής και
ο παρονομαστής του n-οστού κλάσματος rn � xn yn.

(α) Eπιβεβαιώστε ότι � 2 � �1, � 2 � �1,
και γενικότερα, ότι αν a2 � 2b2 � �1 ή �1, τότε

(a � 2b)2 � 2(a � b)2 � �1 ή �1,

αντίστοιχα.

(β) Tα κλάσματα rn � xn yn τείνουν σε κάποιο όριο κα-
θώς το n αυξάνεται. Ποιο είναι αυτό; (Yπόδειξη:
Xρησιμοποιήστε το ερώτημα (α) για να δείξετε ότι
rn

2 � 2 � 	(1 yn)
2 και ότι το yn δεν είναι μικρότερο

του n.)

62. (α) Έστω ότι η f (x) είναι παραγωγίσιμη για κάθε x στο
[0, 1] και ότι f(0) � 0. Έστω ότι η ακολουθία {an}
ορίζεται από τον κανόνα an � n f (1 n) . Δείξτε ότι
limnl� an � f 
(0).

Xρησιμοποιήστε το αποτέλεσμα (α) για να βρείτε τα
όρια των εξής ακολουθιών {an}.

(β) an � n tan�1 (γ) an � n( � 1)

(δ) an � n ln 

63. Tριάδες πυθαγόρειων αριθμών Oι αριθμοί a , b , και c κα-
λούνται πυθαγόρεια τριάδα αν ισχύει a2 � b2 � c2. Έστω
a ένας περιττός θετικός ακέραιος και ότι οι

b � και  c �

είναι οι στρογγυλοποιημένες προς τα κάτω και προς τα
άνω, αντίστοιχα, ακέραιες τιμές του  a2 2.

(α) Δείξτε ότι a2 � b2 � c2. (Yπόδειξη: Θέστε a � 2n � 1
και εκφράστε τα b και c συναρτήσει του n .)

(β) Mε απευθείας υπολογισμό, ή με τη βοήθεια του
σχήματος, βρείτε την τιμή του

a
�

a2
—
2

⎡⎢⎢ a2
—
2

⎢⎢⎣
⎢⎢⎣

⎡⎢⎢

 / 

⎡ a 2

2 ⎤⎣ a 2

2 ⎦

�1 � 2n�
e1 / n1

n

 / 

 / 

 / 

y 2
2x 2

2y 2
1x 2

1

 / 

1
1

 , 3
2

 , 7
5

 , 17
12

 , . . . , a
b

 , a � 2b
a � b

 , . . . .

 / 

�n n � 1 �  � 10�3�n 0,5

�n 2 � n

(ln  n)5

�n
�n n 2 � n

�1
3�

n

 � 1

�2 n

1

�n
  tan�1 n

n 2

2n � 1
  sin  1n

3n � 6n

2�n � n!�1 � 1
n 2�

n

� xn

2n � 1�
1 / n� n

n � 1�
n

�3n � 1
3n � 1�

n

�1 � 1n�
n

�1
n�

1 / (ln n)n!
2 n � 3n

n!
106n

(�4)n

n!

 / 

n!
nn

�n 32n�1�n 4n n

1 / (n�4)�3
n�

1 / n

�n n 2�n 10n

�1 � 1n�
n

�1 � 7n�
n

ln  n
n 1 / n

ln  (n � 1)

�n

n
2 n

 sin2 n
2 n

 sin  n
n

�p

2
 � 1n�	 2n

n � 1

(�1)n�1

2n � 1�n � 1
2n ��1 � 1n� 

�1 � 1n�

n � 3
n 2 � 5n � 6

n 2 � 2n � 1
n � 1
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64. H n-οστή ρίζα του n!

(α) Δείξτε ότι limnl� (2n�) � 1 και συνεπώς, βάσει
του προσεγγιστικού τύπου του Stirling [Kεφάλαιο 7,
Eπιπρόσθετη Άσκηση 50, ερώτημα (α)], ότι

για μεγάλες τιμές του n .

(β) Eλέγξτε την προσέγγιση που κάνατε στο (α) για
n � 40, 50, 60, . . . μέχρι όσο σας επιτρέπει το κο-
μπιουτεράκι σας.

65. (α) Aν limnl� (1 nc) � 0 για τυχούσα θετική σταθερά
c, δείξτε ότι

.

(β) Δείξτε ότι limnl� (1 nc) � 0 όπου c τυχούσα θετι-
κή σταθερά. (Yπόδειξη: Aν e � 0,001 και c � 0,04,
τότε πόσο μεγάλο πρέπει να είναι το N έτσι ώστε
�1 nc � 0 � � e για n � N ;)

66. Tο «Θεώρημα… φερμουάρ» Aποδείξτε το «θεώρημα φερ-
μουάρ» για ακολουθίες: Aν οι {an} και {bn} συγκλίνουν
ταυτόχρονα στο L τότε και η ακολουθία

a1, b1, a2, b2, . . . , an bn . . .

θα συγκλίνει στο L .

67. Δείξτε ότι limnl�

68. Δείξτε ότι limnl� � 1 (x � 0).

69. Aποδείξτε το Θεώρημα 2.

70. Aποδείξτε το Θεώρημα 3.

71. Oι όροι συγκλίνουσας ακολουθίας προσεγγίζουν αυθαίρετα ο ένας

στον άλλο Δείξτε ότι αν η {an} είναι μια συγκλίνουσα
ακολουθία, τότε σε κάθε θετικό αριθμό e θα αντιστοι-
χεί ένας ακέραιος N τέτοιος ώστε για κάθε m και n , να
ισχύει

m � N και n � N ⇒ �am � an � � e.

72. Mοναδικότητα ορίων Δείξτε ότι το όριο κάθε ακολουθίας
είναι μοναδικό. Mε άλλα λόγια, δείξτε ότι αν L1 και L2

είναι αριθμοί τέτοιοι ώστε an l L1 και an l L2, τότε
L1 � L2.

73. Σύγκλιση και απόλυτη τιμή Δείξτε ότι μια ακολουθία {an}
συγκλίνει στο 0 αν και μόνο αν η ακολουθία των από-
λυτων τιμών  {�an �} συγκλίνει στο 0.

74. Bελτίωση παραγωγής Σύμφωνα με πρωτοσέλιδο άρθρο
στη Wall Street Journal της 15ης Δεκεμβρίου 1992, για
ένα τυπικό όχημα που κατασκευάζει η αυτοκινητοβιο-
μηχανία Ford Motor Company απαιτείται χρόνος ερ-
γασίας 7 h στην πρέσα, σε σχέση με αντίστοιχο χρό-
νο 15 h το 1980. Oι ιαπωνικές εταιρείες χρειάζονται
για την ίδια εργασία μόλις 3 h.

H βελτίωση της αποδοτικότητας στη Ford σε σχέ-
ση με το 1980 σημαίνει μια ετήσια μείωση του χρόνου
εργασίας κατά 6%. Aν ο ρυθμός αυτός συνεχιστεί, τότε
σε n έτη από τώρα το προσωπικό της Ford θα χρειάζε-
ται για την ίδια εργασία χρόνο 

Sn � 7,25(0,94)n

ωρών στην πρέσα για ένα τυπικό όχημα. Aν υποτεθεί
ότι οι Iάπωνες ανταγωνιστές εξακολουθήσουν να χρει-
άζονται 3 h ανά όχημα, τότε σε πόσα χρόνια θα τους
φτάσει η Ford; Λύστε το πρόβλημα με δύο τρόπους:

(α) Bρείτε τον πρώτο όρο της ακολουθίας {Sn} που εί-
ναι μικρότερος ή ίσος του 3,5.

(β) Παραστήστε γραφικά την f (x) � 7,25(0,94)x και
χρησιμοποιήστε την εφαρμογή «Trace» του υπολο-
γιστή γραφικών που διαθέτετε για να βρείτε το ση-
μείο όπου η καμπύλη τέμνει την ευθεία y � 3,5.

Έλεγχος σύγκλισης και απόκλισης
Mε ένα σύστημα υπολογιστικής άλγεβρας εκτελέστε τα
ακόλουθα βήματα για τις ακολουθίες των Aσκήσεων 75-84.

(α) Yπολογίστε και τοποθετήστε σε διάγραμμα τους
πρώτους 25 όρους κάθε ακολουθίας. H ακολουθία
δείχνει να συγκλίνει ή να αποκλίνει; Aν συγκλί-
νει, τότε ποιο είναι το όριό της L ;

(β) Aν συγκλίνει η ακολουθία, βρείτε έναν ακέραιο N
τέτοιον ώστε �an � L � � 0,01 για n � N Tο ίδιο
ερώτημα για  �an � L � � 0,0001.

75. an � 76. an �

77. an � sin n 78. an � n sin 

79. an � 80. an �

81. an � (0,9999)n 82. an � 123456

83. an � 84. an �
n 41

19n
8n

n!

1 / n

ln  n
n

 sin  n
n

1
n

�1 � 
0,5
n �

n

�n n

 .

1
2

1
2

1
4

x1 / n

�n n � 1.

 , ,

 ,

 / 

 / 

lim
nl�

  ln  n
nc  � 0

 / 

�n n! 
 ne

1 / (2n)

lim
al�

  
⎣ a 2

2 ⎦
⎡ a 2

2 ⎤
 .
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8.2
Yποακολουθίες • Mονότονες και φραγμένες ακολουθίες

• Aναδρομικά οριζόμενες ακολουθίες • H μέθοδος του Picard

για την εύρεση ριζών

H παρούσα ενότητα συνεχίζει τη μελέτη της σύγκλισης και της από-
κλισης ακολουθιών.

Yποακολουθίες
Aν ο όροι μιας ακολουθίας εμφανίζονται σε άλλη ακολουθία με την
ίδια διάταξη, καλούμε την πρώτη ακολουθία υποακολουθία της δεύτε-
ρης.

Παράδειγμα 1 Yποακολουθίες της ακολουθίας θετικών ακεραίων

(α) H υποακολουθία των άρτιων ακεραίων: 2, 4, 6, … , 2n , …

(β) H υποακολουθία των περιττών ακεραίων: 1, 3, 5, … , 2n � 1, …

(γ) H υποακολουθία των πρώτων αριθμών: 2, 3, 5, 7, 11, …

Oι υποακολουθίες έχουν σημασία για δύο λόγους:

1. Aν μια ακολουθία {an} συγκλίνει στο L , τότε όλες οι υποακολου-
θίες της συγκλίνουν στο L Aν γνωρίζουμε ότι μια ακολουθία συ-
γκλίνει, τότε διευκολυνόμαστε στην εύρεση ή στην εκτίμηση του
ορίου μιας υποακολουθίας της που μας ενδιαφέρει.

2. Aν κάποια υποακολουθία μιας ακολουθίας {an} αποκλίνει ή αν δύο
υποακολουθίες της έχουν διαφορετικά όρια, τότε η {an} αποκλίνει.
Για παράδειγμα, η ακολουθία {(�1)n} αποκλίνει διότι η υποακο-
λουθία �1, �1, �1, . . . των όρων περιττού δείκτη (δηλ. του 1ου,
3ου, 5ου, . . . όρου) συγκλίνει στο �1, ενώ η υποακολουθία 1, 1, 1,. . .
των άρτιου δείκτη όρων της συγκλίνει στο 1, σε διαφορετικό δηλα-
δή όριο.

Oι υποακολουθίες μάς παρέχουν επίσης έναν νέο τρόπο μελέτης της
σύγκλισης. H ουρά μιας ακολουθίας είναι μια υποακολουθία της που πε-
ριέχει όλους τους όρους της πέραν κάποιου N-οστού όρου. Δηλαδή, η ου-
ρά είναι ένα σύνολο  {an �n � N}. Έτσι, ένας άλλος τρόπος για να δηλώ-
σουμε ότι an l L είναι να πούμε ότι κάθε διάστημα εύρους ±e περί το L
περιέχει την ουρά της ακολουθίας.

Mονότονες και φραγμένες ακολουθίες

 .
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8.2 Yποακολουθίες, φραγμένες ακολουθίες και η μέθοδος Picard

Oρισμός Mη φθίνουσα, μη αύξουσα, μονότονη ακολουθία
Mια ακολουθία {an} με την ιδιότητα an � an�1 για κάθε n
καλείται μη φθίνουσα ακολουθίαØ δηλαδή, a1 � a2 � a3 � . . . .

Mια ακολουθία καλείται μη αύξουσα αν an � an�1 για κάθε n
Mια ακολουθία που είναι είτε μη φθίνουσα είτε μη αύξουσα,
καλείται μονότονη.

 .

H σύγκλιση ή απόκλιση μιας
ακολουθίας δεν έχει καμία σχέση με
το πώς συμπεριφέρονται οι πρώτοι
όροι της ακολουθίας. Eξαρτάται μόνο
από τη συμπεριφορά της ουράς της.



Παράδειγμα 2 Mονότονες ακολουθίες

(α) H ακολουθία 1, 2, 3, . . . , n . . . των φυσικών αριθμών είναι μη
φθίνουσα.

(β) H ακολουθία είναι μη φθίνουσα.

(γ) H ακολουθία είναι μη αύξουσα.

(δ) H σταθερή ακολουθία {3} είναι ταυτόχρονα μη φθίνουσα και μη
αύξουσα.

Παράδειγμα 3 Mια μη φθίνουσα ακολουθία

Δείξτε ότι η ακολουθία

an �

είναι μη φθίνουσα.

Λύση

(α) Θα δείξουμε ότι για κάθε n � 1, an � an�1Ø δηλαδή, ότι

H φορά της ανισότητας διατηρείται αν πολλαπλασιάσουμε χιαστί
αριθμητές και παρονομαστές:

Eφόσον αληθεύει ότι �2 � 0, θα ισχύει an � an�1 και άρα η
ακολουθία {an} είναι μη φθίνουσα.

(β) Ένας άλλος τρόπος για να δείξουμε ότι η {an} είναι μη φθίνουσα
είναι να ορίσουμε την f (n) � an και να δείξουμε ότι f 
(x) � 0. Στο
εδώ παράδειγμα, f(n) � (n � 1) (n � 1), οπότε

Συνεπώς, η f είναι αύξουσα συνάρτηση, άρα f (n � 1) � f(n) , δηλ.
an�1 � an.

 � 2
(x � 1)2

 � 0.

 � 
(x � 1)(1) � (x � 1)(1)

(x � 1)2

 f 
(x) � d
dx

 �x � 1
x � 1�

 / 

 ⇔ �2 � 0.

 ⇔ n 2 � n � 2 � n 2 � n

 ⇔ (n � 1)(n � 2) � n (n � 1)

 n � 1
n � 1

 � 
(n � 1) � 1
(n � 1) � 1

 ⇔ n � 1
n � 1

 � n
n � 2

n � 1
n � 1

 � 
(n � 1) � 1
(n � 1) � 1

 .

n � 1
n � 1

3
8

 , 3
9

 , 3
10

 , . . . , 3
n � 7

 , . . .

1
2

 , 2
3

 , 3
4

 , . . . , n
n � 1

 , . . .

 ,
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(1170-1240)
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Παράγωγος πηλίκου

Oρισμός Άνω φραγμένη, άνω φράγμα, κάτω φραγμένη, κάτω
φράγμα, φραγμένη ακολουθία
Mια ακολουθία {an} είναι άνω φραγμένη αν υπάρχει αριθμός M
τέτοιος ώστε an � M για κάθε n . O αριθμός M είναι τότε ένα
άνω φράγμα της {an}. H ακολουθία είναι κάτω φραγμένη αν



Παράδειγμα 4 Eφαρμογή του ορισμού φραγμένης ακολουθίας

(α) H ακολουθία 1, 2, 3, . . . , n , . . . δεν έχει άνω φράγμα, αλλά είναι
κάτω φραγμένη από το m � 1.

(β) H ακολουθία είναι άνω φραγμένη από το

M � 1 και κάτω φραγμένη από το m �

(γ) H ακολουθία �1, 2, �3, 4, . . . , (�1)nn , . . . δεν είναι ούτε άνω ού-
τε κάτω φραγμένη.

Γνωρίζουμε ότι μια φραγμένη ακολουθία δεν συγκλίνει κατ’ ανά-
γκην, διότι η ακολουθία an � (�1)n είναι φραγμένη (�1 � an � 1) αλ-
λά αποκλίνουσα. Oύτε μια μονότονη ακολουθία συγκλίνει αναγκαστι-
κά, διότι η ακολουθία των φυσικών αριθμών 1, 2, 3, . . . , n , . . . είναι μο-
νότονη αλλά αποκλίνει. Aν μια ακολουθία είναι όμως ταυτόχρονα
φραγμένη και μονότονη, τότε οφείλει να συγκλίνει. Aυτό είναι και το
επόμενο θεώρημα.

Παρ’ όλο που δεν θα αποδείξουμε το Θεώρημα 5, το Σχήμα 8.5 πεί-
θει για την ισχύ του θεωρήματος στην περίπτωση μιας μη φθίνουσας
και άνω φραγμένης ακολουθίας. Eφόσον η ακολουθία είναι μη φθίνου-
σα και δεν μπορεί να υπερβεί το M , οι όροι της «συνωστίζονται» προς
κάποιον αριθμό (το όριο) L � M .

Παράδειγμα 5 Eφαρμογή του Θεωρήματος 5

(α) H μη φθίνουσα ακολουθία συγκλίνει διότι είναι άνω

φραγμένη από τον αριθμό M � 1. Mάλιστα, ισχύει ότι

οπότε η ακολουθία συγκλίνει στο όριο L � 1.

(β) H μη αύξουσα ακολουθία είναι κάτω φραγμένη από τον

αριθμό m � 0 και συνεπώς συγκλίνει. Tο όριό της είναι L � 0.
� 1

n � 1�

 � 1,

 � 1
1 � 0

 lim
nl�

  n
n � 1

 � lim
nl�

  1
1 � (1 / n)

� n
n � 1�

1
2

 .

1
2

 , 2
3

 , 3
4

 , . . . , n
n � 1

 , . . .
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υπάρχει αριθμός m τέτοιος ώστε m � an για κάθε n . O αριθμός m
είναι τότε ένα κάτω φράγμα της {an}. Aν η {an} είναι άνω και
κάτω φραγμένη, καλείται φραγμένη ακολουθία.

x

y

0 1 2 3 4

L

M

5

y � L

(8, s8)

6 7 8

y � M

(5, s5)

(1, s1)

ΣXHMA 8.5 Aν οι όροι μιας μη
φθίνουσας ακολουθίας έχουν άνω
φράγμα M θα συγκλίνουν σε
κάποιο όριο L � M.

 ,

Θεώρημα 5 Θεώρημα μονότονων ακολουθιών
Kάθε φραγμένη μονότονη ακολουθία συγκλίνει.



Aναδρομικά οριζόμενες ακολουθίες 
Mέχρι τώρα, υπολογίζαμε τον τυχόντα όρο an μιας ακολουθίας εισάγο-
ντας σε κάποιον τύπο το n Πολλές φορές, ωστόσο, μια ακολουθία ορί-
ζεται αναδρομικά, οπότε μας δίνεται

1. O πρώτος ή οι πρώτοι όροι της, και 

2. Ένας κανόνας, που καλείται αναδρομικός τύπος, και που επιτρέπει
τον υπολογισμό οποιουδήποτε όρου αν γνωρίζουμε τους προηγού-
μενους όρους της ακολουθίας.

Παράδειγμα 6 Aναδρομική κατασκευή ακολουθιών

(α) Oι προτάσεις a1 � 1 και an � an�1 � 1 ορίζουν την ακολουθία 1,
2, 3, . . . , n , . . . των θετικών ακεραίων. Για a1 � 1, έχουμε
a2 �a1 � 1 � 2, a3 � a2 � 1 � 3, κ.ο.κ.

(β) Oι προτάσεις a1 � 1 και an � n � an� 1 ορίζουν την ακολουθία 1,
2, 6, 24, . . . , n!, . . . των παραγοντικών. Για a1 � 1, έχουμε
a2 � 2 � a1 � 2, a3 � 3 � a2 � 6, a4 � 4 � a3 � 24, κ.ο.κ.

(γ) Oι προτάσεις a1 � 1, a2 � 1, και an�1 � an � an�1 ορίζουν την
ακολουθία 1, 1, 2, 3, 5, . . . των αριθμών Fibonacci. Για a1 � 1 και
a2 � 1, έχουμε a3 � 1 � 1 � 2, a4 � 2 � 1 � 3, a5 � 3 � 2 � 5,
κ.ο.κ.

(δ) Όπως μπορούμε να δούμε από την εφαρμογή της μεθόδου του
Nεύτωνα, οι προτάσεις x0 � 1 και xn�1 � xn � [(sin xn � ) (cos xn

� 2xn)] ορίζουν μια ακολουθία που συγκλίνει στη λύση της εξί-
σωσης sin x � x 2 � 0.

H μέθοδος του Picard για την εύρεση ριζών
Tο πρόβλημα επίλυσης της εξίσωσης

f (x) � 0 (1)

είναι ισοδύναμο με το πρόβλημα εύρεσης λύσης της 

g(x) � f (x) � x � x ,

που προκύπτει αν προσθέσουμε το x κατά μέλη στην Eξίσωση (1). Έτσι
φέρνουμε την Eξίσωση (1) σε μορφή κατάλληλη για επίλυση με υπο-
λογιστή με τη χρήση μιας πολύ χρήσιμης μεθόδου που καλείται μέθο-
δος του Picard.

Aν το πεδίο ορισμού της g περιέχει το πεδίο τιμών της g, μπορού-
με να ξεκινήσουμε από ένα σημείο x0 στο πεδίο ορισμού και να εφαρ-
μόσουμε κατ’ εξακολούθηση την g, παίρνοντας διαδοχικά

x1 � g(x0) , x2 � g(x1) , x3 � g(x2) , . . . .

Aν πληρούνται κάποιες απλές προϋποθέσεις που περιγράφουμε πιο
κάτω, η ακολουθία που παράγεται από τον αναδρομικό τύπο xn�1 � g(xn)
θα συγκλίνει σε σημείο x για το οποίο ισχύει g(x) � x . Tο σημείο αυ-
τό είναι η λύση της εξίσωσης f(x) � 0 διότι

f (x) � g(x) � x � x � x � 0.

Tο σημείο x για το οποίο ισχύει g(x) � x καλείται σταθερό σημείο
της g . Aπό την τελευταία εξίσωση είναι φανερό ότι τα σταθερά σημεία
της g δεν είναι παρά οι ρίζες της f .

Παράδειγμα 7 Έλεγχος της μεθόδου του Picard

Nα λυθεί η εξίσωση

1
4

 x � 3 � x .

 / x 2
n

 .
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Oι αναδρομικοί τύποι απαντούν συχνά
σε προγράμματα υπολογιστών και σε
ρουτίνες αριθμητικής επίλυσης
διαφορικών εξισώσεων, π.χ. στη
μέθοδο του Euler.

Συμβολισμός παραγοντικού
O συμβολισμός n! («n παραγοντικό»)
δηλώνει το γινόμενο 1 � 2 � 3 … n των
ακεραίων από 1 έως n . Iσχύει (n �1)! �
(n � 1) � n ! . Έτσι, 4! � 1 � 2 � 3 � 4 � 24
και 5! � 1 � 2 � 3 � 4 � 5 � 5 � 4! � 120.
Oρίζουμε ότι το 0! ισούται με 1. H τιμή
του παραγοντικού αυξάνεται ακόμη
πιο γρήγορα από το εκθετικό, όπως
φαίνεται στον ακόλουθο πίνακα.

n en (περίπου) n!

1 3 1
5 148 120

10 22.026 3.628.800
20 4,9 
 108 2,4 
 1018

Bιογραφικά στοιχεία

Charles Émile Picard
(1856-1941)

CD-ROM
Δικτυότοπος



Λύση Γνωρίζουμε (εκτελώντας τις πράξεις) ότι η ζητούμενη λύση
είναι x � 4. Eφαρμόζουμε τη μέθοδο του Picard, οπότε θέτουμε

g(x) �

επιλέγουμε ένα σημείο εκκινήσεως, π.χ. x0 � 1, και υπολογίζουμε
τους αρχικούς όρους της ακολουθίας xn�1 � g(xn) . Στον Πίνακα 8.2
παρατίθενται τα αποτελέσματα. Mέσα σε 10 βήματα, η λύση της αρ-
χικής εξίσωσης βρίσκεται με σφάλμα μικρότερο του 3 
 10�6.

Tο Σχήμα 8.6 δείχνει τη γεωμετρία της διαδικασίας επίλυσης.
Ξεκινούμε με x0 � 1 και υπολογίζουμε την πρώτη τιμή g(x0) , την
οποία επανεισάγουμε στον αναδρομικό τύπο ως  δεύτερη x-τιμή x1.
Στη συνέχεια υπολογίζουμε τη δεύτερη y-τιμή g(x1) την οποία επα-
νεισάγουμε ως τρίτη x-τιμή x2, κ.ο.κ. H επαναληπτική αυτή διαδικα-
σία ξεκινάει από το x0 � 1, κινείται κατακόρυφα μέχρι το σημείο
(x0, g(x0)) � (x0, x1), έπειτα οριζόντια έως το (x1, x1) , και πάλι κατα-
κόρυφα έως το (x1, g(x1)) , κ.ο.κ. Έτσι η διαδρομή συγκλίνει στο ση-
μείο όπου το γράφημα της g τέμνει την ευθεία y � x. Δηλαδή στο ζη-
τούμενο σημείο όπου g(x) � x .

1
4

 x � 3,
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Πίνακας 8.2 Διαδοχικές τιμές της g(x) � (1 4)x � 3, με τιμή εκκινήσεως

τη x0 � 1

xn xn�1 � g(xn) � (1 4) xn � 3

x0 � 1 x1 � g(x0) � (1 4)(1) � 3 � 3,25
x1 � 3,25 x2 � g(x1) � (1 4)(3,25) � 3 � 3,8125
x2 � 3,8125 x3 � g(x2) � 3,9531 25
x3 � 3,9531 25 x4 � 3,9882 8125

� x5 � 3,9970 70313
� x6 � 3,9992 67578
� x7 � 3,9998 16895

x8 � 3,9999 54224
x9 � 3,9999 88556

x10 � 3,9999 97139
�
�
�

 / 

 / 

 / 

 / 

x � 3 � x ���1–
4

g(x) �

x0 � 1
x

y

1

2

3

4

(4, 4)

32 4 5
x1 � 3,25

x0

y � x

0

x1

(x1, g(x1))

(x0, g(x0)) x2

y �   x � 31–
4

ΣXHMA 8.6 H λύση κατά
Picard της εξίσωσης
g(x) � (1 4)x � 3 � x .
(Παράδειγμα 7)

 / 



Παράδειγμα 8 Xρήση της μεθόδου του Picard

Nα λυθεί η εξίσωση cos x � x .

Λύση Θέτουμε g(x) � cos x , επιλέγουμε ως τιμή εκκινήσεως τη
x0 � 1, και χρησιμοποιούμε τον αναδρομικό τύπο xn�1 � g(xn), οπότε

x0 � 1, x1 � cos 1, x2 � cos (x1) , . . . .

Mπορούμε να υπολογίσουμε προσεγγιστικά τους πρώτους 50 περί-
που όρους με ένα κομπιουτεράκι (γωνίες σε ακτίνια, «radian mode»)
πληκτρολογώντας το 1 και πατώντας κατ’ επανάληψη το πλήκτρο
υπολογισμού συνημιτόνου («cos»). O εμφανιζόμενος  στην οθόνη
αριθμός παύει να αλλάζει μόλις η εξίσωση cos x � x ικανοποιηθεί με
ακρίβεια τόσων δεκαδικών ψηφίων όσα χωράνε στην οθόνη.

Δοκιμάστε και μόνοι σας. Kαθώς πατάτε το πλήκτρο του συνημι-
τόνου, οι διαδοχικές προσεγγίσεις κείνται εναλλάξ εκατέρωθεν του
σταθερού σημείου x � 0.739085133 . . . .

Tο Σχήμα 8.7 δείχνει ότι οι τιμές ταλαντώνονται με τον παραπά-
νω τρόπο λόγω της σπειροειδούς διαδρομής προς το σταθερό σημείο
που διαγράφει το σημείο που προσεγγίζει τη λύση.

Παράδειγμα 9 H μέθοδος του Picard ενδέχεται να μην μπορεί
να μας δώσει τη λύση μιας εξίσωσης

H μέθοδος του Picard δεν θα μας δώσει τη λύση της εξίσωσης

g(x) � 4x � 12 � x .

Όπως δείχνει το Σχήμα 8.8, όποια τιμή επιλέξουμε για το x0 πλην της
ίδιας της λύσης x0 � 4, παράγει μια αποκλίνουσα ακολουθία που απο-
μακρύνεται από τη λύση που ζητούμε.
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x

y

x0 � 1

y � x
x � 0,73909

(0,54, 0,54)

(0,54, 0,86) (0,86, 0,65)

y � cos x

1

�–
2

ΣXHMA 8.7 H λύση της
cos x � x με τη μέθοδο του
Picard και σημείο
εκκίνησης το x0 � 1.
(Παράδειγμα 8)

x

y

4

������ 
����� 
��� g(x) � 4x � 12 

(4, 4)

4 x0

y � x

0

y � 4x � 12

x0

����	 �� x = 4.
ΣXHMA 8.8 H μέθοδος του
Picard εφαρμοζόμενη στην
εξίσωση g(x) � 4x � 12 δεν
θα βρει το σταθερό σημείο,
παρά μόνο αν το x0 είναι το
ίδιο το σταθερό σημείο 4.
(Παράδειγμα 9)



H αποτυχία της μεθόδου στο Παράδειγμα 9 οφείλεται στο ότι η
κλίση της ευθείας y � 4x � 12 υπερβαίνει το 1, που είναι η κλίση της
y � x . Aντιθέτως, η διαδικασία που ακολουθήσαμε στο Παράδειγμα 7
πέτυχε διότι η κλίση της y � (1 4)x � 3 ήταν (κατ’ απόλυτη τιμή) μι-
κρότερη του 1. Ένα θεώρημα του προχωρημένου απειροστικού λογι-
σμού μάς λέει ότι αν η g
(x) είναι συνεχής σε κλειστό διάστημα I που
περιέχει τη λύση της εξίσωσης g(x) � x και αν �g
(x) � � 1 στο I , τότε
κάθε τιμή εκκινήσεως x0 που επιλέγουμε στο εσωτερικό του I οδηγεί
στη λύση.

AΣΚΗΣΕΙΣ 8.2

 / 

6058.2. Yποακολουθίες, φραγμένες ακολουθίες και η μέθοδος Picard

Eύρεση όρων αναδρομικά οριζόμενης
ακολουθίας
Σε καθεμία από τις Aσκήσεις 1-6 δίνονται ο πρώτος ή οι
δύο πρώτοι όροι μιας ακολουθίας, καθώς και ένας αναδρο-
μικός τύπος υπολογισμού των υπόλοιπων όρων. Nα γρα-
φούν οι πρώτοι δέκα όροι κάθε ακολουθίας.

1. a1 � 1, an�1 � an � (1 2n)

2. a1 � 1, an�1 � an (n � 1)

3. a1 � 2, an�1 � (�1)n�1 an 2

4. a1 � �2, an�1 � nan (n � 1)

5. a1 � a2 � 1, an�2 � an�1 � an

6. a1 � 2, a2 � �1, an�2 � an�1 an

7. Aκολουθίες που ορίζονται με τη μέθοδο του Nεύτωνα H μέθο-
δος του Nεύτωνα, εφαρμοζόμενη σε μια διαφορίσιμη
συνάρτηση f (x), παίρνει ως τιμή εκκινήσεως κάποιο x0

από το οποίο κατασκευάζει μια ακολουθία αριθμών
{xn} που υπό κατάλληλες προϋποθέσεις συγκλίνει σε
κάποιο σημείο μηδενισμού της f O αναδρομικός τύπος
της ακολουθίας είναι

xn�1 � xn �

(α) Nα δειχθεί ότι ο αναδρομικός τύπος για την
f (x) � x 2 � a , a � 0, μπορεί να γραφεί ως
xn�1 � (xn � a/xn)/2.

(β) Mάθετε γράφοντας Mε τιμή εκκινήσεως x0 � 1 και a
� 3, υπολογίστε διαδοχικούς όρους της ακολου-
θίας μέχρι ο εμφανιζόμενος αριθμός στο κομπιου-
τεράκι σας να πάψει να αλλάζει. Ποιος αριθμός
προσεγγίζεται έτσι; Eξηγήστε.

8. (Συνέχεια της Άσκησης 7) Eπαναλάβετε το ερώτημα
(β) της Άσκησης 7 με a � 2 αντί για a � 3.

9. Mέθοδος του Nεύτωνα Oι παρακάτω ακολουθίες προέρ-
χονται από τον αναδρομικό τύπο της μεθόδου του Nεύ-
τωνα (δείτε την Άσκηση 7).

Συγκλίνουν οι ακολουθίες; Aν ναι, σε ποια τιμή; Σε κά-
θε περίπτωση, βρείτε πρώτα τη συνάρτηση f που παρά-
γει την κάθε ακολουθία.

(α) x0 � 1, xn�1 � xn �

(β) x0 � 1, xn�1 � xn �

(γ) x0 � 1, xn�1 � xn � 1

10. Aναδρομικός ορισμός του ��2 Ξεκινώντας με x1 � 1 και
ορίζοντας τους επόμενους όρους της {xn} με τον κανό-
να xn � xn�1 � cos xn�1, κατασκευάστε μια ακολουθία
που συγκλίνει ταχύτατα στο ��2.

(α) Δοκιμάστε το.

(β) Xρησιμοποιήστε το ακόλουθο σχήμα για να εξη-
γήσετε γιατί η σύγκλιση είναι τόσο γρήγορη.

Θεωρία και παραδείγματα
Στις Aσκήσεις 11-14, προσδιορίστε αν οι ακολουθίες είναι
μη φθίνουσες και/ή άνω φραγμένες.

11. an � 12. an �

13. an � 14. an � 2 �

Ποιες από τις ακολουθίες στις Aσκήσεις 15-24 συγκλί-
νουν, και ποιες αποκλίνουν; Aιτιολογήστε τις απαντήσεις
σας.

15. an � 1 � 16. an � n �

17. an � 18. an �

19. an � ((�1)n � 1) 

20. O πρώτος όρος μιας ακολουθίας είναι x1 � cos (1). Oι
επόμενοι όροι είναι x2 � x1 ή cos (2), οποιοσδήποτε εκ
των δύο είναι μεγαλύτερος, και x3 � x2 ή cos (3), οποι-
οσδήποτε εκ των δύο είναι μεγαλύτερος (δηλ. σε δε-
ξιότερη θέση στο γράφημα). Eν γένει,

�n � 1
n �

2 n � 1
3n

2 n � 1
2 n

1
n

1
n

2
n � 1

2 n
2 n3n

n!

(2n � 3)!
(n � 1)!

3n � 1
n � 1

x

y

10

cos xn – 11

xn – 1

xn – 1

 tan  xn � 1

 sec2 xn

x 2
n  � 2
2xn

 � 
xn

2
 � 1

xn

f (xn)

f 
(xn)
 .

 .

 / 

 / 

 / 

 / 

 / 

T

T

T

T



xn�1 � max {xn, cos (n � 1)}.

21. an � 22. an �

23. an � 24. an �

25. Όρια και υποακολουθίες Δείξτε ότι αν δύο υποακολουθίες
μιας ακολουθίας {an} έχουν διαφορετικά όρια L1 � L2,
τότε η {an} αποκλίνει.

26. Άρτιοι και περιττοί δείκτες Για μια ακολουθία {an}, οι όροι
άρτιου δείκτη δηλώνονται ως a2k ενώ οι όροι περιττού
δείκτη δηλώνονται ως a2k�1 Δείξτε ότι αν a2k l L και
a2k�1 l L , τότε an l L .

Mέθοδος του Picard
Xρησιμοποιήστε τη μέθοδο του Picard για να λύσετε τις
εξισώσεις στις Aσκήσεις 27-32.

27. 28. x 2 � x

29. cos x � x � 0 30. cos x � x � 1

31. x � sin x � 0,1

32. (Yπόδειξη: Yψώστε στο τετράγω-
νο.)

33. Λύνοντας την εξίσωση με τη μέθοδο του Picard
βρίσκουμε τη λύση x � 1 αλλά όχι τη λύση x � 0. Για-
τί; (Yπόδειξη: Σχεδιάστε σε κοινό σχήμα τις y � x και
y � .)

34. Λύνοντας την εξίσωση x 2 � x με τη μέθοδο του Picard
για �x0 � � 1 βρίσκουμε τη λύση x � 0 αλλά όχι τη λύση
x � 1. Γιατί; (Yπόδειξη: Σχεδιάστε σε κοινό σχήμα τις
y � x 2 και y � x.)

Σύγκλιση αναδρομικά οριζόμενων
ακολουθιών
Xρησιμοποιήστε κάποιο σύστημα υπολογιστικής άλγε-
βρας για να εκτελέσετε τα παρακάτω βήματα για τις ακο-
λουθίες των Aσκήσεων 35 και 36.

(α) Yπολογίστε και κατόπιν τοποθετήστε σε διάγραμ-
μα τους πρώτους 25 όρους της ακολουθίας. Δείχνει
η ακολουθία να είναι άνω ή κάτω φραγμένη; Δεί-
χνει να συγκλίνει ή να αποκλίνει; Aν συγκλίνει,
τότε ποιο είναι το όριό της L ;

(β) Aν η ακολουθία συγκλίνει, να βρεθεί ακέραιος N
τέτοιος ωστε �an � L � � 0,01 για n � N . Tο ίδιο
ερώτημα για �an � L � � 0,0001.

35. a1 � 1, an�1 � an �

36. a1 � 1, an�1 � an � (�2)n

37. Aνατοκισμός, καταθέσεις, και αναλήψεις Aν επενδύσετε ένα
ποσό A0 με σταθερό ετήσιο επιτόκιο r και ανατοκισμό
m φορές το έτος, και αν ταυτόχρονα με κάθε ανατοκι-
σμό κάνετε κατάθεση ενός σταθερού ποσού b (ή ανά-
ληψη, αν b � 0), τότε το ποσό στον λογαριασμό σας με-
τά από n � 1 ανατοκισμούς θα ισούται με

An�1 � (2)

(α) Aν A0 � 1000, r � 0,02015, m � 12, και b � 50, υπο-
λογίστε και τοποθετήστε σε διάγραμμα τα πρώτα
100 σημεία (n , An) . Πόσα χρήματα θα υπάρχουν
στον λογαριασμό σας μετά από 5 χρόνια; Συγκλί-
νει η ακολουθία {An}; Eίναι φραγμένη η {An};

(β) Eπαναλάβετε το ερώτημα (α) για A0 � 5000,
r � 0,0589, m � 12, και b � �50.

(γ) Aν επενδύσετε €5000 σε κλειστό λογαριασμό με
ετήσιο επιτόκιο 4,5%, ανατοκιζόμενο ανά τρίμηνο,
και δεν  κάνετε περαιτέρω καταθέσεις, τότε σε πε-
ρίπου πόσα χρόνια θα υπάρχουν στον λογαριασμό
σας €20.000; Tο ίδιο ερώτημα για ετήσιο επιτόκιο
6,25%.

(δ) Mπορεί να δειχθεί ότι για κάθε k � 0, η ακολουθία
που ορίζεται αναδρομικά από την Eξίσωση (2) ικα-
νοποιεί τη σχέση

Ak � (3)

Για τις τιμές των σταθερών A0, r m και b που δίνονται
στο ερώτημα (α), επαληθεύστε την παραπάνω πρότα-
ση συγκρίνοντας τις τιμές των πρώτων 50 όρων των
δύο ακολουθιών. Kατόπιν δείξτε με απευθείας αντικα-
τάσταση ότι οι όροι της Eξίσωσης (3) ικανοποιούν τον
αναδρομικό τύπο (2).

38. Λογιστική εξίσωση διαφορών και διακλάδωση H αναδρομική
σχέση

an�1 � ran(1 � an)

καλείται λογιστική εξίσωση διαφορών και, για δοσμέ-
νη αρχική τιμή a0, ορίζει τη λεγόμενη λογιστική ακο-
λουθία {an}. Σε όλη την άσκηση, επιλέγουμε κάποιο a0

στο διάστημα 0 � a0 � 1, π.χ. a0 � 0,3.

(α) Έστω r � 3 4. Yπολογίστε και τοποθετήστε σε
διάγραμμα τα σημεία (n , an) για τους πρώτους 100
όρους της ακολουθίας. Δείχνει να συγκλίνει η
ακολουθία; Ποιο νομίζετε ότι είναι το όριό της;
Δείχνει να εξαρτάται το όριο αυτό από την τιμή
του a0 που επιλέχθηκε;

(β) Eπιλέξτε μερικές τιμές του r στο διάστημα 1 �r �3
και επαναλάβετε τη διαδικασία του ερωτήματος
(α). Φροντίστε να επιλέξετε και τιμές κοντά στα
άκρα του διαστήματος. Περιγράψτε τη συμπεριφο-
ρά των ακολουθιών στα διαγράμματα που κάνατε.

(γ) Eξετάστε τη συμπεριφορά της ακολουθίας για τι-
μές του r κοντά στα άκρα του διαστήματος
3 � r � 3,45. H τιμή μετάβασης r � 3 καλείται τι-
μή διακλάδωσης. Περιγράφουμε τη νέα συμπερι-
φορά της ακολουθίας στο διάστημα αυτό λέγοντας
ότι υπάρχει ένας ελκτικός κύκλος περιόδου 2. Eξη-
γήστε γιατί ο όρος αυτός αποδίδει σχετικά ικανο-
ποιητικά τη συμπεριφορά της ακολουθίας.

(δ) Στη συνέχεια διερευνήστε τη συμπεριφορά για τι-
μές r κοντά στα άκρα καθενός από τα υποδιαστή-
ματα 3,45 � r � 3,54 και 3,54 � r � 3,55. Tοποθε-
τήστε σε διάγραμμα τους πρώτους 200 όρους των
ακολουθιών. Περιγράψτε με δικά σας λόγια τη συ-
μπεριφορά κάθε διαγράμματος που κάνατε. Mετα-
ξύ πόσων τιμών δείχνει να ταλαντεύεται η ακολου-
θία σε κάθε διάστημα; Oι τιμές r � 3,45 και r �

 / 
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8.3
Σειρές και μερικά αθροίσματα • Γεωμετρικές σειρές

• Aποκλίνουσες σειρές • Kριτήριο n-οστού όρου για απόκλιση

• Πρόσθεση ή αφαίρεση όρων • Aλλαγή δείκτη

• Συνδυασμός σειρών

Tόσο στα μαθηματικά όσο και στις φυσικές επιστήμες, πολλές συναρ-
τήσεις γράφονται υπό μορφή πολυωνύμων με άπειρους όρους, π.χ.

� 1 � x � x 2 � x 3 � … � xn � …, �x � � 1

(παρακάτω θα δούμε σε τι μας εξυπηρετεί η γραφή αυτή). Για τυχούσα
επιτρεπόμενη τιμή του x , ένα τέτοιο πολυώνυμο υπολογίζεται ως ένα
άπειρο άθροισμα σταθερών όρων, το οποίο καλούμε άπειρη σειρά (ή
απλώς σειρά). H παρούσα ενότητα αποσκοπεί στο να εξοικειώσει τον
αναγνώστη με την έννοια αυτή.

Σειρές και μερικά αθροίσματα
Tο πρώτο πράγμα που πρέπει να γίνει σαφές είναι ότι μια άπειρη σει-
ρά δεν αποτελεί απλώς ένα ακόμη παράδειγμα πρόσθεσης. H πρόσθε-
ση πραγματικών αριθμών είναι μια δυαδική πράξη, που σημαίνει ότι κά-
θε φορά προσθέτουμε αριθμούς ανά δύο. O λόγος που η γραφή    1 � 2
� 3 έχει νόημα να καλείται «πρόσθεση» είναι ότι μπορούμε να ομαδο-
ποιούμε τους αριθμούς και κατόπιν να τους προσθέτουμε ανά δύο. H
προσεταιριστική ιδιότητα της πρόσθεσης σημαίνει ότι ανεξαρτήτως
της ομαδοποίησης που χρησιμοποιούμε, το αποτέλεσμα παραμένει το
ίδιο:

1 � (2 � 3) � 1 � 5 � 6 και (1 � 2) � 3 � 3 � 3 � 6.

Mε δυο λόγια, ένα πεπερασμένο άθροισμα πραγματικών αριθμών δίνει
πάντοτε πραγματικό αριθμό, ως αποτέλεσμα πεπερασμένου πλήθους
δυαδικών προσθέσεων. Όμως ένα άπειρο άθροισμα πραγματικών αριθ-
μών είναι κάτι το τελείως διαφορετικό. Γι’ αυτό τον λόγο χρειαζόμα-
στε έναν προσεκτικό ορισμό της άπειρης σειράς.

Aς δοκιμάσουμε να προσδώσουμε νόημα σε μια έκφραση της μορ-
φής

1
1 � x

6078.3. Άπειρες σειρές

3,54 (εδώ τις στρογγυλοποιήσαμε σε 2 δεκαδικά
ψηφία) καλούνται επίσης τιμές διακλαδώσεως,
διότι η συμπεριφορά της ακολουθίας μεταβάλλε-
ται καθώς το r «διαβαίνει» από τις τιμές αυτές.

(ε) H κατάσταση μπορεί να γίνει ακόμη πιο ενδιαφέ-
ρουσα. Yπάρχει μια αύξουσα ακολουθία τιμών δια-
κλαδώσεως 3 � 3,45 � 3,54 � . . . � cn � cn�1 . . .
τέτοια ώστε για cn � r � cn�1, η λογιστική εξίσω-
ση {an} ταλαντεύεται τελικά  ευσταθώς μεταξύ 2n

τιμών, οπότε κάνουμε λόγο για ελκτικό κύκλο πε-
ριόδου 2n. Eπιπλέον, η ακολουθία τιμών διακλάδω-
σης {cn} είναι άνω φραγμένη από τον αριθμό 3,57
(άρα συγκλίνει). Aν επιλέξετε την τιμή r � 3,57,
θα παρατηρήσετε έναν ελκτικό κύκλο περιόδου 2n.
Eπιλέξτε r � 3,5695 και τοποθετήστε σε διάγραμ-
μα 300 σημεία.

(στ) Aς δούμε τι συμβαίνει για r � 3,57. Aφού θέσετε

r � 3,65 και υπολογίσετε τους πρώτους 300 όρους
της {an},  τοποθετήστε τους σε διάγραμμα . Παρα-
τηρήστε πώς τα σημεία «περιφέρονται» με μη προ-
βλέψιμο, χαοτικό τρόπο. Eίναι αδύνατον να προ-
βλέψετε την τιμή του an�1 από την τιμή του an.

(ζ) Για r � 3,65, επιλέξτε δύο αρχικές τιμές του a0 που
γειτνιάζουν μεταξύ τους, έστω τις a0 � 0,3 και a0 �
0,301. Yπολογίστε και τοποθετήστε σε διάγραμμα
τους πρώτους 300 όρους των ακολουθιών για κάθε
αρχική τιμή. Συγκρίνετε τις συμπεριφορές των δύο
ακολουθιών. Mετά από πόσους όρους δείχνουν να
διαφέρουν αισθητά οι αντίστοιχοι όροι των δύο
ακολουθιών; Eπαναλάβετε τη διερεύνηση για r �
3,75. Mπορείτε να δείτε πώς διαφέρει η συμπερι-
φορά κάθε διαγράμματος αναλόγως της τιμής του
a0; Λέμε ότι η λογιστική ακολουθία είναι υπερευ-
αίσθητη στην αρχική συνθήκη a0.

8.3 Άπειρες σειρές



1 � � ….

Προφανώς κάτι τέτοιο δεν μπορεί να γίνει αν προσπαθήσουμε να προ-
σθέσουμε όλους τους όρους (πράγμα αδύνατο). Mπορούμε όμως να αρ-
χίσουμε να προσθέτουμε έναν έναν τους όρους από την αρχή, ερευνώ-
ντας για κάποια χαρακτηριστική συμπεριφορά και εξετάζοντας πώς
αυτά τα «μερικά αθροίσματα» εξελίσσονται.

Πράγματι, υπάρχει μια τέτοια χαρακτηριστική συμπεριφορά. Tα μερι-
κά αθροίσματα σχηματίζουν μια ακολουθία με n-οστό όρο  

sn � 2 � .

(Θα δούμε σε λίγο γιατί.) H ακολουθία συγκλίνει στο 2 διότι limnl�

(1 2n) � 0. Λέμε λοιπόν,

«Tο άθροισμα της άπειρης σειράς 1 �

Tι σημαίνει αυτό; Mήπως ότι το άθροισμα πεπερασμένου πλήθους
όρων της σειράς ισούται με 2; Όχι. Mήπως ότι μπορούμε να εκτελέ-
σουμε την άθροιση άπειρων όρων ανά δύο, προκειμένου να αποφαν-
θούμε για το αποτέλεσμα; Kαι πάλι όχι. Aυτό που σημαίνει η παραπά-
νω πρόταση είναι ότι μπορούμε να ορίσουμε το παραπάνω άθροισμα ως
το όριο καθώς n l � μιας ακολουθίας μερικών αθροισμάτων. Tο όριο
αυτό ισούται εδώ με 2 (Σχήμα 8.9). Tα όσα έχουμε μάθει περί ορίων και
ακολουθιών μάς επιτρέπουν να υπερβούμε τους εννοιολογικούς φραγ-
μούς των πεπερασμένων αθροισμάτων και να ορίσουμε την εντελώς
καινούργια έννοια της άπειρης σειράς.

1
2

 � 1
4

 �…� 1
2n�1

 �… ����	 2.�

 / 

1
2 n�1

1
2

 � 1
4

 � 1
8

 � 1
16
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Mερικό άθροισμα Tιμή

Πρώτο: s1 � 1 2 � 1

Δεύτερο:

Tρίτο:

� � �
� � �
� � �

n-οστό 2 � 1
2n�1

sn � 1 � 1
2

 � 1
4

 � … � 1
2n�1

2 � 1
4

s3 � 1 � 1
2

 � 1
4

2 � 1
2

s2 � 1 � 1
2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0

1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎧⎪⎨⎪⎩

⎧⎨⎩
1 21/2 1/8

1/4

Oρισμός Άπειρη σειρά
Δοθείσας μιας ακολουθίας αριθμών {an}, κάθε έκφραση της
μορφής

a1 � a2 � a3 � … � an � … 

είναι μια άπειρη σειρά. O αριθμός an είναι ο n-οστός όρος της
σειράς.

ΣXHMA 8.9 Kαθώς τα μήκη 1, 1/2, 1/4, 1/8, . . . προστίθενται ένα ένα, το
άθροισμα τείνει στο 2.

Bιογραφικά στοιχεία

Blaise Pascal
(1623-1662)
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Tα μερικά αθροίσματα της σειράς σχηματίζουν μια ακολουθία
πραγματικών αριθμών

καθένας εκ των οποίων είναι ένα πεπερασμένο άθροισμα. Aν η ακο-
λουθία μερικών αθροισμάτων έχει όριο S καθώς n l �, λέμε ότι η σει-
ρά συγκλίνει στο άθροισμα S , και γράφουμε

a1 � a2 � a3 � … � an � … � ak � S .

Στην αντίθετη περίπτωση, λέμε ότι η σειρά αποκλίνει.

Παράδειγμα 1 Προσδιορισμός σύγκλισης σειράς

Συγκλίνει η σειρά

;

Λύση H ακολουθία των μερικών αθροισμάτων, γραμμένη σε δεκα-
δική μορφή, είναι

0,3, 0,33, 0,333, 0,3333, . . .

H ακολουθία αυτή έχει όριο 0, , το οποίο όπως αντιλαμβάνεστε
ισούται με το κλάσμα 1 3. H σειρά συγκλίνει λοιπόν στο όριο 1 3.

Όταν μας δίνεται μια σειρά a1 � a2 � … � an � … , συνήθως δεν
γνωρίζουμε εκ των προτέρων αν αυτή συγκλίνει ή αποκλίνει. Σε κάθε
περίπτωση, ο συμβολισμός «σίγμα» μάς επιτρέπει να γράφουμε τη σει-
ρά στη μορφή

Γεωμετρικές σειρές
H σειρά του Παραδείγματος 1 είναι μια γεωμετρική σειρά διότι κάθε
όρος της προκύπτει αν πολλαπλασιάσουμε τον προηγούμενο με κάποια
σταθερά r , που εδώ ισούται με 1 10. (H σειρά των εμβαδών του επ’ άπει-
ρον διχοτομούμενου τετραγώνου που είδαμε στην αρχή του κεφαλαίου
αποτελεί επίσης γεωμετρική σειρά.) Tο ζήτημα της σύγκλισης γεωμε-
τρικών σειρών ήταν από τα λίγα προβλήματα που αν και αφορούσαν
άπειρες διαδικασίες μπορούσαν να αντιμετωπισθούν με μαθηματικές με-
θόδους προϋπάρχουσες του απειροστικού λογισμού. Aς δούμε γιατί.

Γεωμετρική σειρά είναι μια σειρά της μορφής

a � ar � ar 2 � … � arn�1 � … � arn�1

όπου a και r είναι σταθεροί πραγματικοί αριθμοί και a � 0. O λόγος r
μπορεί να είναι θετικός, π.χ.

�
�

n�1

 / 

�
�

n�1
 an  

,   �
�

k�1
 ak  

,  ! �����  � an  

.

 /  / 

3

3
10

 � 3
100

 � 3
1000

 � … � 3
10 n � …

�
�

k�1

 �
 �
 �

 sn � �
n

k�1
 ak

 �
 �
 �

 s3 � a1 � a 2 � a 3

 s2 � a1 � a 2

 s1 � a1
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Xρήσιμη συντομογραφίαØ

εννοείται ότι αθροίζουμε
από 1 έως �
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1 �

ή αρνητικός, όπως εδώ

1 �

Aν �r � � 1, μπορούμε να προσδιορίσουμε τη σύγκλιση ή την από-
κλιση της σειράς ως ακολούθως, ξεκινώντας με το n-οστό μερικό
άθροισμα:

Aν �r � � 1, τότε rn
l 0 καθώς n l � (Πίνακας 8.1, Tύπος 4) και

sn l a (1 � r). Aν �r � � 1, τότε �rn � l � και η σειρά αποκλίνει.

Aν r � 1, τότε το n-οστό μερικό άθροισμα της γεωμετρικής σειράς
ισούται με

sn � a � a(1) � a(1)2 � … � a(1)n�1 � na ,

και η σειρά αποκλίνει εφόσον limnl� sn � 	�, αναλόγως του προσή-
μου του a . Aν r � �1, η σειρά αποκλίνει επειδή τα n-οστά μερικά
αθροίσματα ταλαντώνονται μεταξύ του a και του 0. Aς συνοψίσουμε τα
αποτελέσματά μας.

Tα παραπάνω ξεκαθαρίζουν τα πάντα περί γεωμετρικών σειρών.
Tώρα γνωρίζουμε πότε μια τέτοια σειρά συγκλίνει και πότε αποκλίνει,
στη δε περίπτωση σύγκλισης, ξέρουμε την τιμή των αθροισμάτων. Tο
διάστημα �1 � r � 1 είναι το διάστημα σύγκλισης.

Παράδειγμα 2 Aνάλυση γεωμετρικής σειράς

Aποφανθείτε για το αν συγκλίνει ή αποκλίνει καθεμία από τις παρα-
κάτω σειρές. Στην περίπτωση σύγκλισης, βρείτε την τιμή του αθροί-
σματος.

(α)  

(β) 1 �

(γ) � �
�

k�1
 �3

5�
k�1

�
�

k�0
 �3

5�
k

1
2

 � 1
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 � 1
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 � … � �� 1
2�

n�1

 � …

�
�

n�1
 3 �1

2�
n�1

 / 

 sn � 
a(1 � r n)

1 � r
 ,   (r � 1).

 sn(1 � r) � a(1 � r n)

 sn � rsn � a � ar n

 rsn � ar � ar 2 � … � ar n�1 � ar n

 sn � a � ar � ar 2 � … � ar n�1

1
3

 � 1
9

 � … � ��  1
3�

n�1

 � … .

1
2

 � 1
4

 � … � �1
2�

n�1

 � … ,
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Πολλαπλασιάζουμε το sn με το r .

Aφαιρούμε το rsn από το sn. Oι
περισσότεροι όροι στο δεξιό
μέλος διαγράφονται.

Kοινός παράγοντας.

Λύνουμε ως προς sn εφόσον r � 1.

H γεωμετρική σειρά

a � ar � ar 2 � ar3 � … � arn�1 � … � arn�1

συγκλίνει στο άθροισμα a (1 � r) αν �r � � 1 και αποκλίνει αν �r � � 1. / 

�
�

n�1

H ισότητα

ισχύει μόνο αν η άθροιση ξεκινά από το
n � 1.

�
�

n�1
 arn�1 � a

1 � r
 ,   � r � � 1



(δ)  

Λύση

(α) O πρώτος όρος είναι a � 3 και r � 1 2. H σειρά συγκλίνει στο

(β) O πρώτος όρος είναι a � 1 και r � �1 2. H σειρά συγκλίνει στο

(γ) O πρώτος όρος είναι a � (3 5)0 � 1 και r � 3 5. H σειρά συγκλί-
νει στο

(δ) Eδώ r � � 2 � 1. H σειρά αποκλίνει.

Παράδειγμα 3 Mπαλάκι που αναπηδά

Έστω ότι από ύψος a m πάνω από επίπεδη επιφάνεια αφήνουμε
ένα μπαλάκι να πέσει. Kάθε φορά που το μπαλάκι προσκρούει
στην επιφάνεια μετά από πτώση από κατακόρυφη απόσταση h ,
αναπηδά σε ύψος rh , όπου r θετική σταθερά μικρότερη του 1. Nα
βρεθεί το συνολικό κατακόρυφο διάστημα (πάνω και κάτω) που
διανύει το μπαλάκι (Σχήμα 8.10).

Λύση Tο συνολικό διάστημα είναι 

s � a � 2ar � 2ar2 � 2ar3 � •••

Για a � 6 m και r � 2 3, για παράδειγμα, το διάστημα ισούται με

s � 6 � 30 m.

Παράδειγμα 4 Eπαναλαμβανόμενα δεκαδικά ψηφία

Eκφράστε τον δεκαδικό αριθμό 5,23 23 23 . . . ως λόγο δύο ακεραίων.

Λύση

Mπορεί να έχουμε μόλις αρχίσει τη μελέτη των άπειρων σειρών,
αλλά ήδη κατανοήσαμε πλήρως τα περί σύγκλισης και απόκλισης μιας
ολόκληρης κλάσης σειρών (των γεωμετρικών). Bρισκόμαστε τώρα στο

 � 5 � 23
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0,99� � 5 � 23
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ΣXHMA 8.10 (α) Tο Παράδειγμα 3
δείχνει πώς μπορούμε με τη χρήση
γεωμετρικών σειρών να
υπολογίσουμε τη συνολική
κατακόρυφη απόσταση που διανύει
ένα μπαλάκι που αναπηδά, αν το
ύψος κάθε αναπήδησης μειώνεται
κατά έναν παράγοντα r . 
(β) Στροβοσκοπική φωτογραφία
των αναπηδήσεων που κάνει το
μπαλάκι.

ar

ar2

ar3

(�)

a

(β)
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a � 1, 
r � 1/100 

Tο άθροισμα αυτό ισούται με 2ar/(1 – r)



ίδιο σημείο με τους μαθηματικούς της εποχής της AναγέννησηςØ ας
δούμε λοιπόν πού μπορούμε να φτάσουμε με όσα μάθαμε.

Δυστυχώς, τύποι όπως αυτός του αθροίσματος όρων γεωμετρικής
σειράς σπανίζουν, και έτσι συνήθως θα πρέπει να αρκούμαστε σε προ-
σεγγιστικούς υπολογισμούς αθροισμάτων  (περισσότερα για το θέμα
αυτό θα πούμε αργότερα). Tο επόμενο παράδειγμα, ωστόσο, αφορά άλ-
λη μια ευτυχή συγκυρία στην οποία το άθροισμα μπορεί να υπολογι-
στεί επακριβώς.

Παράδειγμα 5 Mια μη γεωμετρική αλλά τηλεσκοπική σειρά

Nα βρεθεί το άθροισμα

Λύση Aναζητούμε κάποια χαρακτηριστική συμπεριφορά της ακο-
λουθίας μερικών αθροισμάτων που να μας οδηγήσει σε κάποιον τύπο
για το sk. Tο κλειδί εδώ είναι τα μερικά κλάσματα. Aν παρατηρή-
σουμε ότι

τότε μπορούμε να γράψουμε το μερικό άθροισμα

ως εξής:

Aφαιρώντας τις παρενθέσεις και διαγράφοντας τους αλληλοαναι-
ρούμενους όρους, παίρνουμε

Eίναι τώρα προφανές ότι sk l 1 καθώς k l �. H σειρά λοιπόν συ-
γκλίνει στην τιμή 1 (Σχήμα 8.11).

Aποκλίνουσες σειρές
Oι γεωμετρικές σειρές με λόγο �r � � 1 δεν είναι, βέβαια, oι μόνες που
αποκλίνουν.

Παράδειγμα 6 Προσδιορισμός απόκλισης σειράς

Συγκλίνει η σειρά 1 � 1 � 1 � 1 � 1 � 1 � …;

Λύση Eνδεχομένως να μπείτε στον πειρασμό να ομαδοποιήσετε
τους όρους της σειράς ως εξής

(1 � 1) � (1 � 1) � (1 � 1) � ….

Όμως αυτό θα ήταν λάθος, διότι η διαδικασία αυτή περιλαμβάνει
άπειρο πλήθος αθροίσεων όρων ανά δύο, και συνεπώς δεν μπορεί
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sk � 1 – 1——–
k � 1
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ΣXHMA 8.11 Tα μερικά αθροίσματα
της σειράς του Παραδείγματος 5.



να αιτιολογηθεί βάσει της προσεταιριστικής ιδιότητας της άθροι-
σης. Eδώ έχουμε να κάνουμε με μια άπειρη σειρά, όχι με άθροι-
σμα πεπερασμένων όρων, και έτσι αν η σειρά καταλήγει σε πεπε-
ρασμένο αποτέλεσμα, αυτό δεν μπορεί παρά να είναι το όριο της
ακολουθίας μερικών αθροισμάτων,

1, 0, 1, 0, 1, 0, 1, . . . .

Eφόσον η ακολουθία αυτή δεν έχει όριο, ούτε και η άπειρη σειρά
έχει. Άρα αποκλίνει.

Παράδειγμα 7 Mερικά αθροίσματα που υπερβαίνουν κάθε
φράγμα

(α) H σειρά

αποκλίνει διότι τα μερικά της αθροίσματα υπερβαίνουν κάθε πε-
περασμένο αριθμό L . Mετά το n � 1, κάθε μερικό άθροισμα 
sn � 1 � 4 � 9 � … � n2 είναι μεγαλύτερο του n2.

(β) H σειρά

αποκλίνει διότι τα μερικά της αθροίσματα υπερβαίνουν τελικά κάθε
προκαθορισμένο αριθμό. Kάθε όρος είναι μεγαλύτερος του 1, συνε-
πώς το άθροισμα των n όρων είναι μεγαλύτερο του n .

Kριτήριο n-οστού όρου για απόκλιση

Προσέξτε ότι το limnl� an οφείλει να ισούται με το μηδέν αν η an

συγκλίνει. Για να δούμε γιατί, έστω S το άθροισμα της σειράς και  
sn � a1 � a2 � … � an το n-οστό μερικό άθροισμα. Για μεγάλο n, τόσο
το sn όσο και το sn�1 προσεγγίζουν το S , συνεπώς η διαφορά τους, an,
πλησιάζει στο μηδέν. Aυστηρότερα,

an � sn � sn�1 l S � S � 0.

Tο Θεώρημα 6 οδηγεί σε ένα κριτήριο για το είδος της απόκλισης
που συναντήσαμε στα Παραδείγματα 6 και 7.

S�
n�1

�
�

n�1
 n � 1

n  � 2
1

 � 3
2

 � 4
3

 � … � n � 1
n  � …

�
�

n�1
 

n 2 � 1 � 4 � 9 � … � n 2 � …
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Όριο διαφοράς ακολουθιών

Θεώρημα 6 Όριο n-οστού όρου συγκλίνουσας σειράς

Aν η σειρά συγκλίνει, τότε an l 0.��
n�1 an

ΠPOΣOXH Tο Θεώρημα 6 δεν λέει

ότι η σειρά συγκλίνει αν an l 0.

Mια σειρά μπορεί να αποκλίνει ακόμη

και όταν an l 0.

��
n�1 an

Kριτήριο n-οστού όρου για απόκλιση

H σειρά αποκλίνει εάν το limnl� an δεν υπάρχει ή είναι

διάφορο του μηδενός. 

��
n�1 an



Παράδειγμα 8 Eφαρμογή του κριτηρίου n-οστού όρου

(α) H σειρά αποκλίνει διότι n2
l �.

(β) H σειρά αποκλίνει διότι  

(γ) H σειρά αποκλίνει διότι το δεν υπάρχει.

(δ) H σειρά αποκλίνει διότι 

Παράδειγμα 9 an l 0, αλλά η σειρά αποκλίνει

H σειρά

� 1 � 1 � 1 � … � 1 � …

αποκλίνει παρά το ότι οι όροι της σχηματίζουν μια ακολουθία η
οποία συγκλίνει στο 0.

Πρόσθεση ή αφαίρεση όρων
Mπορούμε πάντα να προσθέτουμε ένα πεπερασμένο πλήθος όρων σε
μια σειρά (ή να αφαιρούμε πεπερασμένο πλήθος όρων από αυτήν) χω-
ρίς να επηρεάζεται η σύγκλιση ή η απόκλισή της, αν και στην περί-
πτωση της σύγκλισης, η διαδικασία αυτή θα μεταβάλλει την τιμή του
αθροίσματος. Aν η σειρά ∑�

n = 1 an συγκλίνει, τότε και η θα συ-
γκλίνει για κάθε k � 1, και

Aντιστρόφως, αν η  ∑�
n = k an συγκλίνει για κάθε k � 1, τότε και η σει-

ρά  ∑�
n = 1 an συγκλίνει. Έτσι,

και

Aλλαγή δείκτη
Mπορούμε να αλλάξουμε κατά βούληση τον δείκτη μιας σειράς, αρκεί
να διατηρήσουμε τη διάταξη των όρων της (δείτε το Παράδειγμα 2γ).
Έτσι, μπορούμε να αυξήσουμε την τιμή εκκίνησης του δείκτη κατά h
μονάδες, αντικαθιστώντας το n στον τύπο του an με το n � h :

Mε παρόμοιο τρόπο μπορούμε να μειώσουμε την τιμή εκκίνησης του
δείκτη κατά h μονάδες, αντικαθιστώντας το n στον τύπο του an με το 
n � h :

�
�

n�1
 an  � �

�

n�1�h
 an�h  � a1  � a 2 � a3 � … .

�
�

n�4
 1
5n � ��

�

n�1
 1
5n� � 1

5
 � 1

25
 � 1

125
 .

�
�

n�1
 1
5n � 1

5
 � 1

25
 � 1

125
 � �

�

n�4
 1
5n

�
�

n�1
 an  � a 1 � a 2 � … � ak�1 � �

�

n�k
 an 

.

��
n�k an

1 � 1
2

 � 1
2

 � 1
4

 � 1
4

 � 1
4

 � 1
4

 � … � 1
2n � 1

2n � … � 1
2n � …

lim
nl�

  � �n
2n � 5� � �1

2
 � 0.�

�

n�1
 �n
2n � 5

lim
nl�

  (�1)n�1�
�

n�1
 (�1)n�1

n � 1
n  l 1.�

�

n�1
 n � 1

n

�
�

n�1
 n 2
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H διαδικασία είναι παρόμοια με την οριζόντια μετατόπιση του γραφή-
ματος συναρτήσεως.

Παράδειγμα 10 Aλλαγή δείκτη γεωμετρικής σειράς

Mπορούμε να γράψουμε τη γεωμετρική σειρά που ξεκινά ως εξής

με τους ακόλουθους τρόπους

Tα μερικά αθροίσματα παραμένουν τα ίδια, ανεξαρτήτως του δείκτη
που επιλέγουμε.

Για προφανείς λόγους, συνήθως προτιμούμε δείκτες που απλοποιούν
τις μαθηματικές εκφράσεις.

Συνδυασμός σειρών
Aν μας δίνονται δύο συγκλίνουσες σειρές, μπορούμε να τις προσθέ-
τουμε όρο προς όρο, να τις αφαιρούμε όρο προς όρο, ή να τις πολ-
λαπλασιάζουμε με σταθερές. Σε όλες τις περιπτώσεις, η προκύπτου-
σα σειρά είναι συγκλίνουσα.

Παράδειγμα 11 Eφαρμογή του Θεωρήματος 7

Nα βρεθούν τα αθροίσματα των ακόλουθων σειρών.

(α)

(β)

 � 8

 � 4 � 1
1 � (1 / 2)�

 �
�

n�1
 4
2 n�1

 � 4 �
�

n�1
 1
2 n�1

 � 4
5

 � 2 � 6
5

 � 1
1 � (1 / 2)

 � 1
1 � (1 / 6)

 � �
�

n�1
 1
2 n�1

 � �
�

n�1
 1
6n�1

 �
�

n�1
 3

n�1 � 1
6n�1

 � �
�

n�1
 � 1

2 n�1
 � 1

6n�1�

�
�

n�0
 1
2n  ,   �

�

n�5
 1
2n�5

 

  ,   ! ��	   �
�

n��4
 1
2n�4

 

  .

1 � 1
2

 � 1
4

 � …

�
�

n�1
 an  � �

�

n�1�h
 an�h  � a1  � a2 � a3 � … .
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Θεώρημα 7 Iδιότητες συγκλινουσών σειρών
Aν � an � A και � bn � B είναι συγκλίνουσες σειρές, τότε

1. Άθροισμα σειρών: � (an � bn) � � an � � bn � A � B

2. Διαφορά σειρών: � (an � bn) � � an � � bn � A � B

3. Σταθερό πολλαπλάσιο σειράς:� kan � k � an � kA (τυχών αριθμός k).

Διαφορά σειρών

Γεωμετρική σειρά με a � 1 και
r � 1/2, 1/6

Σταθερό πολλαπλάσιο σειράς

Γεωμετρική σειρά με a � 1, r � 1/2



Aπόδειξη Θεωρήματος 7 Oι τρεις ιδιότητες σειρών έπονται από τις
ανάλογες ιδιότητες ακολουθιών που παρουσιάστηκαν στο Θεώρημα 1,
Eνότητα 8.1. Προκειμένου να αποδείξουμε τον τύπο αθροίσματος σει-
ρών, έστω

An � a1 � a2 � … � an, Bn � b1 � b2 � … � bn.

Tα μερικά αθροίσματα της � (an � bn) θα είναι τότε

Eφόσον An l A και Bn l B , θα έχουμε Sn l A � B βάσει της ιδιότητας
ορίου αθροίσματος για ακολουθίες. Παρόμοια είναι και η απόδειξη
του τύπου διαφοράς σειρών.

Προκειμένου για τον τύπο σταθερού πολλαπλασίου σειράς, παρα-
τηρούμε ότι τα μερικά αθροίσματα της � kan σχηματίζουν την ακολου-
θία

Sn � ka1 � ka2 � … � kan � k(a1 � a2 � … � an) � kAn,

η οποία συγκλίνει στο kA βάσει της ιδιότητας ορίου σταθερού πολλα-
πλασίου για ακολουθίες.

Oι αποδείξεις παραλείπονται. 

ΑΣΚΗΣΕΙΣ 8.3

 � An � Bn 

.

 � (a 1 � … � an) � (b1 � … � bn)

 Sn � (a 1 � b1) � (a 2 � b2) � … � (an  � bn)
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Συμπεράσματα από το Θεώρημα 7 σχετικά με την απόκλιση σειράς

1. Kάθε μη μηδενικό σταθερό πολλαπλάσιο αποκλίνουσας
σειράς αποκλίνει.

2. Aν η  � an συγκλίνει και η  � bn αποκλίνει, τότε οι  � (an � bn)
και � (an � bn) αποκλίνουν.

Eύρεση n-οστών μερικών αθροισμάτων
Στις Aσκήσεις 1-6, βρείτε έναν τύπο του n-οστού μερικού
αθροίσματος για κάθε σειρά, τον οποίο ακολούθως χρησι-
μοποιήστε για να υπολογίσετε το άθροισμα κάθε σειράς
στην περίπτωση σύγκλισης.

1. 2 �

2.

3. 1 �

4. 1 � 2 � 4 � 8 � … � (�1)n�1 2n�1 � …

5.

6.

Σειρές με γεωμετρικούς όρους
Στις Aσκήσεις 7-12, αφού γράψετε μερικούς από τους πρώ-
τους όρους κάθε σειράς, υπολογίστε τα αθροίσματα.

7. 8.

9. 10.

11. 12.

Tηλεσκοπικές σειρές
Xρησιμοποιήστε μερικά κλάσματα για να βρείτε το άθροι-
σμα κάθε σειράς στις Aσκήσεις 13-16.

13. 14.

15. 16. �
�

n�1
   

2n � 1
n 2(n � 1)2�

�

n�1
 40n
(2n � 1)2(2n � 1)2

�
�

n�1
 6
(2n � 1)(2n � 1)�

�

n�1
 4
(4n � 3)(4n � 1)

�
�

n�0
 �2 n�1

5n ��
�

n�0
 � 1

2 n � 
(�1)n

5n �
�
�

n�0
 � 5

2 n � 1
3n��

�

n�0
 � 5

2 n � 1
3n�

�
�

n�1
 7
4n�

�

n�0
 
(�1)n

4n

5
1 � 2

 � 5
2 � 3

 � 5
3 � 4

 � … � 5
n(n � 1)

 � …

1
2 � 3

 � 1
3 � 4

 � 1
4 � 5

 � … � 1
(n � 1)(n � 2)

 � …

1
2

 � 1
4

 � 1
8

 � … � (�1)n�1 1
2n�1

 � …

9
100

 � 9
1002

 � 9
1003

 � … � 9
100 n � …

2
3

 � 2
9

 � 2
27

 � … � 2
3n�1

 � …



Nα βρεθούν τα αθροίσματα των σειρών στις Aσκήσεις 17
και 18.

17. 18.

Σύγκλιση ή απόκλιση
Ποιες από τις σειρές των Aσκήσεων 19-32 συγκλίνουν, και
ποιες αποκλίνουν; Aιτιολογήστε τις απαντήσεις σας. Στην
περίπτωση σύγκλισης, να υπολογιστεί το άθροισμα κάθε
σειράς.

19. 20.

21. 22.

23. 24.

25. , �x � � 1 26.

27. 28.

29. 30.

31. 32.

Γεωμετρικές σειρές
Για κάθε γεωμετρική σειρά των Aσκήσεων 33-36, γράψτε
μερικούς από τους πρώτους όρους προκειμένου να βρείτε
τα a και r και να υπολογίσετε το άθροισμα της σειράς.
Έπειτα εκφράστε την ανισότητα �r � � 1 συναρτήσει του x
και βρείτε τις τιμές του x για τις οποίες η ανισότητα ικα-
νοποιείται και η σειρά συγκλίνει.

33. 34.

35. 36.

Στις Aσκήσεις 37-40, βρείτε τις τιμές του x για τις οποίες η
δοθείσα γεωμετρική σειρά συγκλίνει. Eπίσης, υπολογίστε
τα αθροίσματα (συναρτήσει του x) για τις τιμές αυτές του x .

37. 2nxn 38. (�1)nx�2n

39. (x � 3)n 40. (ln x)n

Δεκαδικά ψηφία που επαναλαμβάνονται
Eκφράστε κάθε αριθμό στις Aσκήσεις 41-46 ως λόγο δύο
ακεραίων.

41. � 0,23 23 23 . . .

42. � 0,234 234 234 . . .

43. � 0,7777 . . .

44. � 1,414 414 414 . . .

45. � 1,24 123 123 123 . . .

46. � 3,142857 142857 . . .

Θεωρία και παραδείγματα
47. Διανυθέν διάστημα από μπάλα που αναπηδάει Mια μπάλα

αφήνεται να πέσει από ύψος 4 m. Kάθε φορά που προ-
σκρούει στο πεζοδρόμιο μετά από πτώση h m, αναπηδά
σε ύψος 0,75h m. Nα βρεθεί το συνολικό κατακόρυφο
διάστημα (προς τα πάνω και προς τα κάτω) που διανύει
η μπάλα.

48. Συνολικός χρόνος αναπήδησης Nα βρεθεί ο συνολικός χρό-
νος κίνησης της μπάλας στην Άσκηση 47. (Yπόδειξη: O
τύπος s � 4,9t 2 δίνει t � .)

49. Άθροιση εμβαδών Tο ακόλουθο σχήμα δείχνει τα πρώτα
πέντε μέλη μιας ακολουθίας τετραγώνων. Tο εξωτερι-
κό τετράγωνο έχει εμβαδόν 4 m2. Kαθένα από τα άλλα
τετράγωνα προκύπτει ενώνοντας με ευθύγραμμα τμή-
ματα τα μέσα των πλευρών του αμέσως προηγούμενου
τετραγώνου. Nα βρεθεί το άθροισμα των εμβαδών
όλων των τετραγώνων.

50. Άθροιση εμβαδών Tο ακόλουθο σχήμα δείχνει τις τρεις
πρώτες γραμμές και μέρος της τέταρτης γραμμής μιας
ακολουθίας γραμμών με ημικύκλια. H n-οστή γραμμή
περιέχει 2n ημικύκλια, ακτίνας 1 2n. Nα βρεθεί το
άθροισμα των εμβαδών όλων των ημικυκλίων.

51. H καμπύλη της νιφάδας χιονιού της Helge von Koch Έστω ένα
ισόπλευρο τρίγωνο μοναδιαίου μήκους πλευράς, το
οποίο καλούμε Kαμπύλη 1. Xωρίζουμε κάθε πλευρά σε
τρία ίσα ευθύγραμμα τμήματα, και στο μεσαίο τρίτο
κάθε πλευράς σχεδιάζουμε πάλι ένα ισόπλευρο τρίγω-
νο που «δείχνει» προς το εξωτερικό του αρχικού τρι-
γώνου. Σβήνουμε το μεσαίο τρίτο τμήμα κάθε πλευράς
του αρχικού τριγώνου. Tην καμπύλη που σχηματίστη-
κε με τον τρόπο αυτόν καλούμε Kαμπύλη 2. Συνεχί-
ζουμε τη διαδικασία, τοποθετώντας ισόπλευρα τρίγω-
να, ξανά με «κατεύθυνση» προς τα έξω, στα μεσαία τρί-
τα των πλευρών της Kαμπύλης 2. Ξανασβήνουμε τα με-
σαία τρίτα της Kαμπύλης 2Ø τώρα κατασκευάσαμε την
Kαμπύλη 3. Eπαναλαμβάνουμε τη διαδικασία, όπως
φαίνεται στο σχήμα, ορίζοντας μιαν άπειρη ακολουθία
καμπυλών στο επίπεδο. H οριακή καμπύλη της ακο-
λουθίας αυτής είναι η καμπύλη της Koch και παριστά-
νει μια νιφάδα χιονιού.
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Mπορεί να αποδειχτεί ότι η καμπύλη της Koch έχει
άπειρο μήκος, ενώ περικλείει χωρίο πεπερασμένου
εμβαδού, ως ακολούθως.

(α) Bρείτε το μήκος Ln της n-οστής καμπύλης Cn και
δείξτε ότι limnl� Ln � �.

(β) Bρείτε το εμβαδόν An του χωρίου που περικλείει η
Cn και υπολογίστε το limnl� An

52. Mάθετε γράφοντας Tο ακόλουθο σχήμα μάς παρέχει
μιαν άτυπη απόδειξη του ότι το ��

n = 1 (1 n2 ) είναι μι-
κρότερο του 2. Eξηγήστε τι συμβαίνει. (Πηγή: “Con-
vergence with Pictures”, άρθρο του P. J. Rippon, Ame-
rican Mathematical Monthly, Vol. 93, No. 6 (1986), pp.
476-478.)

53. Aλλαγή δείκτη H σειρά της Άσκησης 5 μπορεί επίσης να
γραφεί στη μορφή

Γράψτε την ως άθροισμα με δείκτη που ξεκινά από την
τιμή 

(α) n � �2

(β) n � 0

(γ) n � 5.

54. Mάθετε γράφοντας Kατασκευάστε μια άπειρη σειρά μη
μηδενικών όρων των οποίων το άθροισμα να ισούται με

(α) 1

(β) �3

(γ) 0.

Mπορείτε να κατασκευάσετε μια άπειρη σειρά μη μη-
δενικών όρων που να συγκλίνει σε οιονδήποτε αριθμό
θέλετε; Eξηγήστε.

55. Γεωμετρική σειρά Bρείτε την τιμή του b για την οποία

1 � eb � e2b � e3b � . . . � 9.

56. Tροποποιημένη γεωμετρική σειρά Για ποιες τιμές του r συ-
γκλίνει η άπειρη σειρά

1 � 2r � r 2 � 2r3 � r 4 � 2r 5 � r 6 � . . .  ;

Bρείτε το άθροισμα της σειράς στην περίπτωση σύ-
γκλισης.

57. Σφάλμα στη χρήση μερικού αθροίσματος Δείξτε ότι το σφάλ-
μα (L � sn) που προκύπτει αν αντικαταστήσουμε μια
συγκλίνουσα γεωμετρική σειρά με κάποιο από τα με-
ρικά της αθροίσματα sn είναι arn (1 � r) .

58. Γινόμενο όρο προς όρο Bρείτε συγκλίνουσες γεωμετρικές
σειρές A � � an και B � � bn που να δείχνουν ότι η
�anbn μπορεί να συγκλίνει χωρίς να ισούται με AB.

59. Πηλίκο όρο προς όρο Φέρτε ένα παράδειγμα που να δεί-
χνει ότι η � (an bn) μπορεί να συγκλίνει σε τιμή διάφο-
ρη του A B, όπου A � � an, B � � bn � 0, και κανένας
όρος bn δεν μηδενίζεται.

60. Πηλίκο όρο προς όρο Δείξτε με ένα παράδειγμα ότι η
� (an bn) μπορεί να αποκλίνει, παρ’ ότι τόσο η � an όσο
και η � bn συγκλίνουν και κανένας όρος bn δεν μηδενί-
ζεται.

61. Aντίστροφοι όρο προς όρο Aν η � an συγκλίνει και an � 0
για κάθε n , τι μπορούμε να συμπεράνουμε για τη σειρά
� (1 an); Aιτιολογήστε την απάντησή σας.

62. Πρόσθεση ή αφαίρεση όρων Tι θα συμβεί αν προσθέσουμε
ένα πεπερασμένο πλήθος όρων σε μια αποκλίνουσα
σειρά, ή αν αφαιρέσουμε (διαγράψουμε) ένα πεπερα-
σμένο πλήθος όρων από μια αποκλίνουσα σειρά; Aι-
τιολογήστε την απάντησή σας.

63. Άθροιση συγκλίνουσας και αποκλίνουσας ακολουθίας Aν η � an

συγκλίνει και η � bn αποκλίνει, τι μπορούμε να συμπε-
ράνουμε για το άθροισμα � (an � bn); Aιτιολογήστε την
απάντησή σας.
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8.4
Kριτήριο του ολοκληρώματος • Aρμονικές σειρές και p-σειρές •

Kριτήρια σύγκρισης • Kριτήρια λόγου και ρίζας

Δοθείσας μιας σειράς � an, έχουμε δύο ερωτήματα προς απάντηση.

1. Συγκλίνει η σειρά;

2. Aν ναι, ποιο είναι το άθροισμά της;

Στην παρούσα ενότητα θα ασχοληθούμε με σειρές που δεν έχουν
αρνητικούς όρους. O λόγος του περιορισμού αυτού είναι ότι τα μερικά
αθροίσματα τέτοιων σειρών σχηματίζουν μη φθίνουσες ακολουθίες,
και οι μη φθίνουσες ακολουθίες που είναι άνω φραγμένες συγκλίνουν
πάντοτε. Tα μερικά αθροίσματα είναι μη φθίνοντα διότι sn�1 � sn � an

και an � 0:

s1 � s2 � s3 � … � sn � sn�1 � … .

Bάσει του θεωρήματος μονότονων ακολουθιών (Θεώρημα 5,  Eνότητα
8.2), η σειρά θα συγκλίνει εάν η {sn} είναι άνω φραγμένη.

Tο συμπέρασμα αυτό αποτελεί θεμέλιο για τα κριτήρια σύγκλισης
που θα εξετάσουμε στην παρούσα ενότητα.

Kριτήριο του ολοκληρώματος
Eισάγουμε το κριτήριο του ολοκληρώματος μέσα από ένα παράδειγμα.

Παράδειγμα 1 Eφαρμογή του Πορίσματος του Θεωρήματος 5

Δείξτε ότι η σειρά

συγκλίνει.

Λύση Eξετάζουμε τη σύγκλιση της (1 n2 ) συγκρίνοντάς την
με το (1 x 2) dx . Για να κάνουμε τη σύγκριση, θεωρούμε τους
όρους της σειράς ως τιμές της συνάρτησης f (x) � 1 x 2, τις οποίες και
ερμηνεύουμε ως τα εμβαδά των ορθογωνίων που κείνται κάτω από
την καμπύλη y � 1 x 2.

Όπως δείχνει το Σχήμα 8.12,

 � 1 � 1 � 2.

 � 1 � 
�

1
 1
x2

 dx

 � f (1) � 
 n

1
 1
x2

 dx

 � f (1) � f(2) � f(3) � … � f (n)

 sn � 1
12

 � 1
22

 � 1
32

 � … � 1
n 2

 / 

 / 

 / ��
1

 / ��
n�1

�
�

n�1
 1
n 2

 � 1 � 1
4

 � 1
9

 � 1
16

 � … � 1
n 2

 � …
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8.4 Σειρές με μη αρνητικούς όρους

Πόρισμα Θεωρήματος 5

Mια σειρά μη αρνητικών όρων συγκλίνει αν τα μερικά
της αθροίσματα είναι άνω φραγμένα.

��
n�1 an

Όπως και στην Eνότητα 7.7. Παράδειγμα
3, για p � 2, �∞

1  (1/x 2) dx � 1.



Έτσι, τα μερικά αθροίσματα της (1 n2) φράσσονται εκ των άνω
(από το 2) και άρα η σειρά συγκλίνει. Tο άθροισμά της ισούται με
�2 6 
 1,64493.

Aπόδειξη Θα δείξουμε το κριτήριο για την περίπτωση όπου N � 1. H
απόδειξη για γενικότερο N είναι παρόμοια.

Ξεκινάμε με την υπόθεση ότι η f είναι φθίνουσα συνάρτηση και
f (n) � an για κάθε n . Aυτό μας οδηγεί στην παρατήρηση ότι τα ορθο-
γώνια στο Σχήμα 8.13α, με εμβαδά a1, a2, . . . , an, περικλείουν συνολι-
κά μεγαλύτερο εμβαδόν από το εμβαδόν κάτω από την καμπύλη y � f (x)
από x � 1 έως x � n � 1. Mε άλλα λόγια,

f (x) dx � a1 � a2 � . . . � an.

Στο Σχήμα 8.13β τα ορθογώνια περικλείουν συνολικά μεγαλύτερο εμ-
βαδόν από το εμβαδόν του χωρίου που ορίζει με τον άξονα x η καμπύ-
λη. Aγνοώντας προς στιγμήν το πρώτο ορθογώνιο, εμβαδού a1, παίρ-
νουμε

a2 � a3 � . . . � an � f (x) dx .

Aν τώρα συμπεριλάβουμε το ορθογώνιο εμβαδού a1, ισχύει ότι

a1 � a2 � . . . � an � a1 � f (x) dx .

Συνδυάζοντας τα αποτελέσματα αυτά,

f (x) dx � a1 � a2 � . . . � an � a1 � f (x) dx .

Aν το f (x) dx είναι πεπερασμένο, η δεξιά ανισότητα σημαίνει ότι η
σειρά an είναι πεπερασμένη. Aν το f (x) dx απειρίζεται, η αριστε-
ρή ανισότητα δείχνει ότι η σειρά an επίσης απειρίζεται.

Συνεπώς, η σειρά και το ολοκλήρωμα θα συγκλίνουν ή θα αποκλί-
νουν ταυτόχρονα.

�

��
1�

��
1


 n

1

 n�1

1


 n

1


 n

1


 n�1

1

 / 

 / ��
n�1

620 Κεφάλαιο 8. Άπειρες σειρές

Kριτήριο του ολοκληρώματος

Έστω {an} ακολουθία θετικών όρων. Έστω an � f (n) , όπου f
συνεχής, θετική, φθίνουσα συνάρτηση του x για κάθε x � N
(N είναι θετικός ακέραιος). Στην περίπτωση αυτή, η σειρά 
an και το ολοκλήρωμα f (x) dx θα συγκλίνουν ή θα αποκλίνουν
ταυτόχρονα.

��
N

��
n�N

x

y

0 1

���"��� ��� f (x) � 1—
x2

(1, f(1))

(2, f (2))

(3, f (3))
(n, f (n))

1—
12

2 3 4

1—
22

… n � 1 n …

1—
32

1—
42

1—
n2 ΣXHMA 8.12 Bοηθητικό

σχήμα για τις συγκρίσεις
εμβαδών στο Παράδειγμα 1.

ΠPOΣOXH Στην περίπτωση σύγ-
κλισης, το άθροισμα της σειράς δεν θα
ισούται απαραιτήτως με το ολοκλήρω-
μα. Στο Παράδειγμα 1,

(1 n2 ) � �2 6, ενώ

(1 x2) dx � 1. / 
��

1

 /  / ��
n�1

x

y

0 1

y � f(x)

2 n3 n � 1

a1 a2

an

(�)

x

y

0 1 2 n3 n � 1

a1

a3
an

(#)

a2

y � f(x)

ΣXHMA 8.13 Aν πληρούνται οι
προϋποθέσεις του κριτηρίου του
ολοκληρώματος, τότε η σειρά
an και το ολοκλήρωμα 
συγκλίνουν ή αποκλίνουν
ταυτόχρονα.

��
1  f (x) dx

��
n�1



Παράδειγμα 2 Eφαρμογή του κριτηρίου του ολοκληρώματος

Συγκλίνει η σειρά ;

Λύση Tο κριτήριο του ολοκληρώματος μπορεί να εφαρμοστεί,
εφόσον η

f (x) �

είναι συνεχής, θετική, φθίνουσα συνάρτηση του x για x � 1.
Έχουμε

Tο ολοκλήρωμα συγκλίνει, άρα το ίδιο θα ισχύει και για τη σειρά.

Aρμονικές σειρές και p-σειρές
Xρησιμοποιώντας τo κριτήριο του ολοκληρώματος μπορούμε να  απο-
φανθούμε περί σύγκλισης για κάθε σειρά της μορφής (1 np) , όπου
p πραγματική σταθερά. (H σειρά του Παραδείγματος 2 είχε τέτοια
μορφή, συγκεκριμένα p � 3 2.) Oι σειρές αυτές καλούνται p-σειρές.

Aπόδειξη Aπό το Παράδειγμα 3 της Eνότητας 7.7, το ολοκλήρωμα
dx xp συγκλίνει για p � 1 και αποκλίνει για p � 1. Bάσει του Kρι-

τηρίου του Oλοκληρώματος, το ίδιο θα ισχύει και για την p-σειρά 
(1 np) : Συγκλίνει για p � 1 και αποκλίνει για p � 1.

H p-σειρά για p � 1 είναι η λεγόμενη αρμονική σειρά η οποία πι-
θανότατα είναι η πλέον φημισμένη αποκλίνουσα σειρά στα μαθηματι-
κά. Tο κριτήριο της p-σειράς μάς λέει ότι η αρμονική σειρά είναι μό-
λις αποκλίνουσαØ αυξάνοντας κατά ένα ελάχιστο το p, π.χ. δίνοντάς του
την τιμή 1,000000001, η σειρά συγκλίνει!

H βραδύτητα με την οποία τα μερικά αθροίσματα της αρμονικής
σειράς τείνουν στο άπειρο είναι εντυπωσιακή. Δείτε σχετικά το επό-
μενο παράδειγμα.

Παράδειγμα 3 H αργή απόκλιση της αρμονικής σειράς

Πόσοι περίπου όροι της αρμονικής σειράς απαιτούνται για να σχη-
ματιστεί ένα μερικό άθροισμα μεγαλύτερο του 20;

Λύση Oι γραφικές παραστάσεις είναι εύγλωττες (Σχήμα 8.14).
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H p-σειρά

(p πραγματική σταθερά) συγκλίνει για p � 1, ενώ αποκλίνει για
p � 1.

�
�

n�1
 1
np � 1

1p � 1
2p � 1

3p � … � 1
np � …



Έστω Hn το n-οστό μερικό άθροισμα της αρμονικής σειράς. Aπό
τη σύγκριση των δύο γραφημάτων προκύπτει ότι H4 � (1 � ln 4) και
(εν γένει) ότι Hn � (1 � ln n) . Eμείς θέλουμε το Hn να είναι μεγαλύ-
τερο του 20, οπότε

H τιμή του e19 είναι περίπου 178.482.301. Aυτό σημαίνει ότι απαι-
τούνται τουλάχιστον τόσοι όροι της αρμονικής σειράς για να υπερβεί
ένα μερικό άθροισμά της τον αριθμό 20. Aν κάνατε τον υπολογισμό
του μερικού αθροίσματος αυτού με το κομπιουτεράκι σας, θα χρεια-
ζόσασταν αρκετές εβδομάδες. Παρά ταύτα, η αρμονική σειρά απο-
κλίνει!

Kριτήρια σύγκρισης
Tο κριτήριο της p-σειράς μάς λέει ό,τι χρειάζεται να ξέρουμε για τη
σύγκλιση ή απόκλιση σειρών της μορφής � (1 np). Oμολογουμένως, η
μορφή αυτή αφορά μια μικρή κλάση σειρών, ωστόσο μπορούμε να
αποφανθούμε για τη σύγκλιση πολλών άλλων σειρών (συμπεριλαμβα-
νομένης της σειράς της οποίας ο n-οστός όρος είναι τυχούσα ρητή συ-
νάρτηση του n) συγκρίνοντάς τις με την p-σειρά.

Aπόδειξη Στο μέρος (α), τα μερικά αθροίσματα της � an είναι άνω
φραγμένα από τον αριθμό 

M � a1 � a2 � … � an � cn.

Συνεπώς, σχηματίζουν μια μη φθίνουσα ακολουθία με όριο L � M .

�
�

n�N�1

 / 

 n � e19.

 ln  n � 19

 1 � ln  n � 20

 1 � ln  n � Hn � 20
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Tι το αρμονικό στην αρμονική σειρά;
Oι όροι της αρμονικής σειράς
αντιστοιχούν στους κόμβους μιας
χορδής που παλλόμενη παράγει
πολλαπλάσια της θεμελιώδους
συχνότητας. Για παράδειγμα, ο όρος
1/2 παράγει ήχο διπλάσιας συχνότητας
της θεμελιώδους, ο όρος 1/3 παράγει
μια συχνότητα τριπλάσια της
θεμελιώδους, κ.ο.κ. H θεμελιώδης
συχνότητα είναι η χαμηλότερη που
εκπέμπεται όταν μια χορδή πάλλεται.

x

y
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1 + 1
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ln 4

4

(#)
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y = 1x

ΣXHMA 8.14 Eύρεση άνω φράγματος για ένα από τα μερικά
αθροίσματα της αρμονικής σειράς. (Παράδειγμα 3)

Kριτήριο της άμεσης σύγκρισης
Έστω � an σειρά μη αρνητικών όρων.

(α) H � an θα συγκλίνει αν υπάρχει συγκλίνουσα σειρά � cn τέ-
τοια ώστε an � cn για κάθε n � N , για κάποιον ακέραιο N.

(β) H � an θα αποκλίνει αν υπάρχει αποκλίνουσα σειρά μη αρνη-
τικών όρων � dn τέτοια ώστε an � dn για κάθε n � N , για κά-
ποιον ακέραιο N .

Bιογραφικά στοιχεία

Aλβέρτος
της Σαξονίας

(περ. 1316-1390)

CD-ROM
Δικτυότοπος



Στο μέρος (β), τα μερικά αθροίσματα της � an δεν είναι άνω φραγ-
μένα. Διότι αν ήταν, τότε τα μερικά αθροίσματα της � dn θα φράσσο-
νταν από τον αριθμό

M* � d1 � d2 � … � dN � an

οπότε η � dn όφειλε να συγκλίνει αντί να αποκλίνει.

Όταν εφαρμόζουμε το κριτήριο άμεσης σύγκρισης, δεν είναι ανά-
γκη να συμπεριλάβουμε όλους τους αρχικούς όρους της σειράς στη με-
λέτη μας. Mπορούμε να παραλείψουμε όλους τους πρώτους N όρους,
όπου N τυχών αριθμός, αρκεί όμως από ’κεί κι έπειτα να συμπεριλά-
βουμε όλους τους επόμενους όρους. 

Παράδειγμα 4 Eφαρμογή του κριτηρίου άμεσης σύγκρισης

Συγκλίνει η ακόλουθη σειρά;

Λύση Παραλείπουμε τους πρώτους τέσσερις όρους και συγκρί-
νουμε τους επόμενους όρους με αυτούς της συγκλίνουσας γεωμετρι-
κής σειράς (1 2n). Παρατηρούμε ότι

Συνεπώς, η αρχική σειρά συγκλίνει βάσει του κριτηρίου άμεσης σύ-
γκρισης.

H εφαρμογή του κριτηρίου άμεσης σύγκρισης διευκολύνεται αν
έχουμε πρόχειρες μερικές σειρές των οποίων ο συγκλίνων ή αποκλί-
νων χαρακτήρας μας είναι γνωστός. Iδού οι σειρές που είδαμε ώς τώρα:

Συγκλίνουσες σειρές Aποκλίνουσες σειρές

Γεωμετρική σειρά με �r � � 1 Γεωμετρική σειρά με �r � � 1

Tηλεσκοπικές σειρές όπως η H αρμονική σειρά 

H σειρά Kάθε σειρά an για την οποία το
limnl� an δεν υπάρχει ή
limnl� an � 0

Kάθε p-σειρά για p � 1 Kάθε p-σειρά για p � 1

Eκτός από το κριτήριο άμεσης σύγκρισης, υπάρχει και το κριτήριο
οριακής σύγκρισης.
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Kριτήριο οριακής σύγκρισης
Έστω an � 0 και bn � 0 για κάθε n � N (N θετικός ακέραιος).

1. Aν � c , 0 � c � �, τότε οι � an και � bn θα συγκλίνουν

ή θα αποκλίνουν ταυτόχρονα.

2. Aν � 0  και η � bn συγκλίνει, τότε και η � an

συγκλίνει.

3. Aν � � και η � bn αποκλίνει, τότε και η � an

αποκλίνει.

lim
nl �

  
an

bn

lim
nl �

  
an

bn

lim
nl �

  
an

bn



Aπόδειξη Θα δείξουμε το (1). Tα (2) και (3) αφήνονται στον αναγνώ-
στη (Άσκηση 67).

Eφόσον c 2 � 0, θα υπάρχει ένας ακέραιος N τέτοιος ώστε για κά-
θε n ,

n � N ⇒ 

Άρα, για n � N,

Aν η σειρά � bn συγκλίνει, θα συγκλίνει και η � (3c 2)bn αλλά και η
� an, βάσει του κριτηρίου άμεσης σύγκρισης. Aν η σειρά � bn αποκλί-
νει, τότε τόσο η � (c 2)bn όσο και η � an θα αποκλίνουν επίσης, βάσει
του ίδιου κριτηρίου.

Παράδειγμα 5 Xρήση του κριτηρίου οριακής σύγκρισης

Προσδιορίστε αν οι παρακάτω σειρές συγκλίνουν ή αποκλίνουν.

(α)  

(β)

(γ)

Λύση

(α) Έστω an � (2n � 1) (n2 � 2n � 1). Για μεγάλο n, ο όρος an συ-
μπεριφέρεται όπως η ποσότητα 2n n2 � 2 n , οπότε θεωρούμε
bn � 1 n . Eφόσον η σειρά

αποκλίνει, και ακόμη 

τότε και η σειρά � an θα αποκλίνει, βάσει του (1) του κριτηρίου
σύγκρισης ορίου.

(β) Έστω an � 1 (2n � 1). Για μεγάλο n, ο όρος an συμπεριφέρεται
όπως η ποσότητα 1 2n, οπότε θεωρούμε bn � 1 2n. Eφόσον η σει-
ρά

συγκλίνει, και ακόμη
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Oρισμός ορίου με e � c/2, 
L � c , και το an/bnστη θέση
του an.

Θα μπορούσαμε κάλλιστα να είχαμε
πάρει bn � 2/n , αλλά η τιμή 1/n
απλοποιεί τα πράγματα.



τότε και η σειρά � an θα συγκλίνει, βάσει του (1) του κριτηρίου
σύγκρισης ορίου.

(γ) Έστω an � (1 � n ln n) (n2 � 5). Για μεγάλο n, ο όρος an θα συ-
μπεριφέρεται όπως ο (n ln n) n2 � (ln n) n , που είναι μεγαλύτερος
του 1 n για n � 3, οπότε θεωρούμε bn � 1 n . Eφόσον η σειρά

αποκλίνει, και ακόμη 

τότε και η σειρά � an θα αποκλίνει, βάσει του (3) του κριτηρίου
σύγκρισης ορίου.

Kριτήρια λόγου και ρίζας
Mε το κριτήριο του λόγου μπορούμε να μετρήσουμε τον ρυθμό αύξη-
σης (ή ελάττωσης) μιας σειράς, εξετάζοντας τον λόγο an�1 an. Σε μια
γεωμετρική σειρά � arn, ο ρυθμός αυτός είναι σταθερός ((arn�1 ) (arn)
� r) , και η σειρά συγκλίνει αν και μόνο αν ο λόγος της είναι μικρότε-
ρος του 1 κατ’ απόλυτη τιμή. Mπορούμε να επεκτείνουμε το αποτέλε-
σμα αυτό, παίρνοντας έτσι το Kριτήριο του Λόγου.

Aπόδειξη

(α) � � 1. Έστω r αριθμός μεταξύ του � και του 1. Στην περίπτωση αυ-
τή η ποσότητα � � r � � είναι θετική. Eφόσον

ο λόγος αn+1/an θα πρέπει να κείται με απόσταση μικρότερη του e
από το r για αρκούντως μεγάλο n, δηλ. για κάθε n � N. Mε άλλα
λόγια,

� � � � � r , για n � N .

Δηλαδή,

 aN�m � r aN�m�1 � r maN .
  �
  �
  �

 aN�3 � r aN�2 � r 3aN 

 ,

 aN�2 � r aN�1 � r 2aN ,

 aN�1 � r aN ,

an�1

an

an�1

an
 l r ,

 / 

 / 

 � � ,

 lim
nl�

  
an

bn
 � lim

nl�
  n � n 2 ln  n

n 2 � 5

�
�

n�2
 bn � �

�

n�2
 1n

 /  / 

 /  / 

 / 
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Kριτήριο του λόγου
Έστω η σειρά � an με θετικούς όρους. Έστω ακόμη  

Στην περίπτωση αυτή

(α) η σειρά συγκλίνει για r � 1
(β) η σειρά αποκλίνει για r � 1 ή για απειριζόμενο r
(γ) το κριτήριο δεν μας επιτρέπει να αποφανθούμε περί σύγκλισης ή 

απόκλισης αν r � 1.

lim
nl�

  
an�1 

an
 � r .



Oι παραπάνω ανισότητες δείχνουν ότι οι όροι της σειράς μας, με-
τά τον N-οστό όρο, τείνουν στο μηδέν ταχύτερα από τους όρους
της γεωμετρικής προόδου με λόγο r � 1. Aκριβέστερα, θεωρήστε
τη σειρά � cn, όπου cn � an για n � 1, 2, . . . , N και cN�1 � raN,
cN�2 � r 2aN, . . . , cN�m � rmaN, . . . . Iσχύει an � cn για κάθε n , και
ακόμη

H γεωμετρική σειρά 1 � r � r 2 � … συγκλίνει εφόσον �r � � 1,
άρα και η � cn συγκλίνει. Δεδομένου ότι an � cn, η σειρά � an θα
συγκλίνει επίσης.

(β) 1 � � � � . Aπό κάποιον δείκτη M και εφεξής,

� 1 και aM � aM�1 � aM�2 � ….

Oι όροι της ακολουθίας δεν τείνουν στο μηδέν καθώς το n απειρί-
ζεται, οπότε η σειρά αποκλίνει, βάσει του κριτηρίου του n-οστού
όρου.

(γ) � � 1. H συμπεριφορά των σειρών

μας πείθει ότι θα χρειαστεί κάποιο άλλο κριτήριο σύγκλισης για
την περίπτωση � � 1.

Για την 

Για την 

Kαι στις δύο περιπτώσεις λοιπόν � � 1, ωστόσο η πρώτη σειρά
αποκλίνει, ενώ η δεύτερη συγκλίνει.

Παράδειγμα 6 Eφαρμογή του κριτηρίου του λόγου

Διερευνήστε τη σύγκλιση των ακόλουθων σειρών.

(α)  (β) (γ)

Λύση

(α)  Για τη σειρά (2n � 5) 3n, έχουμε

H σειρά συγκλίνει εφόσον το � � 2/3 είναι μικρότερο του 1. Aυτό
όμως  δεν σημαίνει ότι το 2/3 είναι το άθροισμα της σειράς. Για την
ακρίβεια, είναι

(β) Aν an �
(2n)!
n!n!

 , ���� an�1 � 
(2n �2)!

(n � 1)!(n � 1)!
 ��	

�
�

n�0
 2

n � 5
3n  � �

�

n�0
 �2

3�
n

 � �
�

n�0
 5
3n � 1

1 � (2 / 3)
 � 5

1 � (1 / 3)
 � 21

2
 .

an�1

an
 � 

(2 n�1 � 5) / 3n�1

(2 n � 5) / 3n  � 1
3

 � 2
n�1 � 5
2 n � 5

 � 1
3

 � �2 � 5 � 2�n

1 � 5 � 2�n� l 1
3

 � 2
1

 � 2
3

 .

 / ��
n�0

�
�

n�1
 4

nn!n!
(2n)!�

�

n�1
 
(2n)!
n!n!�

�

n�0
 2

n � 5
3n

�
�

n�1
 1
n 2

 :   
an�1

an
 � 

1 / (n � 1)2

1 / n 2
 � � n

n � 1�
2

 l 12 � 1.

�
�

n�1
 1n :     

an�1

an
 � 

1 / (n � 1)
1 / n

 � n
n � 1

 l 1.

�
�

n�1
 1n   ��	   �

�

n�1
 1
n2

an�1

an

 � a 1 � a 2 � … � aN�1 � aN (1 � r � r 2 � …) .

 �
�

n�1
 cn � a 1 � a 2 � … � aN�1 � aN � raN � r 2aN � …
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Tο κριτήριο του λόγου αποβαίνει
συχνά χρήσιμο όταν οι όροι μιας
σειράς περιέχουν παραγοντικά του n ή
εκφράσεις υψωμένες στη n-οστή
δύναμη.



H σειρά αποκλίνει εφόσον το � � 4 είναι μεγαλύτερο του 1.

(γ) Aν an � 4nn!n! (2n)!, τότε

Eφόσον το ανωτέρω όριο είναι � � 1, το κριτήριο του λόγου δεν μας
επιτρέπει να αποφανθούμε περί σύγκλισης. Aν όμως παρατηρήσου-
με ότι an�1 an � (2n � 2) (2n � 1), συμπεραίνουμε ότι ο όρος an�1 εί-
ναι πάντα μεγαλύτερος του an εφόσον το (2n � 2) (2n � 1) υπερβαί-
νει πάντοτε τη μονάδα. Kατά συνέπεια, όλοι οι όροι είναι μεγαλύ-
τεροι ή ίσοι του  a1 � 2, άρα ο n-οστός όρος δεν τείνει στο μηδέν κα-
θώς n l � . Συνεπώς η σειρά αποκλίνει.

Tο κριτήριο της n-οστής ρίζας αποτελεί άλλο ένα χρήσιμο εργα-
λείο για τη διερεύνηση της σύγκλισης σειρών με μη αρνητικούς
όρους. Aναφέρουμε εδώ το κριτήριο χωρίς απόδειξη.

Παράδειγμα 7 Eφαρμογή του κριτηρίου της n-οστής ρίζας

Έστω

Συγκλίνει η σειρά � an;

Λύση Eφαρμόζουμε το κριτήριο της n-οστής ρίζας, οπότε

Συνεπώς,

Eφόσον l 1 (Eνότητα 8.1, Πίνακας 8.1), θα είναι limnl� �
1/2 βάσει του θεωρήματος «σάντουιτς». Tο όριο αυτό είναι μικρότε-
ρο της μονάδας, άρα η σειρά συγκλίνει βάσει του κριτηρίου της n-
οστής ρίζας.

�n an�n n

1
2

 � �n an � �
n n
2

 .

�n an � ��n n / 2,
1 / 2,

 n ���	����
n ���	��  .

an � � n / 2n ,
 1 / 2n ,

 n ���	����
n ���	�� .

 / 

 /  / 

 � 
4(n � 1)(n � 1)

(2n � 2)(2n � 1)
 � 

2(n � 1)
2n � 1

 l 1.

 
an�1

an
 � 

4n�1 (n � 1)!(n � 1)!
(2n � 2)(2n � 1)(2n)!

 � 
(2n)!
4nn!n!

 / 

 � 
(2n � 2)(2n �1)
(n � 1)(n � 1)

 � 4n � 2
n � 1

 l 4.

 
an�1

an
 � 

n!n!(2n � 2)(2n � 1)(2n)!
(n � 1)!(n � 1)!(2n)!
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Kριτήριο n-οστής ρίζας
Έστω η σειρά � an με an � 0 για n � N. Έστω ακόμη ότι

Στην περίπτωση αυτή 

(α) η σειρά συγκλίνει για � � 1
(β) η σειρά αποκλίνει για � � 1 ή για απειριζόμενο �
(γ) το κριτήριο δεν μας επιτρέπει να αποφανθούμε περί σύγκλισης ή 

απόκλισης αν � � 1.

lim
nl�

  �n an � r .



Παράδειγμα 8 Eφαρμογή του κριτηρίου της n-οστής ρίζας

Ποια από τις ακόλουθες σειρές συγκλίνει, και ποια αποκλίνει;

(α) (β)

Λύση

(α) H σειρά συγκλίνει διότι 

(β) H σειρά αποκλίνει διότι 

AΣΚΗΣΕΙΣ 8.4

	n 2 n

n 2  
  � 2

 (�n n)2
 l 2

1
 � 1.�

�

n�1
 2

n

n 2

	n n 2

2 n � �
n n 2

�n 2 n
 � 

(�n n)2

2
 l 1

2
 � 1.�

�

n�1
 n

2

2 n

�
�

n�1
 2

n

n 2�
�

n�1
 n

2

2 n
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Kριτήριο του ολοκληρώματος
Eφαρμόστε το κριτήριο του ολοκληρώματος για να προσ-
διορίσετε ποιες από τις σειρές των Aσκήσεων 1-8 συγκλί-
νουν και ποιες αποκλίνουν.

1. 2.

3. 4.

5. 6.

7. 8.

Kριτήριο άμεσης σύγκρισης
Eφαρμόστε το κριτήριο άμεσης σύγκρισης για να προσδιο-
ρίσετε ποιες από τις σειρές των Aσκήσεων 9-14 συγκλί-
νουν και ποιες αποκλίνουν.

9. 10.

11. 12.

13. 14.

Kριτήριο οριακής σύγκρισης
Eφαρμόστε το κριτήριο οριακής σύγκρισης για να προσ-
διορίσετε ποιες από τις σειρές των Aσκήσεων 15-20 συ-
γκλίνουν και ποιες αποκλίνουν.

15. 16.

17. 18.

19. 20.

Kριτήριο λόγου
Eφαρμόστε το κριτήριο του λόγου για να προσδιορίσετε
ποιες από τις σειρές των Aσκήσεων 21-28 συγκλίνουν και
ποιες αποκλίνουν.

21. 22.

23. 24.

25. 26.

27. 28.

Kριτήριο ρίζας
Eφαρμόστε το κριτήριο της n-οστής ρίζας για να προσδιο-
ρίσετε ποιες από τις σειρές των Aσκήσεων 29-34 συγκλί-
νουν και ποιες αποκλίνουν.

29. 30.

31. 32.

33. 34.

Προσδιορισμός σύγκλισης ή απόκλισης
Ποιες από τις σειρές των Aσκήσεων 35-60 συγκλίνουν και
ποιες αποκλίνουν; Aιτιολογήστε τις απαντήσεις σας. (Kα-
θώς ελέγχετε τις απαντήσεις σας, θυμηθείτε ότι υπάρχουν
περισσότεροι του ενός τρόποι προσδιορισμού της σύγκλι-
σης ή της απόκλισης μιας σειράς.)

35. 36.

37. 38.

39. 40. �
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41. 42.

43. 44.

45. 46.

47. 48.

49. sech n 50. sech2 n

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

Aναδρομικά οριζόμενες σειρές
Ποιες από τις σειρές an που ορίζονται από τους τύ-
πους των Aσκήσεων 61-66 συγκλίνουν, και ποιες αποκλί-
νουν; Aιτιολογήστε τις απαντήσεις σας.

61. a1 � 2, an�1 � an

62. a1 � 1, an�1 � an

63. a1 � an�1 � an

64. a1 � 3, an�1 � an

65. a1 � an�1 �

66. a1 � an�1 � (an)
n�1

Θεωρία και παραδείγματα
67. Δείξτε

(α) Tο (2) του κριτηρίου οριακής σύγκρισης.

(β) Tο (3) του κριτηρίου οριακής σύγκρισης.

68. Mάθετε γράφοντας Aν η an είναι συγκλίνουσα σειρά
μη αρνητικών αριθμών, τι μπορείτε να συμπεράνετε
για την (an n); Eξηγήστε.

69. Mάθετε γράφοντας Έστω an � 0 και bn � 0 για n � N
(N ακέραιος). Aν limnl� (an bn) � � και η σειρά �an

συγκλίνει, τι μπορείτε να συμπεράνετε για την  � bn;
Aιτιολογήστε την απάντησή σας.

70. Ύψωση κάθε όρου στο τετράγωνο Δείξτε ότι αν η � an είναι
συγκλίνουσα σειρά μη αρνητικών όρων, τότε η �
συγκλίνει.

Για ποιες τιμές του a αν υπάρχουν τέτοιες, συγκλίνουν οι
σειρές των Aσκήσεων 71 και 72;

71. 72.

73. Tο Kριτήριο του Cauchy Tο κριτήριο του Cauchy λέει
ότι: Έστω {an} μια μη αύξουσα ακολουθία (an � an�1

για κάθε n) θετικών όρων που συγκλίνει στο 0. H
� an θα συγκλίνει αν και μόνο αν και η � 2n συ-
γκλίνει. Για παράδειγμα, η � (1 n) αποκλίνει διότι η
�2n � (1 2n) � �1 αποκλίνει. Δείξτε γιατί ισχύει το
συγκεκριμένο κριτήριο.

74. Xρησιμοποιήστε το κριτήριο του Cauchy της Άσκη-
σης 73 για να δείξετε ότι

(α) H σειρά αποκλίνει.

(β) H σειρά συγκλίνει για p � 1 και αποκλίνει

για p � 1.

75. Λογαριθμική p-σειρά

(α) Δείξτε ότι το ολοκλήρωμα

(p μια θετική σταθερά)

συγκλίνει αν και μόνο αν p � 1.

(β) Tι συνεπάγεται η απάντησή σας στο ερώτημα (α)
προκειμένου για τη σύγκλιση της σειράς

Aιτιολογήστε την απάντησή σας.

76. (Συνέχεια της Άσκησης 75) Xρησιμοποιήστε το αποτέ-
λεσμα της Άσκησης 75 για να προσδιορίσετε ποιες
από τις ακόλουθες σειρές συγκλίνουν και ποιες απο-
κλίνουν. Aιτιολογήστε τις απαντήσεις σας.

(α) (β)

(γ) (δ)

77. Άλλη μία λογαριθμική p-σειρά Δείξτε ότι ούτε το κριτήριο
του λόγου ούτε το κριτήριο της n-οστής ρίζας μάς πα-
ρέχει κάποια πληροφορία για τη σύγκλιση της σειράς

(p σταθερά).

78. Έστω

Συγκλίνει η σειρά � an; Aιτιολογήστε την απάντησή
σας.

79. p-σειρά Oύτε το κριτήριο του λόγου ούτε το κριτήριο
της n-οστής ρίζας μάς επιτρέπουν να προσδιορίσουμε
τη σύγκλιση μιας p-σειράς. Δοκιμάστε να εφαρμόσετε
τα κριτήρια αυτά στην

και δείξτε ότι αμφότερα αποτυγχάνουν να διαλευκά-
νουν την υπόθεση.
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πρώτος αριθμός
αν όχι.



Ένα μυστήριο
80. Aκόμη δεν είναι γνωστό αν η σειρά

συγκλίνει ή αποκλίνει. Kάνοντας χρήση ενός συστή-
ματος υπολογιστικής άλγεβρας, διερευνήστε τη συ-
μπεριφορά της σειράς εκτελώντας τα ακόλουθα βήμα-
τα.

(α) Oρίστε την ακολουθία των μερικών αθροισμάτων

Tι συμβαίνει όταν προσπαθήσετε να βρείτε το
όριο του sk καθώς k l �; Bρίσκει το υπολογιστικό
σας σύστημα κάποια λύση κλειστής μορφής για το
όριο;

(β) Tοποθετήστε σε διάγραμμα τα πρώτα 100 σημεία
(k , sk) της ακολουθίας μερικών αθροισμάτων. Δεί-
χνουν να συγκλίνουν; Σε ποιο όριο πιστεύετε;

(γ) Kατόπιν, τοποθετήστε σε διάγραμμα τα πρώτα 200
σημεία (k , sk) . Περιγράψτε με δικά σας λόγια τη
συμπεριφορά που βλέπετε.

(δ) Tοποθετήστε σε διάγραμμα τα πρώτα 400 σημεία
(k , sk) . Tι παρατηρείτε για k � 355; Yπολογίστε τον
αριθμό 355 113. Bάσει του υπολογισμού σας, εξη-
γήστε τι συμβαίνει όταν k � 355. Για ποιες τιμές
του k περιμένετε ότι η συμπεριφορά αυτή μπορεί
να επαναληφθεί;

Mια ενδιαφέρουσα μελέτη της σειράς αυτής υπάρ-
χει στο Kεφ. 72 του βιβλίου Mazes for the Mind του
Clifford A. Pickover (New York: St. Martin’s Press,
1992).

 / 

sk � �
k

n�1
 1
n 3  sin2 n

 .

�
�

n�1
 1
n 3 sin2 n
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8.5

Eναλλασσόμενες σειρές • Aπόλυτη σύγκλιση • Aναδιάταξη

σειρών • Διαδικασία προσδιορισμού σύγκλισης 

Tα κριτήρια σύγκλισης που είδαμε ώς τώρα αφορούν μόνο σειρές με
μη αρνητικούς όρους. Στην παρούσα ενότητα θα εξετάσουμε σειρές
που περιέχουν και αρνητικούς όρους. Ένα παράδειγμα τέτοιας σειράς
με μεγάλη σπουδαιότητα είναι η εναλλασσόμενη σειρά, της οποίας οι
όροι εναλλάσσουν πρόσημα. Θα μάθουμε επίσης ποιες συγκλίνουσες
σειρές μπορούν να υποστούν αναδιάταξη των όρων τους χωρίς να με-
ταβληθεί το άθροισμά τους.

Eναλλασσόμενες σειρές
Mια σειρά της οποίας οι όροι είναι εναλλάξ θετικοί και αρνητικοί κα-
λείται εναλλασσόμενη σειρά.

Iδού τρία παραδείγματα.

(1)

(2)

1 � 2 � 3 � 4 � 5 � 6 � … � (�1)n�1n � … (3)

H σειρά (1) –που καλείται εναλλασσόμενη αρμονική σειρά– συγκλίνει,
κάτι που θα δείξουμε σύντομα. H σειρά (2), μια γεωμετρική σειρά με
a � �2 και r � �1 2, συγκλίνει στην τιμή �2 [1 � (1 2)] � �4 3. H
σειρά (3) αποκλίνει βάσει του κριτηρίου του n-οστού όρου.

Θα δείξουμε τη σύγκλιση της εναλλασσόμενης αρμονικής σειράς
εφαρμόζοντας το ακόλουθο κριτήριο.

 /  /  /  / 

�2 � 1 � 1
2

 � 1
4

 � 1
8

 � … � 
(�1)n4

2 n  � …

1 � 1
2

 � 1
3

 � 1
4

 � 1
5

 � … � 
(�1)n�1

n  � …

8.5 Eναλλασσόμενες σειρές, απόλυτη σύγκλιση και
υπό συνθήκη σύγκλιση

YΠΟΛΟΓΙΣΤΙΚΕΣ ΔΙΕΡΕΥΝΗΣΕΙΣ



Aπόδειξη Aν n είναι άρτιος ακέραιος, έστω n � 2m , τότε το άθροι-
σμα των πρώτων n όρων είναι 

H πρώτη ισότητα δείχνει ότι το s2m είναι άθροισμα m μη αρνητικών
όρων, εφόσον κάθε όρος εντός των παρενθέσεων είναι θετικός ή μη-
δέν. Συνεπώς, s2m�2 � s2m, και η ακολουθία {s2m} είναι μη φθίνουσα. H
δεύτερη ισότητα δείχνει ότι s2m � u1. Eφόσον η {s2m} είναι μη φθίνου-
σα και άνω φραγμένη, οφείλει να έχει όριο, έστω το

(4)

Aν n είναι περιττός ακέραιος, έστω n � 2m � 1, τότε το άθροισμα
των πρώτων n όρων είναι s2m�1 � s2m � u2m�1. Eφόσον un l 0, θα ισχύ-
ει ότι

οπότε, καθώς m l � ,

s2m�1 � s2m � u2m�1 l L � 0 � L . (5)

Συνδυάζοντας τα αποτελέσματα των Eξισώσεων (4) και (5) παίρνουμε
limnl� sn � L (Eνότητα 8.2, Άσκηση 26). Tο Σχήμα 8.15 δείχνει πώς τα
μερικά αθροίσματα συγκλίνουν προς το όριό τους L .

Στην πραγματικότητα, το Σχήμα 8.15 δείχνει αρκετά περισσότερα
από το γεγονός της σύγκλισης και μόνοØ μας δείχνει ακόμη τον τρόπο
με τον οποίο μια εναλλασσόμενη σειρά συγκλίνει όταν πληρούνται οι
απαιτήσεις του κριτηρίου. Tα μερικά αθροίσματα «ξεπερνούν» το όριο
ταλαντευόμενα γύρω από αυτό πάνω στον άξονα των αριθμών, και προ-
σεγγίζοντάς το βαθμιαία. Έτσι, αν προς στιγμήν είμαστε στο n-οστό
μερικό άθροισμα, γνωρίζουμε ότι ο επόμενος όρος (	un�1) θα οδηγή-
σει την τιμή του μερικού αθροίσματος στην αντίθετη πλευρά του ορί-
ου από αυτήν που είμαστε τώραØ η πλευρά αυτή θα είναι η θετική ή η
αρνητική, αναλόγως του προσήμου του un�1. H παρατήρηση αυτή μάς
επιτρέπει μια εύκολη εκτίμηση ενός άνω φράγματος για το σφάλμα
αποκοπής, όπως δείχνει το επόμενο θεώρημα.

lim
ml�

  u2m�1 � 0

lim
ml�

  s2m � L .

 � u1 � (u2 � u3) � (u4 � u5) � … � (u2m�2 � u2m�1) � u2m 

.

 s2m � (u1 � u2) � (u3 � u4) � … � (u2m�1 � u2m)
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Θεώρημα 8 Kριτήριο εναλλασσόμενης σειράς (Θεώρημα Leibniz)
H σειρά

(�1)n�1 un � u1 � u2 � u3 � u4 � …

συγκλίνει αν πληρούνται ταυτόχρονα οι εξής προϋποθέσεις.

1. Tα un είναι όλα θετικά.

2. un � un�1 για κάθε n � N , για κάποιον ακέραιο N .

3. un l 0.

�
�

n�1

x
LO

�u1

�u2

�u3

�u4

s2 s4 s3 s1

ΣXHMA 8.15 Tα μερικά αθροίσματα
μιας εναλλασσόμενης σειράς που
ικανοποιεί τις προϋποθέσεις του
Θεωρήματος 8 για N � 1,
«διασκελίζουν» διαρκώς το όριο
προσεγγίζοντάς το.

Θεώρημα 9 Θεώρημα εκτίμησης εναλλασσόμενης σειράς

Aν η εναλλασσόμενη σειρά (�1)n�1un ικανοποιεί τις
συνθήκες του Θεωρήματος 8, τότε το σφάλμα αποκοπής όλων
των όρων μετά το n-οστό μερικό άθροισμα, θα είναι μικρότερο
του un�1 και θα έχει ίδιο προσήμο με τον (n+1)-οστό όρο της
σειράς.

��
n�1



Παράδειγμα 1 H εναλλασσόμενη αρμονική σειρά

Δείξτε ότι η εναλλασσόμενη αρμονική σειρά συγκλίνει, ενώ η αντί-
στοιχη σειρά απόλυτων τιμών όχι. Bρείτε ένα φράγμα για το σφάλ-
μα αποκοπής μετά από 99 όρους.

Λύση Oι όροι εναλλάσσουν πρόσημα και μικραίνουν κατ’ απόλυ-
τη τιμή:

Eπίσης,

Bάσει του κριτηρίου εναλλασσόμενης σειράς, η σειρά

συγκλίνει.
Aπό την άλλη, η σειρά απόλυτων τιμών (1 n) δεν είναι πα-

ρά η αρμονική σειρά, η οποία ως γνωστόν αποκλίνει.
Tο θεώρημα εκτίμησης εναλλασσόμενης σειράς μάς εγγυάται

ότι το σφάλμα αποκοπής μετά από 99 όρους θα είναι μικρότερο του
u99�1 � 1 (99 � 1) � 1 100.

Παράδειγμα 2 Eφαρμογή του θεωρήματος εκτίμησης

Aς δοκιμάσουμε να χρησιμοποιήσουμε το Θεώρημα 9 σε μια σειρά
της οποίας το άθροισμα μας είναι γνωστό:

Σύμφωνα με το θεώρημα, αν αποκόψουμε τους όρους μετά τον όγδοο,
παραλείπουμε ένα υπόλοιπο το οποίο είναι θετικό και μικρότερο του
1 256. Tο άθροισμα των πρώτων οκτώ όρων είναι 0,6640 625. Tο
άθροισμα της σειράς είναι

Bλέπουμε λοιπόν ότι η διαφορά, (2 3) � 0,6640 625 � 0,0026 0416 6 .
. . , είναι θετική και μικρότερη του (1 256) � 0,0039 0625.

Aπόλυτη σύγκλιση

H γεωμετρική σειρά

συγκλίνει απολύτως διότι η αντίστοιχη σειρά απόλυτων τιμών 

1 � 1
2

 � 1
4

 � 1
8

 � …

 / 

 / 

1
1 � (�1 / 2)

 � 1
3 / 2

 � 2
3

 .

 / 

�
�

n�0
 (�1)n 1

2 n � 1 � 1
2

 � 1
4

 � 1
8

 � 1
16

 � 1
32

 � 1
64

 � 1
128

    � 1
256

 � ….

 /  / 

 / ��
n�1

�
�

n�1
 
(�1)n�1

n

1
n l 0.

1 � 1
2

 � 1
3

 � ….
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Φράγμα σφάλματος
Tο Θεώρημα 9 δεν παρέχει έναν τύπο
για το σφάλμα αποκοπής, αλλά ένα
φράγμα του. Eνδέχεται το φράγμα αυτό
να είναι αρκετά συντηρητικό. Για
παράδειγμα, προστιθέμενοι οι πρώτοι
99 όροι της εναλλασσόμενης
αρμονικής σειράς δίνουν περίπου
0,6981721793, ενώ το άπειρο άθροισμα
των όρων της σειράς είναι 
ln 2 
 0,6931471806. Tο πραγματικό
σφάλμα αποκοπής είναι λοιπόν σχεδόν
0,005, περίπου το μισό του φράγματος
που μας δίνει το Θεώρημα 9 (και που
ισούται με 0,01).

Oρισμός Aπόλυτη σύγκλιση
H σειρά � an συγκλίνει απολύτως (είναι απολύτως συγκλίνουσα)
αν συγκλίνει η αντίστοιχη σειρά απόλυτων τιμών, δηλαδή η 
� �an �.

Bιογραφικά στοιχεία

Niccolo Tartaglia
(1499-1557)

CD-ROM
Δικτυότοπος



συγκλίνει. H εναλλασσόμενη αρμονική σειρά (Παράδειγμα 1) δεν συ-
γκλίνει απολύτως. H αντίστοιχη σειρά απόλυτων τιμών είναι η (αποκλί-
νουσα) αρμονική σειρά.

H εναλλασσόμενη αρμονική σειρά συγκλίνει υπό συνθήκη.

Παράδειγμα 3 Aπόλυτη σύγκλιση και υπό συνθήκη σύγκλιση

Προσδιορίστε ποιες από τις ακόλουθες σειρές συγκλίνουν απολύ-
τως, ποιες υπό συνθήκη, και ποιες αποκλίνουν.

(α)  

(β)  

(γ)  

Λύση

(α) H σειρά συγκλίνει βάσει του κριτηρίου εναλλασσόμενης σει-

ράς διότι (1 H σειρά απόλυ-

των τιμών αποκλίνει, ωστόσο, εφόσον είναι μια p-

σειρά με p � (1 2) � 1. Kατά συνέπεια, η δοθείσα σειρά είναι συ-

γκλίνουσα υπό συνθήκη.

(β) H σειρά αποκλίνει βάσει του κριτηρίου του n-οστού όρου εφό-
σον limnl� (1 � (1 n))n � e�1 � 0 (Πίνακας 8.1, Tύπος 5).

(γ) H σειρά αυτή δεν είναι εναλλασσόμενη. Ωστόσο, η 

είναι μια συγκλίνουσα γεωμετρική σειρά, άρα η δοθείσα σειρά
είναι απολύτως συγκλίνουσα.

H απόλυτη σύγκλιση παρουσιάζει ενδιαφέρον για δύο λόγους.
Πρώτον, διότι διαθέτουμε ήδη κριτήρια σύγκλισης σειρών με θετικούς
όρους. Δεύτερον, διότι αν μια σειρά συγκλίνει απολύτως, τότε είναι
συγκλίνουσα. Aυτό μας λέει το επόμενο θεώρημα.

�
�

n�1
 � (�1)n(n�1) / 2 1

2n � � �
�

n�1
 1
2n

 / 

 / 

��
n�1 (1 / �n)

�n) � (1 / �n � 1) ��	 (1 / �n) l 0. / 

�
�
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2 n � �1
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 � …
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Oρισμός Σύγκλιση υπό συνθήκη
Λέμε ότι μια σειρά συγκλίνει υπό συνθήκη όταν συγκλίνει μεν,
αλλά όχι απολύτως.

Θεώρημα 10 Kριτήριο απόλυτης σύγκλισης

Aν η σειρά �an � συγκλίνει, τότε και η an συγκλίνει.��
n�1��

n�1

ΠPOΣOXH Tο Θεώρημα 10 μας
λέει ότι κάθε απολύτως συγκλίνουσα σει-
ρά συγκλίνει. Tο αντίστροφο δεν ισχύει
πάντοτε: Πολλές συγκλίνουσες σειρές
δεν συγκλίνουν απολύτως.



Aπόδειξη Για κάθε n ,

��an � � an � �an �, δηλ. 0 � an � �an � � 2�an �.

Aν η σειρά �an � συγκλίνει, τότε η 2�an � συγκλίνει επίσης,
και, βάσει του κριτηρίου άμεσης σύγκρισης, η σειρά μη αρνητικών
όρων (an � �an �) θα συγκλίνει. H ισότητα an � (an � �an �) � �an �
μας επιτρέπει να εκφράσουμε την an ως τη διαφορά δύο συγκλι-
νουσών σειρών:

Συνεπώς, η an συγκλίνει.

Παράδειγμα 4 Eφαρμογή του κριτηρίου απόλυτης σύγκλισης

Για την 

η αντίστοιχη σειρά απόλυτων τιμών είναι η συγκλίνουσα σειρά 

H αρχική εναλλασσόμενη σειρά συγκλίνει εφόσον συγκλίνει απο-
λύτως.

Παράδειγμα 5 Eφαρμογή του κριτηρίου απόλυτης σύγκλισης

Για την

η αντίστοιχη σειρά απόλυτων τιμών είναι η 

η οποία προφανώς συγκλίνει, δεδομένου ότι η σειρά ��
n = 1 (1/n2 ) συ-

γκλίνει και �sin n � � 1 για κάθε n . H αρχική σειρά είναι λοιπόν απο-
λύτως συγκλίνουσα, άρα συγκλίνει.

Παράδειγμα 6 Eναλλασσόμενη p-σειρά

Aν p είναι μια θετική σταθερά, η ακολουθία {1 np} είναι φθίνουσα
και έχει όριο το μηδέν. Συνεπώς, η εναλλασσόμενη p-σειρά

θα συγκλίνει.
Για p � 1, η σειρά συγκλίνει απολύτως. Για 0 � p � 1, η σειρά

συγκλίνει υπό συνθήκη.

�
�
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(�1)n�1

np  � 1 � 1
2 p � 1

3 p � 1
4 p � … ,   p � 0,
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Σύγκλιση υπό συνθήκη:

Aπόλυτη σύγκλιση:

Aναδιάταξη σειρών

(Στην Άσκηση 60 περιγράφεται η απόδειξη του επόμενου θεωρή-
ματος.)

Παράδειγμα 7 Eφαρμογή του θεωρήματος αναδιάταξης

Όπως είδαμε στο Παράδειγμα 4, η σειρά

συγκλίνει απολύτως. Mια πιθανή αναδιάταξη των όρων της σειράς
θα ήταν να ξεκινούσαμε με τον θετικό όρο, έπειτα να πάρουμε δύο
αρνητικούς όρους, μετά τρεις θετικούς όρους, κ.ο.κ.: Mετά από k
όρους ενός προσήμου, ακολουθούν k � 1 όροι αντίθετου προσήμου.
Oι πρώτοι 10 όροι μιας τέτοιας σειράς θα ήταν λοιπόν οι εξής:

Tο θεώρημα αναδιάταξης μας λέει ότι και οι δύο σειρές συγκλίνουν
στην ίδια τιμή. Στο παράδειγμα αυτό, αν αρχικά μας δινόταν η δεύ-
τερη σειρά, θα μας εξυπηρετούσε να την αντικαταστήσουμε με την
πρώτη, αν βέβαια ήμασταν βέβαιοι ότι κάτι τέτοιο είναι επιτρεπτό.
Kαι οι δύο σειρές συγκλίνουν στην τιμή 

(Δείτε σχετικά την Άσκηση 61.)

Παράδειγμα 8 Aναδιάταξη της εναλλασσόμενης αρμονικής
σειράς

H εναλλασσόμενη αρμονική σειρά

μπορεί να αναδιαταχθεί έτσι ώστε να αποκλίνει ή ακόμη και να συ-
γκλίνει προς οποιαδήποτε προκαθορισμένη τιμή επιθυμούμε(!).
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Θεώρημα 11 Θεώρημα αναδιάταξης για απολύτως
συγκλίνουσες σειρές

Aν η σειρά an συγκλίνει απολύτως και b1, b2, . . . , bn, . . . ,
είναι μια τυχούσα διάταξη όρων της ακολουθίας {an}, τότε και η
σειρά bn θα συγκλίνει απολύτως, και μάλιστα

�
�

n�1
 bn � �

�

n�1
 an 

.

�

��
n�1

ΠPOΣOXH Aναδιατάσσοντας
άπειρο πλήθος όρων μιας υπό συνθήκη
συγκλίνουσας σειράς, μπορεί να προ-
κύψει ένα τελείως διαφορετικό αποτέ-
λεσμα από το άθροισμα της αρχικής
σειράς.



(α) Aναδιατάσσοντας την (�1)n�1 n έτσι ώστε να αποκλίνει . H σει-
ρά [1 (2n � 1)] αποκλίνει στο �� , ενώ η σειρά (�1 2n) απο-
κλίνει στο �� . Aνεξάρτητα από το ποιοι όροι της αρχικής σει-
ράς έχουν ήδη προηγηθεί, μπορούμε πάντα να προσθέσουμε κα-
τάλληλο πλήθος θετικών όρων (δηλ. περιττού δείκτη) ώστε να
προκύψει ένα αυθαίρετα μεγάλο άθροισμα. Oμοίως για τους αρ-
νητικούς όρους, ανεξάρτητα από το πόσοι όροι της σειράς έχουν
προηγηθεί, μπορούμε πάντα να προσθέσουμε ικανό πλήθος δια-
δοχικών αρνητικών όρων (δηλ. άρτιου δείκτη) ώστε να πάρουμε
ένα αρνητικό άθροισμα όσο μεγάλης απόλυτης τιμής επιθυμούμε.
Για παράδειγμα, θα μπορούσαμε να ξεκινήσουμε με περιττούς
όρους μέχρι να φτιάξουμε άθροισμα μεγαλύτερο του �3, και κα-
τόπιν να συνεχίσουμε με τόσους αρνητικούς όρους, ώστε το νέο
άθροισμα να γίνει μικρότερο του �4. Έπειτα θα προσθέταμε τό-
σους θετικούς όρους ώστε το άθροισμα να γίνει μεγαλύτερο του
�5, και κατόπιν πάλι θα παίρναμε αρνητικούς όρους φτιάχνοντας
νέο άθροισμα μικρότερο του �6, κ.ο.κ. Mε τη διαδικασία αυτή, η
τιμή του αθροίσματος θα ταλαντεύεται αυθαίρετα προς κάθε κα-
τεύθυνση.

(β) Aναδιατάσσοντας την (�1)n�1 n έτσι ώστε να συγκλίνει στο 1.
Mια άλλη δυνατότητα είναι να καταλήξουμε σε ένα συγκεκρι-
μένο όριο. Έστω ότι επιθυμούμε να κατασκευάσουμε αθροί-
σματα που συγκλίνουν στο 1. Ξεκινούμε με τον πρώτο όρο, τον
1 1, από τον οποίο αφαιρούμε το 1 2. Έπειτα προσθέτουμε τους
όρους 1 3 και 1 5, οπότε το άθροισμα υπερβαίνει κατά τι το 1.
Kατόπιν προσθέτουμε διαδοχικούς αρνητικούς όρους μέχρι το
άθροισμα να γίνει μικρότερο του 1. Συνεχίζουμε με τον ίδιο
τρόπο: Mόλις το άθροισμα γίνει μικρότερο του 1, προσθέτουμε
θετικούς όρους μέχρι να υπερβεί και πάλι το 1, έπειτα αφαι-
ρούμε (προσθέτουμε αρνητικούς) όρους που φέρνουν πάλι την
τιμή του αθροίσματος πιο κάτω από το 1. H διαδικασία αυτή
μπορεί να συνεχιστεί επ’ αόριστον. Eπειδή τόσο οι περιττού
δείκτη όσο και οι άρτιου δείκτη όροι τείνουν στο μηδέν καθώς
n l � , η ποσότητα κατά την οποία υπερβαίνει τη μονάδα το
εκάστοτε μερικό άθροισμα τείνει επίσης στο μηδέν. Έτσι, η
νέα σειρά συγκλίνει στο 1. H αναδιατεταγμένη αυτή σειρά ξε-
κινά ως εξής:

Διαδικασία προσδιορισμού σύγκλισης
Tο διάγραμμα ροής που ακολουθεί μπορεί να σας χρησιμεύσει όταν
εξετάζετε τη σύγκλιση ή απόκλιση μιας άπειρης σειράς.
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H συμπεριφορά που είδαμε στο
παράδειγμα αυτό είναι
χαρακτηριστική του τι μπορεί να
συμβεί με την αναδιάταξη των όρων
μιας υπό συνθήκη συγκλίνουσας
σειράς. Δίδαγμα: Προσθέστε τους
όρους μιας υπό συνθήκη συγκλίνουσας
σειράς με τη διάταξη που σας δίνεται.



AΣΚΗΣΕΙΣ 8.5

6378.5. Eναλλασσόμενες σειρές, απόλυτη σύγκλιση και υπό συνθήκη σύγκλιση
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ΔΙΑΓΡΑΜΜΑ ΡΟΗΣ 8.1 Διαδικασία προσδιορισμού σύγκλισης.

Προσδιορισμός σύγκλισης ή απόκλισης
Ποιες από τις εναλλασσόμενες σειρές των Aσκήσεων 1-10
συγκλίνουν, και ποιες αποκλίνουν; Aιτιολογήστε τις απα-
ντήσεις σας.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

Aπόλυτη σύγκλιση και σύγκλιση υπό
συνθήκη 
Ποιες από τις σειρές των Aσκήσεων 11-44 συγκλίνουν απο-
λύτως, ποιες συγκλίνουν υπό συνθήκη, και ποιες αποκλί-
νουν; Aιτιολογήστε τις απαντήσεις σας.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30. �
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31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. � 42.

43. 44.

Eκτίμηση σφάλματος
Στις Aσκήσεις 45-48, εκτιμήστε το μέγεθος του σφάλματος
που προκύπτει αν χρησιμοποιήσουμε το μερικό άθροισμα
των πρώτων τεσσάρων όρων για να προσεγγίσουμε το
άθροισμα κάθε σειράς.

45.

46.

47.

48.

Στις Aσκήσεις 49 και 50, βρείτε μια προσεγγιστική τιμή
των αθροισμάτων με σφάλμα μικρότερο του 5 
 10�6.

49.

50.

Θεωρία και παραδείγματα
51. (α) Mάθετε γράφοντας H σειρά

δεν πληροί μία από τις προϋποθέσεις του Θεωρήμα-
τος 8. Ποια;

(β) Nα βρεθεί το άθροισμα της σειράς του ερωτήματος
(α).

52. Mια εναλλασσόμενη σειρά που ικανοποιεί τις προϋπο-
θέσεις του Θεωρήματος 8 έχει όριο L που κείται ανάμε-
σα σε δύο οιαδήποτε διαδοχικά μερικά αθροίσματά
της. H παρατήρηση αυτή οδηγεί στο συμπέρασμα ότι η
μέση τιμή

μπορεί να χρησιμοποιηθεί ως εκτίμηση της τιμής του
L Yπολογίστε την ποσότητα

ως μια προσέγγιση του αθροίσματος της εναλλασσό-
μενης αρμονικής σειράς. H ακριβής τιμή του αθροί-
σματος είναι ln 2 � 0,6931 . . . .

53. Tο πρόσημο του υπολοίπου μιας εναλλασσόμενης σειράς που

ικανοποιεί τις προϋποθέσεις του Θεωρήματος 8 Aποδείξτε
τον ισχυρισμό του Θεωρήματος 9, ότι δηλαδή όταν
μια εναλλασσόμενη σειρά που ικανοποιεί τις προϋπο-
θέσεις του Θεωρήματος 8 προσεγγίζεται από ένα μερικό
της άθροισμα, το υπόλοιπο (δηλ. το άθροισμα των
απορριφθέντων όρων) έχει το ίδιο πρόσημο με τον
πρώτο απορριφθέντα όρο. (Yπόδειξη: Oμαδοποιήστε
τους όρους του υπολοίπου σε κατάλληλα ζεύγη.)

54. Mάθετε γράφοντας Δείξτε ότι το άθροισμα των πρώτων 2n
όρων της σειράς

ισούται με το άθροισμα των πρώτων n όρων της σειράς

Συγκλίνουν οι σειρές αυτές; Ποιο το άθροισμα των
πρώτων 2n � 1 όρων της πρώτης σειράς; Aν οι σειρές
συγκλίνουν, τότε ποιο το άθροισμα της καθεμίας;

55. Απόκλιση Δείξτε ότι αν η an αποκλίνει, τότε και η
�an � αποκλίνει.

56. Δείξτε ότι αν η an συγκλίνει απολύτως, τότε

57. Kανόνες απόλυτης σύγκλισης Δείξτε ότι αν η an και η
bn συγκλίνουν απολύτως, τότε το ίδιο θα ισχύει

και για την

(α) (an � bn) (β) (an � bn)

(γ) kan (k τυχών αριθμός)

58. Γινόμενα όρο προς όρο Δείξτε με ένα παράδειγμα ότι η
anbn ενδέχεται να αποκλίνει ακόμη και αν οι

an και bn συγκλίνουν ταυτόχρονα.

59. Aναδιάταξη Στο Παράδειγμα 8, έστω ότι θέλουμε να ανα-
διατάξουμε τους όρους ώστε να κατασκευάσουμε μια
νέα σειρά που να συγκλίνει στο �1 2. Ξεκινούμε λοι-
πόν με τον πρώτο αρνητικό όρο, τον �1 2. Mόλις προ-
κύψει άθροισμα μικρότερο ή ίσο του �1 2, αρχίζουμε
να εισάγουμε θετικούς όρους (τους οποίους παίρνουμε
με τη σειρά προτεραιότητας που είχαν στο αρχικό
άθροισμα), μέχρι το νέο άθροισμα να γίνει μεγαλύτερο
του �1 2. Έπειτα προσθέτουμε αρνητικούς όρους μέ-
χρι το άθροισμα να γίνει και πάλι μικρότερο ή ίσο του
�1 2. Συνεχίστε τη διαδικασία αυτή μέχρι τα μερικά
σας αθροίσματα να «διασκελίσουν» το επιθυμητό όριο
τουλάχιστον τρεις φορές, καταλήγοντας σε μικρότερη
ή ίση με αυτό τιμή. Aν sn είναι το άθροισμα των πρώτων
n όρων της νέας σας σειράς, τοποθετήστε σε διάγραμμα
τα σημεία (n sn)  αναδεικνύοντας έτσι τη συμπεριφορά
των μερικών αθροισμάτων.
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Όπως θα δούμε στην Eνότητα 8.7, το
άθροισμα ισούται με ln (1,01) .

Mπορεί να αποδειχθεί ότι το άθροισμα
ισούται με ln 2.

Όπως θα δούμε στην Eνότητα 8.7, το
άθροισμα ισούται με cos 1, δηλ. με το
συνημίτονο 1 ακτινίου.

Όπως θα δούμε στην Eνότητα 8.7, το
άθροισμα ισούται με e�1.

T



60. Περιγραφή της απόδειξης του θεωρήματος αναδιάταξης (Θεώρη-

μα 11)

(α) Έστω � θετικός πραγματικός αριθμός, L � an,
και sk � an. Δείξτε ότι για κάποιους δείκτες
N1 και N2 � N1, θα ισχύουν τα εξής:

Eφόσον όλοι οι όροι a1, a2, . . . , εμφανίζονται κά-
που στην ακολουθία {bn}, θα υπάρχει ένας δείκτης
N3 � N2 τέτοιος ώστε για n � N3, η ποσότητα ( bk)
� ισούται το πολύ με κάποιο άθροισμα όρων am για
m � N1. Συνεπώς, για n � N3, θα ισχύει

(β) H επιχειρηματολογία του ερωτήματος (α) δείχνει
ότι αν η σειρά an συγκλίνει απολύτως, τότε η

bn θα συγκλίνει και μάλιστα bn �

an. Tώρα δείξτε ότι επειδή η �an � συγκλίνει, η
�bn � θα συγκλίνει στο �an � .

61. Aπολύτως συγκλίνουσες σειρές

(α) Δείξτε ότι αν η �an � συγκλίνει και 

τότε και η bn θα συγκλίνει.

(β) Xρησιμοποιήστε τα αποτελέσματα του ερωτήμα-
τος (α) για να δείξετε ότι αν η σειρά �an � συ-
γκλίνει και 

τότε και η cn θα συγκλίνει.
Mε άλλα λόγια, αν μια σειρά συγκλίνει απολύ-

τως, τότε οι θετικοί της όροι χωριστά σχηματίζουν
μια συγκλίνουσα σειράØ το ίδιο και οι αρνητικοί
της όροι. Eπιπλέον,

an � bn + cn

εφόσον bn � (an � �an �) 2 και cn � (an � �an �) 2.

62. Eναλλασσόμενη αρμονική σειρά Πού είναι εδώ το λάθος:
Πολλαπλασιάζουμε κατά μέλη την εξίσωση

με τον αριθμό 2, οπότε παίρνουμε

Oμαδοποιούμε τους όρους κοινού παρονομαστή, όπως
δείχνουν τα βέλη, οπότε 

H σειρά στο δεξιό μέλος της τελευταίας εξίσωσης
είναι η ίδια με αυτήν που αρχίσαμε. Συνεπώς, έχουμε
2S � S , και διαιρώντας με S καταλήγουμε στην πρόταση
2 � 1. (Πηγή: “Riemann’s Rearrangement Theorem”, άρ-
θρο του Stewart Galanor, Mathematics Teacher, Vol. 80,
No. 8 (1987), pp. 675–681.)

63. Σχεδιάστε σχήμα παρόμοιο με το Σχήμα 8.15 για να
δείξετε τη σύγκλιση της σειράς του Θεωρήματος 8 για
N � 1.
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S = 1– + . . .
1 1 1 1 1 1 1 1 1 1– + – – – + – – – + – – – + – – — + —
2 3 4 5 6 7 8 9 10 11

2S = 2 – 1+                                                                     + . . .
2 1 2 1 2 1 2 1 2 1– – – + – – – + – – – + – – – + — – –
3 2 5 3 7 4 9 5 11 6

8.6
Δυναμοσειρές και σύγκλιση • Aκτίνα και διάστημα σύγκλισης •

Παραγώγιση όρο προς όρο • Oλοκλήρωση όρο προς όρο

• Πολλαπλασιασμός δυναμοσειρών

Για �x � � 1, ο τύπος αθροίσματος όρων γεωμετρικής σειράς μας λέει
ότι

1 � x � x 2 � x 3 � … � xn � … �

Aς αναλογιστούμε για λίγο την παραπάνω πρόταση. H έκφραση στο
δεξιό μέλος ορίζει μια συνάρτηση με πεδίο ορισμού το σύνολο όλων
των αριθμών x � 1. H έκφραση στο αριστερό μέλος ορίζει μια συνάρ-
τηση με πεδίο ορισμού το διάστημα σύγκλισης, �x � � 1. H ισότητα
λοιπόν έχει νόημα μόνο στο τελευταίο αυτό αριθμοσύνολο, όπου αμ-
φότερα τα μέλη της εξίσωσης είναι καλώς ορισμένα. Σε αυτό το πεδίο
ορισμού, η σειρά παριστάνει τη συνάρτηση 1 (1 � x) .

Στην παρούσα ενότητα θα μελετήσουμε «πολυώνυμα» της μορφής
 / 

1
1 � x

 .

8.6 Δυναμοσειρές



xn, που καλούνται δυναμοσειρές, ενώ στην επόμενη, θα δούμε
πώς μπορούμε να αναπαραστήσουμε μια συνάρτηση με την κατάλληλη
δυναμοσειρά.

Δυναμοσειρές και σύγκλιση
H έκφραση cnxn μοιάζει αφενός με πολυώνυμο, εφόσον αποτελεί
άθροισμα δυνάμεων του x (με κάποιους συντελεστές), αλλά και διαφέ-
ρει εφόσον τα συνήθη πολυώνυμα είναι πεπερασμένου βαθμού και δεν
αποκλίνουν για κάποιες τιμές του x . Aκριβώς όπως μια άπειρη σειρά
δεν είναι απλώς ένα άθροισμα, έτσι και η σειρά δυνάμεων του x δεν εί-
ναι απλώς ένα πολυώνυμο.

Παράδειγμα 1 Γεωμετρική σειρά

H γεωμετρική σειρά

xn � 1 � x � x2 � … � xn � …

είναι μια δυναμοσειρά με κέντρο το x � 0. Συγκλίνει στην τιμή
1/(1 � x) στο διάστημα �1 � x � 1, το οποίο επίσης έχει κέντρο το
x � 0 (Σχήμα 8.16). H συμπεριφορά αυτή είναι χαρακτηριστική,
όπως θα δούμε παρακάτω. Mια δυναμοσειρά είτε θα συγκλίνει για
κάθε x , είτε θα συγκλίνει σε πεπερασμένο διάστημα ίδιου κέντρου
με αυτήν, είτε τέλος θα συγκλίνει μονάχα στο κέντρο αυτό.

�
�

n�0

��
n�0

��
n�0
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Oρισμός Δυναμοσειρές
Kάθε έκφραση της μορφής

cnx
n � c0 � c1x � c2x 2 � … � cnxn � …

είναι μια δυναμοσειρά με κέντρο το x � 0. Kάθε έκφραση της
μορφής

cn(x � a)n � c0 � c1(x � a) � c2(x � a)2 � … � cn(x � a)n � …

είναι μια δυναμοσειρά με κέντρο το x � a. H ποσότητα cn(x � a)n

είναι ο n-οστός όροςØ ο αριθμός a είναι το κέντρο της σειράς.

�
�

n�0

�
�

n�0

Aν θέσουμε x � 0 στην έκφραση

cnxn � c0 � c1x � c2x 2

� … � cnxn � … ,

τότε στο δεξιό μέλος παίρνουμε c0, ενώ
στο αριστερό c0 � 00. Δεδομένου ότι το
σύμβολο 00 δεν αντιστοιχεί σε κάποιον
αριθμό, η χρήση του ανωτέρω
συμβολισμού είναι κάπως ατυχής,
αλλά παρ’ όλα αυτά θα τη δεχτούμε. H
ίδια κατάσταση προκύπτει όταν
θέσουμε

x � a στον όρο cn(x � a)n.

Kαι στις δύο περιπτώσεις θεωρούμε
ότι κατά σύμβαση η έκφραση c0 � 00 θα
ισούται με c0. (Kαι όντως οφείλει να
ισούται με c0, οπότε ο χειρισμός μας
δεν στερείται μαθηματικής
αυστηρότηταςØ εδώ απλώς
διευκρινίζουμε με ποιον τρόπο πρέπει
να ειδωθεί ο συμβολισμός, ώστε να
αποδίδει ορθώς τα μαθηματικά.)

�
�

n�0

�
�

n�0

x

y

0

1

1–1

2

3

4

5

7

8

9

y2 � 1 � x � x2

y1 � 1 � x

y0 � 1

y � 1———
1 � x

y8 � 1 � x � x2 � x3 � x4 � x5 � x6 � x7 � x8

ΣXHMA 8.16 Γραφικές παραστάσεις της f (x) � 1 (1 � x) και τεσσάρων
πολυωνυμικών της προσεγγίσεων. (Παράδειγμα 1)

 / 



Mέχρι τώρα χρησιμοποιήσαμε την εξίσωση

� 1 � x � x2 � … � xn � … , �1 � x � 1

για να βρούμε έναν εύχρηστο τύπο του αθροίσματος της σειράς του δε-
ξιού μέλους.

Aς αλλάξουμε οπτική γωνία: Aς θεωρήσουμε τα μερικά αθροί-
σματα της σειράς ως πολυώνυμα Pn(x), τα οποία προσεγγίζουν τη συ-
νάρτηση στο αριστερό μέλος. Για τιμές x κοντά στο μηδέν, αρκούν
μερικοί όροι της σειράς για μια ικανοποιητική προσέγγιση. Kαθώς
όμως το x πλησιάζει την τιμή x � 1, ή την �1, απαιτούνται όλο και
περισσότεροι όροι. Tο Σχήμα 8.16 δείχνει τα γραφήματα της
f (x) � 1/(1 � x) και των προσεγγιστικών της πολυωνύμων yn � Pn(x)
για n � 0, 1, 2, και 8.

Παράδειγμα 2 Eφαρμογή του ορισμού

H δυναμοσειρά

(1)

έχει κέντρο το a � 2 και συντελεστές c0 � 1, c1 � �1 2, c2 � 1 4,

. . . , cn � (�1 2)n. H σειρά αυτή είναι γεωμετρική, με αρχικό όρο 1

και λόγο r � � H σειρά συγκλίνει για � 1 δηλαδή για

0 � x � 4. Tο άθροισμά της είναι 

και άρα

H σειρά (1) παράγει χρήσιμες πολυωνυμικές προσεγγίσεις της συ-
νάρτησης f (x) � 2 x για τιμές του x κοντά στο 2:

κ.ο.κ. (Σχήμα 8.17).

Aκτίνα και διάστημα σύγκλισης
Oι δυναμοσειρές στα Παραδείγματα 1 και 2 συνέβη να είναι γεωμετρι-
κές, οπότε μπορέσαμε να βρούμε τα διαστήματα σύγκλισής τους. Για
μη γεωμετρικές σειρές, ξεκινούμε με την παρατήρηση ότι κάθε δυνα-
μοσειρά της μορφής cn(x � a)n θα συγκλίνει πάντα για x � a , οπό-
τε θα υπάρχει τουλάχιστον ένα σημείο του άξονα των πραγματικών
αριθμών όπου η σύγκλιση είναι δεδομένη. Δεύτερον, έχουμε ήδη συ-
ναντήσει δυναμοσειρές, όπως αυτές στα Παραδείγματα 1 και 2, που συ-
γκλίνουν για πεπερασμένο διάστημα τιμών του x γύρω από το κέντρο
a . Tέλος, υπάρχουν δυναμοσειρές που συγκλίνουν για κάθε πραγματι-
κό αριθμό. Aυτές είναι όλες οι δυνατές περιπτώσεις, όπως δείχνει το
θεώρημα που ακολουθεί.

��
n�0

 P2(x) � 1 � 1
2

 (x � 2) � 1
4

 (x � 2)2 � 3 � 3x
2

 � x
2

4
 ,

 P1(x) � 1 � 1
2

 (x � 2) � 2 � x
2

 P0(x) � 1

 / 

2
x � 1 � 

(x � 2)
2

 � 
(x � 2)2

4
 � … � ��1

2�
n

 (x � 2)n � …,   0 � x � 4.

1
1 � r

 � 1

1 � x � 2
2

 � 2x ,

� x � 2
2 �x � 2

2
 .

 / 

 /  / 

1� 1
2

 (x � 2) � 1
4

 (x � 2)2 � … � ��1
2�

n

 (x � 2)n � …

1
1 � x
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x

y

0 2

1

1

y1 � 2 � x–
2

y2 � 3 � 3x—
2 � x2

—
4

y0 � 1

(2, 1) y � 2–
x

3

2

ΣXHMA 8.17 Γραφικές παραστάσεις
της f (x) � 2 x και των πρώτων
τριών πολυωνυμικών της
προσεγγίσεων.  (Παράδειγμα 2)

 / 



O αριθμός R είναι η ακτίνα σύγκλισης, και το σύνολο όλων των x
για τα οποία η σειρά συγκλίνει είναι το διάστημα σύγκλισης. H ακτί-
να σύγκλισης καθορίζει πλήρως το διάστημα σύγκλισης στην περί-
πτωση που το R είναι είτε μηδέν είτε άπειρο. Για 0 � R � � , ωστόσο,
παραμένει ανοιχτό το ζήτημα της σύγκλισης στα άκρα του διαστήμα-
τος. Tο ακόλουθο παράδειγμα δείχνει πώς βρίσκουμε το  διάστημα σύ-
γκλισης.

Παράδειγμα 3 Eύρεση του διαστήματος σύγκλισης με χρήση του
κριτηρίου του λόγου

Για ποιες τιμές του x συγκλίνουν οι ακόλουθες δυναμοσειρές;

(α)  

(β)  

(γ)  

(δ)  

Λύση Eφαρμόζουμε το κριτήριο του λόγου στη σειρά � �un �, όπου
un είναι ο n-οστός της όρος.

(α)  

H σειρά συγκλίνει απολύτως για �x � � 1. Aποκλίνει για �x � � 1, διό-
τι ο n-οστός της όρος δεν συγκλίνει τότε στο μηδέν. Για x � 1, προ-
κύπτει η εναλλασσόμενη αρμονική σειρά 1 � 1/2 � 1/3 � 1/4 � …,
η οποία συγκλίνει. Για x � �1, η σειρά γίνεται �1 �1/2 �1/3 �
1/4 �… , που είναι η αντίθετη της αρμονικής σειράς, και άρα απο-
κλίνει. H σειρά (α) συγκλίνει λοιπόν για �1 � x � 1 και αποκλίνει
για κάθε άλλο x.

(β)

H σειρά συγκλίνει απολύτως για x 2 � 1. Aποκλίνει για x 2 � 1, διότι
ο n-οστός της όρος δεν συγκλίνει τότε στο μηδέν. Για x � 1, η σει-
ρά παίρνει τη μορφή 1 � 1 3 � 1 5 � 1 7 � … , η οποία συγκλίνει
βάσει του θεωρήματος εναλλασσόμενης σειράς. Συγκλίνει επίσης

 /  /  / 

| un + 1 | 2n – 1| –—— | = ——— x2 → x2.
| un | 2n + 1

� un�1

un
� � n

n � 1
 � x � l � x � .

�
�

n�0
 n! xn � 1 � x � 2! x2 � 3! x3 � …

�
�

n�0
 x

n

n!
  � 1 � x � x

2

2!
 � x

3

3!
 � …

�
�

n�1
 (�1)n�1 x2n�1

2n � 1
 � x � x

3

3
 � x

5

5
 � …

�
�

n�1
 (�1)n�1 x

n

n  � x � x
2

2
 � x

3

3
 � …
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Θεώρημα 12 Θεώρημα σύγκλισης δυναμοσειρών
Όσον αφορά τη σύγκλιση της σειράς cn(x � a)n υπάρχουν
τρεις δυνατότητες.

1. Yπάρχει θετικός αριθμός R τέτοιος ώστε η σειρά να αποκλί-
νει για �x � a � � R, αλλά να συγκλίνει για �x � a � � R . Στα
ακραία σημεία x � a � R και x � a � R η σειρά μπορεί είτε
να συγκλίνει είτε να αποκλίνει.

2. H σειρά συγκλίνει για κάθε x  (R � �) .

3. H σειρά συγκλίνει για x � a και αποκλίνει σε όλα τα άλλα
σημεία (R � 0).

��
n�0

x
–1 0 1



για x � �1, διότι και τότε παίρνει τη μορφή εναλλασσόμενης σει-
ράς που πληροί τις προϋποθέσεις σύγκλισης. H τιμή της σειράς για
x � �1 είναι η αντίθετη αυτής για x � 1. H σειρά (β) συγκλίνει λοι-
πόν για �1 � x � 1 και αποκλίνει για κάθε άλλο x.

(γ) για κάθε x.

H σειρά συγκλίνει απολύτως για κάθε x .

(δ) εκτός αν x = 0.

H σειρά αποκλίνει για κάθε μη μηδενικό x.

Συνοψίζουμε τη διαδικασία εύρεσης του διαστήματος σύγκλισης
μιας δυναμοσειράς.

Στο εσωτερικό του διαστήματος σύγκλισης μιας δυναμοσειράς, η
τελευταία θα συγκλίνει απολύτως. Aν μια δυναμοσειρά συγκλίνει απο-
λύτως για κάθε x , λέμε ότι η ακτίνα σύγκλισης είναι άπειρη. Aν συ-
γκλίνει μόνο για x � a , η ακτίνα σύγκλισης είναι μηδενική.

Παραγώγιση όρο προς όρο
Ένα θεώρημα του προχωρημένου απειροστικού λογισμού μάς λέει ότι
μπορούμε να παραγωγίσουμε όρο προς όρο μια δυναμοσειρά σε κάθε
εσωτερικό σημείο του διαστήματος σύγκλισης.

� un�1

un
� � � (n � 1)!xn�1

n!xn � � (n � 1) � x � l � 

� un�1

un
� � � xn�1

(n � 1)!
 � n!

xn � � 
� x �

n � 1
 l 0 
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x
–1 0 1

x
0

x
0

Eύρεση διαστήματος σύγκλισης

Bήμα 1: Xρησιμοποιούμε το κριτήριο του λόγου (ή της n-οστής ρί-
ζας) για να βρούμε το διάστημα όπου η σειρά συγκλίνει απολύτως.
Συνήθως, αυτό είναι ένα ανοιχτό διάστημα

�x � a � � R δηλ. a � R � x � a � R .

Bήμα 2: Aν το διάστημα απόλυτης σύγκλισης είναι πεπερασμένο,
εξετάζουμε τη σύγκλιση ή απόκλιση σε κάθε άκρο του, όπως κάνα-
με στα Παραδείγματα 3(α) και (β). Για τον σκοπό αυτό χρησι-
μοποιούμε το κριτήριο σύγκρισης, το κριτήριο του ολοκληρώ-
ματος, ή το κριτήριο εναλλασσόμενης σειράς.

Bήμα 3: Aν το διάστημα απόλυτης σύγκλισης είναι a � R � x �
a � R , η σειρά αποκλίνει για �x � a � � R (δεν συγκλίνει καν υπό
συνθήκη), διότι ο n-οστός της όρος δεν τείνει στο μηδέν γι’ αυ-
τές τις τιμές του x .



Παράδειγμα 4 Eφαρμογή της παραγώγισης όρο προς όρο

Eκφράστε σε μορφή σειράς τις f 
(x) και f �(x) όπου

Λύση

Oλοκλήρωση όρο προς όρο
Ένα άλλο θεώρημα του προχωρημένου απειροστικού λογισμού μάς
επιτρέπει να ολοκληρώσουμε όρο προς όρο μια δυναμοσειρά σε κάθε
σημείο του διαστήματος σύγκλισης.

 � �
�

n�2
 n(n � 1) xn�2 ,   �1 � x � 1

 f �(x) � 2
(1 � x)3

 � 2 � 6x � 12x2 � … � n(n � 1)xn�2 � …

 � �
�

n�1
 nxn�1 ,   �1 � x � 1

 f 
(x) � 1
(1 � x)2

 � 1 � 2x � 3x2 � 4x3 � … � nxn�1 � …

 � �
�

n�0
 xn ,   �1 � x � 1.

 f (x) � 1
1 � x

 � 1 � x � x2 � x3 � x4 � … � xn � …
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Θεώρημα 13 Θεώρημα παραγώγισης όρο προς όρο
Aν η � cn(x � a)n συγκλίνει για a � R � x � a � R για κάποιο
R � 0, τότε ορίζουμε τη συνάρτηση f :

Mια τέτοια συνάρτηση f έχει παραγώγους όλων των τάξεων
εντός του διαστήματος σύγκλισης. Oι παράγωγοι αυτές μπορούν
να εξαχθούν αν παραγωγίσουμε την αρχική σειρά όρο προς
όρο:

κ.ο.κ. Kαθεμία από τις σειρές αυτές συγκλίνει σε κάθε
εσωτερικό σημείο του διαστήματος σύγκλισης της αρχικής
σειράς.

 f �(x) � �
�

n�2
 n(n � 1)cn(x � a)n�2 ,

 f 
(x) � �
�

n�1
 ncn(x � a)n�1

f (x) � �
�

n�0
 cn (x � a)n

 ,   a � R � x � a � R .

ΠPOΣOXH H παραγώγιση όρο
προς όρο  ενδέχεται να μην είναι «λει-
τουργική» για άλλα είδη σειρών. Για
παράδειγμα, η τριγωνομετρική σειρά

συγκλίνει για κάθε x Όμως αν την
παραγωγίσουμε όρο προς όρο,
παίρνουμε τη σειρά

η οποία αποκλίνει για κάθε x.

�
�

n�1
 
n! cos (n!x)

n2

 .

�
�

n�1
 
 sin (n!x)

n2

Θεώρημα 14 Θεώρημα ολοκλήρωσης όρο προς όρο
Έστω ότι η σειρά

f (x) � cn(x � a)n

συγκλίνει για a � R � x � a � R (R � 0). Στην περίπτωση αυτή
η σειρά

θα συγκλίνει για a � R � x � a � R και

για a � R � x � a � R .


  f (x) dx � �
�

n�0
 cn 

(x � a)n�1

n � 1
 � C

�
�

n�0
 cn 

(x � a)n�1

n � 1

�
�

n�0



Παράδειγμα 5 H σειρά της συνάρτησης tan�1 x , �1 � x � 1

Bρείτε μια κλειστή συναρτησιακή έκφραση για τη σειρά

f (x) � x � � …, �1 � x � 1.

Λύση Παραγωγίζουμε όρο προς όρο την αρχική σειρά, οπότε
παίρνουμε

f 
(x) � 1 � x 2 � x 4 � x 6 � …, �1 � x � 1.

Πρόκειται για γεωμετρική σειρά αρχικού όρου 1 και λόγου �x 2,
οπότε

Mπορούμε τώρα να ολοκληρώσουμε την f 
(x) � 1 (1 � x 2) και να πά-
ρουμε

� tan�1 x � C

H σειρά που αντιστοιχεί στην f(x) μηδενίζεται για x � 0, άρα C � 0.
Έτσι,

� … � tan�1 x , �1 � x � 1.

Στην Eνότητα 8.8, θα μάθουμε ότι η εν λόγω σειρά συγκλίνει και στο
tan�1 x για τα άκρα x � 	1.

Παράδειγμα 6 H σειρά της συνάρτησης ln (1 � x) , �1 � x � 1

H σειρά
� 1 � t � t 2 � t 3 � … 

συγκλίνει στο ανοιχτό διάστημα �1 � t � 1. Συνεπώς,

Παρ’ όλο που το θεώρημα δεν μας εγγυάται για το τι συμβαίνει στο
x � 1, μπορεί να αποδειχτεί ότι η σειρά συγκλίνει στην τιμή ln 2.

Πολλαπλασιασμός δυναμοσειρών
Ένα τρίτο θεώρημα του προχωρημένου απειροστικού λογισμού μάς
λέει ότι μπορούμε να πολλαπλασιάζουμε μεταξύ τους δύο απολύτως
συγκλίνουσες δυναμοσειρές, σαν να ήταν πολυώνυμα. Προκύπτει έτσι
μια νέα δυναμοσειρά που επίσης συγκλίνει απολύτως.

 � x � x
2

2
 � x

3

3
 � x

4

4
 � … ,   �1 � x � 1.

 ln  (1 � x) � 
 x

0
 1
1 � t

 dt � t � t
2

2
 � t

3

3
 � t

4

4
 � …�

x

0

1
1 � t

f(x) � x � x
3

3
 � x

5

5
 � x

7

7

 .
 f 
(x) dx � 
 dx
1 � x2

 / 

f 
(x) � 1
1 � (�x2)

 � 1
1 � x2

 

.

x3

3
 � x

5

5

6458.6. Δυναμοσειρές

Προσέξτε ότι αν και η αρχική σειρά
του Παραδείγματος 5 συγκλίνει και
στα δύο άκρα του διαστήματος
σύγκλισης, εν τούτοις το Θεώρημα 13
μας εγγυάται τη σύγκλιση της
παραγώγου της σειράς μόνο μέσα στο
διάστημα.

Θεώρημα 15 Θεώρημα πολλαπλασιασμού δυναμοσειρών
Aν οι A(x) � anx

n και B(x) � bnx
n συγκλίνουν

απολύτως για �x � � R και αν

cn � a0bn � a1bn�1 � a2bn�2 � … � an�1b1 � anb0 � akbn�k,

τότε η σειρά cnx
n θα συγκλίνει απολύτως στο A(x) B(x) για

�x � � R :

��
�

n�0
 anxn� � ��

�

n�0
 bnxn� � �

�

n�0
 cnxn

 .

��
n�0

�
n

k�0

��
n�0��

n�0



Παράδειγμα 7 Eφαρμογή του θεωρήματος πολλαπλασιασμού

Πολλαπλασιάστε τη γεωμετρική σειρά

με τον εαυτό της ώστε να πάρετε μια δυναμοσειρά που παριστάνει τη
συνάρτηση 1 (1 � x) 2, για �x � � 1.

Λύση Έστω

και

Tότε, βάσει του θεωρήματος πολλαπλασιασμού σειρών, η 

είναι η σειρά που αντιστοιχεί στη συνάρτηση 1 (1 � x) 2. Kαι οι δύο
σειρές συγκλίνουν απολύτως για �x � � 1.

H παραπάνω σειρά συμπίπτει με αυτήν του Παραδείγματος 4, δε-
δομένου ότι

AΣΚΗΣΕΙΣ 8.6

d
dx

 � 1
1 � x� � 1

(1 � x)2
 .

 / 

 � 1 � 2x � 3x2 � 4x3 � … � (n � 1)xn � …

 A(x) � B(x) � �
�

n�0
 cnxn � �

�

n�0
 (n � 1)xn

 � 1 � 1 � … � 1
n � 1            

 � n � 1.

 cn � a0bn � a1bn�1 � … � akbn�k  � … � anb0

n � 1 ���	

 B(x) � �
�

n�0
 bnxn � 1 � x � x2 � … � xn � … � 1 / (1 � x)

 A(x) � �
�

n�0
 anxn � 1 � x � x2 � … � xn � … � 1 / (1 � x)

 / 

�
�

n�0
 xn � 1 � x � x2 � … � xn � … � 1

1 � x
  �	� � x � � 1,
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Διαστήματα σύγκλισης
Στις Aσκήσεις 1-32, (α) βρείτε την ακτίνα και το διάστημα
σύγκλισης κάθε σειράς. Για ποιες τιμές του x συγκλίνει η
σειρά, (β) απολύτως και (γ) υπό συνθήκη;

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26. �
�

n�0
 (�2)n(n � 1)(x � 1)n�

�

n�1
 
(�1)n�1(x � 2)n

n2 n

�
�

n�0
 n! (x � 4)n�

�

n�1
 nnxn

�
�

n�1
 (ln  n) xn�

�

n�1
 �1 � 1n�

n

 xn

�
�

n�1
 �n n(2x � 5)n�

�

n�0
 �n xn

3n

�
�

n�0
 nxn

4n(n 2 � 1)�
�

n�0
 
n(x � 3)n

5n

�
�

n�0
 

(�1)nxn

�n 2 � 3
�
�

n�0
 xn

�n 2 � 3

�
�

n�0
 
(2x � 3)2n�1

n!�
�

n�0
 x

2n�1

n!

�
�

n�0
 3

nxn

n!�
�

n�0
 
(�1)nxn

n!

�
�

n�1
 
(x � 1)n

�n
�
�

n�1
 xn

n�n3n

�
�

n�1
 
(�1)n(x � 2)n

n�
�

n�0
 nxn

n � 2

�
�

n�0
 (2x)n�

�

n�0
 
(x � 2)n

10 n

�
�

n�1
 
(3x � 2)n

n�
�

n�0
 (�1)n(4x � 1)n

�
�

n�0
  (x � 5)n�

�

n�0
 xn

φορές



27.

28.

29. 30.

31. 32.

Γεωμετρικές σειρές
Στις Aσκήσεις 33-38, βρείτε το διάστημα σύγκλισης κάθε
σειράς. Έπειτα, βρείτε τη συνάρτηση του x που παριστάνει
η σειρά στο εσωτερικό του διαστήματος σύγκλισης.

33. 34.

35. 36.

37. 38.

Θεωρία και παραδείγματα
39. Παραγώγιση όρο προς όρο Bρείτε για ποιες τιμές του x συ-

γκλίνει η σειρά

.

Ποιο είναι το άθροισμά της; Ποια σειρά προκύπτει αν
παραγωγίσετε όρο προς όρο; Για ποιες τιμές του x συ-
γκλίνει η νέα αυτή σειρά, και ποιο το άθροισμά της;

40. Oλοκλήρωση όρο προς όρο Aν ολοκληρώσετε όρο προς όρο
τη σειρά της Άσκησης 39, ποια σειρά παίρνετε; Για ποι-
ες τιμές του x συγκλίνει η νέα αυτή σειρά; Bρείτε τη συ-
νάρτηση που παριστάνει η σειρά.

41. Δυναμοσειρά του sin x H σειρά

συγκλίνει στο sin x για κάθε x .

(α) Bρείτε τους πρώτους έξι όρους της σειράς του
cosx . Για ποιες τιμές του x συγκλίνει η σειρά αυτή;

(β) Aντικαθιστώντας το x με το 2x στη σειρά του sin x ,
βρείτε μια σειρά που συγκλίνει στο sin 2x για κάθε
x .

(γ) Xρησιμοποιώντας το αποτέλεσμα του ερωτήματος
(α) και πολλαπλασιάζοντας τις κατάλληλες σειρές,
βρείτε τους πρώτους έξι όρους της σειράς του
2 sin x cos x . Συγκρίνετε το αποτέλεσμά σας με αυ-
τό που βρήκατε στο (β).

42. Δυναμοσειρά του ex H σειρά

συγκλίνει στο ex για κάθε x .

(α) Bρείτε τη σειρά της συνάρτησης (d dx)ex. Mήπως
αυτή συμπίπτει με τη σειρά του ex; Eξηγήστε για-
τί.

(β) Bρείτε τη σειρά της συνάρτησης � ex dx . Mήπως
αυτή συμπίπτει με τη σειρά του ex; Eξηγήστε για-
τί.

(γ) Aντικαταστήστε το x με το �x στη σειρά του ex

ώστε να βρείτε μια σειρά που συγκλίνει στο e�x για
κάθε x . Έπειτα πολλαπλασιάστε τις σειρές του ex

και του e�x για να βρείτε τους πρώτους έξι όρους
της σειράς της συνάρτησης e�x � ex.

43. Δυναμοσειρά της tan x H σειρά

συγκλίνει στη συνάρτηση tan x για �� 2 � x � � 2.

(α) Bρείτε τους πρώτους πέντε όρους της σειράς του
ln �sec x � . Για ποιες τιμές του x αυτή συγκλίνει;

(β) Bρείτε τους πρώτους πέντε όρους της σειράς της
sec2 x . Για ποιες τιμές του x περιμένετε αυτή να συ-
γκλίνει;

(γ) Eλέγξετε το αποτέλεσμά σας στο (β) υψώνοντας
στο τετράγωνο τη σειρά της sec x που δίνεται στην
Άσκηση 44.

44. Δυναμοσειρά της sec x H σειρά 

συγκλίνει στη συνάρτηση sec x για �� 2 � x � � 2.

(α) Bρείτε τους πρώτους πέντε όρους της δυναμοσει-
ράς της συνάρτησης ln �sec x � tan x � . Για ποιες τι-
μές του x περιμένετε αυτή να συγκλίνει;

(β) Bρείτε τους πρώτους τέσσερις όρους της σειράς
της sec x tan x . Για ποιες τιμές του x περιμένετε αυ-
τή να συγκλίνει;

(γ) Eλέγξετε το αποτέλεσμά σας στο (β) πολλαπλα-
σιάζοντας τη σειρά της συναρτήσεως sec x με τη
σειρά της tan x που δίνεται στην Άσκηση 43.

45. Mοναδικότητα συγκλίνουσας δυναμοσειράς

(α) Δείξτε ότι αν δύο δυναμοσειρές ‚�
n=0 anxn και

‚�
n=0 bnx

n συγκλίνουν και είναι ίσες για κάθε x στο
ανοιχτό διάστημα (�c , c) , τότε an � bn για κάθε n .
(Yπόδειξη: Έστω f (x) � ‚�

n=0 anx
n � ‚�

n=0 bnx
n. Πα-

ραγωγίστε όρο προς όρο για να δείξετε ότι τα an

και bn ισούνται με f (n)(0) (n!).)

(β) Δείξτε ότι αν ‚�
n=0 anx

n � 0 για κάθε x στο ανοιχτό
διάστημα (�c , c) , τότε an � 0 για κάθε n .

46. Άθροισμα της σειράς ‚�
n=0 (n2/2n) Προκειμένου να βρείτε

το άθροισμα της σειράς αυτής, εκφράστε τη συνάρτη-
ση 1 (1 � x) ως γεωμετρική σειρά, παραγωγίστε (ως
προς x ) κατά μέλη την προκύπτουσα εξίσωση, πολλα-
πλασιάστε κατά  μέλη με το x , παραγωγίστε ξανά, πολ-
λαπλασιάστε με το x ξανά, και τέλος θέστε το x ίσο με
1 2. Tι παίρνετε; (Πηγή: Eπιστολή του David E. Dobbs
στο περιοδικό Illinois Mathematics Teacher, Vol. 33,
Issue 4 (1982), p. 27.)

47. Σύγκλιση σε ακραία σημεία Δείξτε με παραδείγματα ότι αν
μια δυναμοσειρά  συγκλίνει σε ακραίο σημείο του δια-
στήματος σύγκλισης, τότε θα συγκλίνει είτε απολύτως
είτε υπό συνθήκη.

 / 

 / 

 / 

 /  / 

 sec  x � 1 � x
2

2
 � 5

24
 x4 � 61

720
 x6 � 277

8064
 x8 � …

 /  / 

 tan  x � x � x
3

3
 � 2x5

15
 � 17x7

315
 � 62x9

2835
 � …

 / 

ex � 1 � x � x
2

2!
 � x

3

3!
 � x

4

4!
 � x

5

5!
 � …

 sin  x � x � x
3

3!
 � x

5

5!
 � x

7

7!
 � x

9

9!
 �  x

11

11!
 � …

1 � 1
2

 (x � 3) � 1
4

 (x � 3)2 � … � ��1
2�

n

 (x � 3)n � …

�
�

n�0
 �x2 � 1

2 �
n

�
�

n�0
 �x2 � 1

3 �
n

�
�

n�0
 (ln  x)n�

�

n�0
 ��x

2
 � 1�

n

�
�

n�0
 
(x � 1)2n

9n�
�

n�0
 
(x � 1)2n

4n

�
�

n�0
 
(x � �2)2n�1

2 n�
�

n�1
 
(x � p)n

�n

�
�

n�1
 
(3x � 1)n�1

2n � 2�
�

n�1
 
(4x � 5)2n�1

n 3 / 2

�
�

n�2
 xn

n ln  n

�
�

n�2
 xn

n (ln  n)2
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(Συμβουλευθείτε την Άσκηση 75
της Eνότητας 8.4).

(Συμβουλευθείτε την Άσκηση 75
της Eνότητας 8.4).



8.7
Kατασκευή σειρών • Σειρές Taylor και Maclaurin • Πολυώνυμα

Taylor • Yπόλοιπο πολυωνύμου Taylor • Eκτίμηση του

υπολοίπου • Σφάλμα αποκοπής • Πίνακας σειρών Maclaurin

• Συνδυασμός σειρών Taylor

H σε βάθος κατανόηση των γεωμετρικών σειρών μάς επέτρεψε να βρί-
σκουμε δυναμοσειρές που παριστάνουν δεδομένες συναρτήσεις και
συναρτήσεις που ισοδυναμούν με δεδομένες δυναμοσειρές (υπό την
προϋπόθεση της σύγκλισης, πάντα). Στην παρούσα ενότητα θα ανα-
πτύξουμε με εργαλεία του λογισμού μια γενικότερη τεχνική κατα-
σκευής δυναμοσειρών. Σε πολλές περιπτώσεις, οι δυναμοσειρές που
κατασκευάζονται έτσι αποτελούν χρήσιμες πολυωνυμικές προσεγγί-
σεις των γεννητριών συναρτήσεών τους.

Kατασκευή σειρών
Γνωρίζουμε ότι εντός του διαστήματος σύγκλισής της, μια δυναμοσει-
ρά είναι συνεχής συνάρτηση και έχει παραγώγους όλων των τάξεων,
αλλά το αντίθετο άραγε ισχύει; Aν μια συνάρτηση f (x) έχει παραγώ-
γους όλων των τάξεων σε κάποιο διάστημα I , μπορεί να εκφραστεί ως
δυναμοσειρά στο ίδιο διάστημα I ; Kαι αν ναι, με ποιους συντελεστές;

Στο τελευταίο ερώτημα δίνεται εύκολα απάντηση αν υποθέσουμε
ότι η f (x) παριστάνεται από τη σειρά

με θετική ακτίνα σύγκλισης. Παραγωγίζοντας διαδοχικά όρο προς όρο
στο διάστημα σύγκλισης I , παίρνουμε

οπότε η n-οστή παράγωγος, για κάθε n , είναι

f (n)(x) � n!an � άθροισμα όρων με παράγοντα (x � a).

Oι παραπάνω εξισώσεις ισχύουν και για x � a , οπότε

και, εν γένει,

f (n)(a) � n!an.

Oι παραπάνω τύποι φανερώνουν τον τρόπο «σχηματισμού» των συντε-
λεστών κάθε δυναμοσειράς an(x � a)n η οποία συγκλίνει στις τι-
μές της f στο I («παριστάνει την f στο I»). H σειρά αυτή θα είναι μονα-
δική (εφόσον υπάρχει, κάτι που δεν έχει ακόμη αποδειχτεί), και ο n-
οστός συντελεστής της θα έχει τη μορφή

��
n�0

 f �(a) �  1 � 2 � 3a 3 

,

 f �(a) �   1 � 2a 2 ,

 f 
(a) �    a 1 ,

 f �(x) � 1 � 2 � 3a 3 � 2 � 3 � 4a 4(x � a) � 3 � 4 � 5a 5(x � a)2 � … ,

 f �(x) � 1 � 2a 2 � 2 � 3a 3(x � a) � 3 � 4a 4(x � a)2 � …
 f 
(x) � a 1 � 2a 2(x � a) � 3a 3(x � a)2 � … � nan(x � a)n�1 � …

 � a 0 � a 1(x � a) � a 2(x � a)2 � … � an(x � a)n � …

 f (x) � �
�

n�0
 an(x � a)n
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48. Διαστήματα σύγκλισης Kατασκευάστε μια δυναμοσειρά
της οποίας το διάστημα σύγκλισης είναι το

(α) (�3, 3) (β) (�2, 0) (γ) (1, 5).

8.7 Σειρές Taylor και Maclaurin
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Aν η f μπορεί να παρασταθεί από κάποια σειρά, η σειρά αυτή οφείλει
να είναι η εξής:

f (x) � f (a) � f 
(a)(x � a) � (x � a)2 � … � (1)

Tώρα τίθεται το ερώτημα: Aν έχουμε μια τυχούσα συνάρτηση f που εί-
ναι άπειρες φορές παραγωγίσιμη σε διάστημα I κέντρου x � a, και χρη-
σιμοποιήσουμε τη συνάρτηση αυτή για να παραγάγουμε τη σειρά της
Eξίσωσης (1), τότε θα συγκλίνει η σειρά στην f (x) για κάθε x μέσα στο
I ; H απάντηση είναι ίσωςØ για μερικές συναρτήσεις θα συγκλίνει, για
άλλες όμως όχι.

Σειρές Taylor και Maclaurin

Παράδειγμα 1 Eύρεση σειράς Taylor

Nα βρεθεί η σειρά Taylor την οποία παράγει η f (x) � 1 x στο a � 2.
Για ποια σημεία (αν υπάρχουν) συγκλίνει η σειρά στο 1 x ;

Λύση Πρέπει να βρούμε τις f (2) , f 
(2) , f �(2) , . . . . Παραγωγίζουμε,
οπότε παίρνουμε 

 f (n)(x) � (�1)nn! x�(n�1)
 ,     

f (n)(2)
n!

 � 
(�1)n

2 n�1
 .

 �  �
 �  �
 �  �

 f �(x) � �3! x�4
 ,  

f �(2)
3!

 � � 1
24

 ,

 f �(x) � 2! x�3
 ,  

f �(2)
2!

 � 2�3 � 1
23

 ,

 f 
(x) ��x�2
 ,  f 
(2) � � 1

22
 ,

 f (x) � x�1
 ,  f (2) � 2�1 � 1

2
 ,

 / 

 / 

f (n)(a)
n!

 (x � a)n � … .
f �(a)

2!

an � 
f (n)(a)

n!
 .
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Oρισμοί Σειρά Taylor, σειρά Maclaurin
Έστω f συνάρτηση με παραγώγους όλων των τάξεων σε κάθε
σημείο ενός διαστήματος και a κάποιο εσωτερικό σημείο του
διαστήματος αυτού. H σειρά Taylor που παράγεται από την f στο
x � a είναι

� f (a) � f 
(a)(x � a) � (x � a) 2 � … �

H σειρά Maclaurin που παράγεται από την f είναι

δηλαδή ισούται με τη σειρά Taylor που παράγεται από την f στο
x � 0.

�
�

k�0
 
f (k) (0)

k!
 xk � f (0) � f 
(0)x � 

f �(0)
2!

 x2 � … � 
f (n)(0)

n!
 xn � … ,

f (n)(a)
n!

 (x � a)n � … .

f �(a)
2!�

�

k�0
 
f (k)(a)

k!
 (x � a)k

Bιογραφικά στοιχεία

Brook Taylor
(1685-1731)

Colin Maclaurin
(1698-1746)
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H σειρά Taylor, λοιπόν, είναι

Πρόκειται για γεωμετρική σειρά με αρχικό όρο 1 2 και λόγο r �
�(x � 2) 2. H σειρά θα συγκλίνει απολύτως για �x �2 � � 2, και το
άθροισμά της θα είναι

Στο παράδειγμα αυτό, η σειρά Taylor που παράγεται από την f(x) �
1/x στο a � 2 θα συγκλίνει στο 1/x για �x � 2 � � 2 δηλ. για 0 � x � 4.

Πολυώνυμα Taylor
Γραμμικοποιώντας μια διαφορίσιμη συνάρτηση f σε σημείο a, παίρ-
νουμε το πολυώνυμο

P1(x) � f(a) � f 
(a)(x � a) .

Aν η f διαθέτει παραγώγους μεγαλύτερης τάξης στο a τότε θα διαθέ-
τει και πολυωνυμικές προσεγγίσεις μεγαλύτερης τάξης (μία προσέγγι-
ση για κάθε παράγωγο). Tα πολυώνυμα αυτά καλούνται πολυώνυμα
Taylor της f

Eίδαμε ότι η γραμμικοποίηση της f στο x � a παρέχει την καλύτε-
ρη γραμμική προσέγγιση της f στη γειτονιά του a. Oμοίως, τα μεγαλύ-
τερης τάξης πολυώνυμα Taylor παρέχουν τις βέλτιστες (πολυωνυμι-
κές) προσεγγίσεις των πολυωνυμικών συναρτήσεων αντίστοιχου βαθ-
μού. (Δείτε την Άσκηση 58.)

Παράδειγμα 2 Eύρεση πολυωνύμων Taylor για το ex

Nα βρεθεί η σειρά Taylor και τα πολυώνυμα Taylor τα οποία παράγει
η   f(x) � ex στο x � 0.

Λύση Eφόσον

f (x) � ex, f 
(x) � ex, . . . , f (n)(x) � ex, . . . ,

θα έχουμε

f(0) � e0 � 1, f 
(0) � 1, . . . , f (n)(0) � 1, . . . .

H σειρά Taylor την οποία παράγει η f στο x � 0 είναι, λοιπόν,

 .

 ,

1 / 2
1 � (x � 2) / 2

 � 1
2 � (x � 2)

 � 1x .

 / 

 / 

 � 1
2

 � 
(x � 2)

22
 � 

(x � 2)2

23
 � … � (�1)n 

(x � 2)n

2 n�1
 � … .

 f (2) � f 
(2)(x � 2) � 
f �(2)

2!
 (x � 2)2 � … � 

f (n)

n!
 (x � 2)n � …
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Oρισμός Πολυώνυμο Taylor τάξης n
Έστω f συνάρτηση με παραγώγους k τάξης για k � 1, 2, . . . , N σε
κάποιο διάστημα που περιέχει το a ως εσωτερικό σημείο. Για
κάθε ακέραιο n από 0 έως N το πολυώνυμο Taylor τάξης n που
παράγεται από την f στο x � a είναι το εξής:

Pn(x) � f (a) � f 
(a)(x � a) � (x � a) 2 � … 

� (x � a)k � … � (x � a)n. 
f (n)(a)

n!
f (k)(a)

k!

f n(a)
—–—

2!

 ,

Kάνουμε λόγο για πολυώνυμο Taylor
τάξης n και όχι βαθμού n διότι η f (n)(a)
μπορεί να μηδενίζεται. Tα πρώτα δύο
πολυώνυμα Taylor του cos x στο x � 0,
για παράδειγμα, είναι P0(x) � 1 και
P1(x) � 1. Έτσι, το πολυώνυμο πρώτης
τάξης είναι μηδενικού βαθμού, όχι
πρώτου βαθμού.

CD-ROM
Δικτυότοπος



Eξ ορισμού, αυτή δεν είναι παρά η σειρά Maclaurin του ex. Όπως θα
δούμε σε λίγο, η σειρά αυτή συγκλίνει στο ex για κάθε x .

Tο πολυώνυμο Taylor τάξης n στο x � 0 είναι

Δείτε το Σχήμα 8.18.

Παράδειγμα 3 Eύρεση πολυωνύμων Taylor για το cos x

Nα βρεθεί η σειρά Taylor και τα πολυώνυμα Taylor τα οποία παράγει
η   f(x) � cos x στο x � 0.

Λύση H συνάρτηση συνημιτόνου και οι παράγωγοί της είναι

Στο x � 0, τα συνημίτονα ισούνται με 1 και τα ημίτονα με 0, οπότε

f (2n)(0) � (�1)n, f (2n�1)(0) � 0.

H σειρά Taylor που παράγεται από την f στο 0 είναι

Eξ ορισμού, αυτή ταυτίζεται με τη σειρά Maclaurin για το cos x
Aργότερα θα δούμε ότι η σειρά συγκλίνει στο cos x για κάθε x

Eφόσον f (2n�1)(0) � 0, τα πολυώνυμα Taylor των τάξεων 2n και
2n � 1 ταυτίζονται:

 .
 .

 � 1� 0 � x � x
2

2!
 � 0 � x3� x

4

4!
 �…�(�1)n x2n

(2n)!
 �… � �

�

n�0
 
(�1)nx2n

(2n)!
 .

 f (0) � f 
(0)x � 
f �(0)

2!
 x2 � 

f �(0)
3!

 x3 � … � 
f (n)(0)

n!
 xn � …

 f (2n)(x) � (�1)n  cos  x ,    f (2n�1)(x) � (�1)n�1 sin  x .
 �  �
 �  �
 �  �

 f �(x) � (1)n �cos  x ,   f (3)(x) � (1)n�1 �sin  x ,

 f (x) � (1)n �cos  x ,   f 
(x) � (1)n�1 �sin  x ,

Pn(x) � 1 � x � x
2

2
 � … � x

n

n!
 .

 � �
�

k�0
 x

k

k!
 .

f n(0) f (n)(0) x2 xn

f (0) + f ΄(0)x + —–— x2 +. . .+ —––— xn +.. .= 1 + x + — +.. .+ — +.. .
2! n! 2 n!
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x

y

0,5

1,0

y � ex

0 0,5–0,5

1,5

2,0

2,5

3,0 y � P3(x)

y � P2(x)

y � P1(x)

1,0

ΣXHMA 8.18 Γραφική παράσταση
της f (x) � και των
πολυωνύμων  Taylor αυτής

Προσέξτε την πολύ καλή συμ-
φωνία κοντά στο κέντρο x � 0.

 P3(x) � 1 � x � (x2
 / 2!) � (x3

 / 3!) .

 P2(x) � 1 � x � (x2
 / 2!)

 P1(x) � 1 � x

ex
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P2n(x) � P2n�1(x) � 1 �

Tο Σχήμα 8.19 δείχνει πόσο πιστά προσεγγίζουν την f(x) � cos x τα
πολυώνυμα αυτά κοντά στο x � 0. Λόγω της συμμετρίας ως προς τον
άξονα y, μόνο το δεξιό σκέλος των γραφημάτων παρατίθεται εδώ.

Παράδειγμα 4 Mια συνάρτηση f με σειρά Taylor συγκλίνουσα
για κάθε x, που συγκλίνει όμως στην f(x) μονάχα για x � 0

Mπορεί να δειχθεί (όχι και τόσο εύκολα) ότι η

(Σχήμα 8.20) έχει παραγώγους όλων των τάξεων στο x � 0 και ότι
f (n)(0) � 0 για κάθε n Συνεπώς, η σειρά Taylor που παράγεται από
την f στο x � 0 είναι

H σειρά συγκλίνει για κάθε x (έχοντας όριο 0), αλλά συγκλίνει στην
f(x) μονάχα για x � 0.

 � 0 � 0 � … � 0 � … .

 � 0 � 0 � x � 0 � x2 � … � 0 � xn � …

 f (0) � f 
(0)x � 
f �(0)

2!
 x2 � … � 

f (n)(0)
n!

 xn � …

 .

f (x) � �0,
e�1 / x2

,
 x � 0

x � 0

x2

2!
 � x

4

4!
 � … � (�1)n x2n

(2n)!
 .
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x

y

0 1

1

y � cos x

2

–1

–2

2 3 4 5 6 7 9

P0

P4 P8 P12 P16

P10 P14 P18P2 P6

8

ΣXHMA 8.19 Tα πολυώνυμα

συγκλίνουν στο cos x καθώς n l �. H συμπεριφορά του cos x σε αυ-
θαίρετη απόσταση από την αρχή μπορεί να εξαχθεί απλώς και μόνο
με γνώση του συνημιτόνου και των παραγώγων του στο x � 0.

P2n(x) � �
n

k�0
 
(�1)kx2k

(2k)!

Στην πράξη σπανίζουν οι συναρτήσεις
που, όντας άπειρες φορές
παραγωγίσιμες, διαθέτουν σειρές
Taylor σε μεμονωμένα μονάχα σημεία
τους.

⎧
⎨
⎩ ,  x ≠ 0

 x = 0

x

y

0 1 2 3 4

1

–1–2–3–4

y �
 e–1/x2 

0 ,

ΣXHMA 8.20 H γραφική παράσταση της συνεχούς επέκτασης της
y � «οριζοντιώνεται» στην αρχή των αξόνων, οπότε όλες οι
παράγωγοί της μηδενίζονται εκεί. (Παράδειγμα 4)

e�1 / x2



Παραμένουν αναπάντητα δύο ερωτήματα.

1. Για ποιες τιμές του x μπορούμε να περιμένουμε ότι η σειρά Taylor
θα συγκλίνει στη γεννήτρια συνάρτησής της;

2. Πόσο αξιόπιστα προσεγγίζουν μια συνάρτηση σε δεδομένο διά-
στημα τα αντίστοιχα πολυώνυμα Taylor;

Παρακάτω θα απαντήσουμε στα ερωτήματα αυτά.

Yπόλοιπο πολυωνύμου Taylor
Xρειαζόμαστε κάποιο μέτρο της ακρίβειας με την οποία το πολυώνυ-
μο Taylor Pn(x) προσεγγίζει την τιμή της συνάρτησης f (x). Για τον
σκοπό αυτόν χρησιμοποιούμε την έννοια του υπολοίπου Rn(x), που ορί-
ζεται ως εξής:

f (x) � Pn(x) � Rn(x) .

Aκριβής Προσεγγιστική Yπόλοιπο
τιμή τιμή

H απόλυτη τιμή �Rn(x) � � � f (x) � Pn(x) � καλείται σφάλμα της προσέγ-
γισης.

Xάρη στο ακόλουθο θεώρημα μπορούμε να κάνουμε μια εκτίμηση
του υπολοίπου ενός πολυωνύμου Taylor.

Tο θεώρημα Taylor αποτελεί γενίκευση του θεωρήματος μέσης τι-
μής (Άσκηση 49). H μακροσκελής απόδειξη παρατίθεται στο Παράρ-
τημα 8.

Aν Rn(x) l 0 καθώς n l � για κάθε x στο I , λέμε ότι η σειρά Taylor
που παράγεται από την f στο x � a συγκλίνει στην f στο I , και γράφου-
με

Παράδειγμα 5 H σειρά Maclaurin του ex

Δείξτε ότι η σειρά Taylor που παράγεται από την f(x) � ex στο x � 0
συγκλίνει στην f(x) για κάθε πραγματική τιμή του x .

Λύση H συνάρτηση έχει παραγώγους όλων των τάξεων σε όλο το
διάστημα I � (�� , �) και, βάσει του Παραδείγματος 2,

ex � 1 � x � � … � � Rn(x) ,

όπου

Rn(x) � xn�1 για κάποιο c μεταξύ του 0 και του x .ec

(n � 1)!

xn

n!
x2

2!

f (x) � �
�

k�0
 
f (k)(a)

k!
 (x � a)k .
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Θεώρημα 16 Θεώρημα Taylor
Aν η f είναι n � 1 φορές παραγωγίσιμη σε ένα ανοιχτό
διάστημα I που περιέχει το a , τότε για κάθε x στο I , θα υπάρχει
αριθμός c μεταξύ των x και a τέτοιος ώστε

f (x) � f (a)�f 
(a)(x�a)� (x�a)2�…� (x�a)n�Rn(x)

όπου

Rn(x) � (x � a)n�1.
f (n�1)(c)
(n � 1)!

f (n)(a)
n!

f �(a)
2!



Eφόσον η ex είναι αύξουσα συνάρτηση του x , το ec κείται μεταξύ των
e0 � 1 και ex. Για αρνητικό x, το c είναι επίσης αρνητικό, δηλ. ec�1.
Για x ίσο με μηδέν, ex � 1 και Rn(x) � 0. Για θετικό x, το c είναι επί-
σης θετικό, άρα ec � ex. Συνεπώς,

�Rn(x) � � για x � 0,

και

�Rn(x) � � ex για x � 0.

Tέλος, επειδή

� 0 για κάθε x ,

θα είναι limnl� Rn(x) � 0, και άρα η σειρά συγκλίνει στο ex για κάθε
x .

Eκτίμηση του υπολοίπου
Πολλές φορές μπορούμε να εκτιμήσουμε την τιμή του Rn(x) όπως κά-
ναμε στο Παράδειγμα 5. H μέθοδος αυτή είναι τόσο εύχρηστη που την
ανάγουμε σε θεώρημα.

Στα απλούστερα παραδείγματα παίρνουμε r � 1 εφόσον η f και όλες
οι παράγωγοί της είναι απολύτως φραγμένες από μια σταθερά M . Σε άλ-
λες περιπτώσεις δίνουμε διαφορετική τιμή στο r . Για παράδειγμα, αν f(x)
� 2 cos (3x), τότε κάθε παραγώγιση προσδίδει έναν παράγοντα 3 και έτσι
το r πρέπει να γίνει μεγαλύτερο του 1. Θέτουμε λοιπόν εδώ r � 3 και 
M � 2.

Aς δούμε με μερικά παραδείγματα πώς εφαρμόζουμε τα θεωρήμα-
τα Taylor και εκτίμησης υπολοίπου για να εξετάσουμε τη σύγκλιση
συναρτήσεων. Mε τα θεωρήματα αυτά μπορούμε επίσης να προσδιορί-
σουμε με πόση ακρίβεια προσεγγίζεται μια συνάρτηση από κάποιο πο-
λυώνυμο Taylor.

Παράδειγμα 6 Σειρά Maclaurin του sin x

Δείξτε ότι η σειρά Maclaurin του sin x συγκλίνει στο sin x για κάθε x .

Λύση H συνάρτηση και οι παράγωγοί της είναι

 f (2k)(x) � (�1)k
 sin  x ,    f (2k�1)(x) � (�1)k cos  x ,

 �     � 
 �     � 
 �         � 

 f �(x) � (1)n �sin  x ,   f �(x) � (1)k �cos  x ,

 f (x) � (1)n �sin  x ,   f 
(x) � (1)k �cos  x ,

lim
nl�

  xn�1

(n � 1)!

xn�1

(n � 1)!

� x �n�1

(n � 1)!
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Πίνακας 8.1, Tύπος 6

Θεώρημα 17 Θεώρημα εκτίμησης υπολοίπου
Aν υπάρχουν θετικές σταθερές M και r τέτοιες ώστε
� f (n�1)(t) � � Mrn�1 για κάθε t μεταξύ των a και x , τότε το
υπόλοιπο Rn(x) του θεωρήματος Taylor θα ικανοποιεί την
ανισότητα

�Rn(x) � � M 

Aν πληρούνται οι παραπάνω συνθήκες για κάθε n, και αν η f
πληροί όλες τις υπόλοιπες συνθήκες του θεωρήματος Taylor,
τότε η σειρά συγκλίνει στην f (x) .

rn�1� x � a �n�1

(n � 1)!
 .



οπότε

f (2k)(0) � 0 και f (2k�1)(0) � (�1)k.

H σειρά έχει μονάχα όρους περιττής δύναμης, και για n � 2k � 1, το θε-
ώρημα Taylor δίνει

Όλες οι παράγωγοι του sin x είναι κατ’ απόλυτη τιμή μικρότερες ή
ίσες του 1, άρα μπορούμε να εφαρμόσουμε το θεώρημα εκτίμησης
υπολοίπου για M � 1 και r � 1, παίρνοντας

�R2k�1(x) � � 1 �

Eφόσον (�x �2k�2 (2k � 2)!) l 0 καθώς k l � , ανεξαρτήτως της τιμής
του x , θα έχουμε R2k�1(x) l 0, και άρα η σειρά Maclaurin του sin x θα
συγκλίνει στο sin x για κάθε x .

Παράδειγμα 7 Σειρά Maclaurin του cos x

Δείξτε ότι η σειρά Maclaurin του cos x θα συγκλίνει στο cos x για κά-
θε x .

Λύση Aπό το Παράδειγμα 3 παίρνουμε το πολυώνυμο Taylor του
cos x στο οποίο προσθέτουμε τον όρο του υπολοίπου. Έτσι έχουμε
τον τύπο Taylor για το cos x με n � 2k :

Όλες οι παράγωγοι του cos x είναι κατ’ απόλυτη τιμή μικρότερες ή
ίσες του 1, οπότε το θεώρημα εκτίμησης υπολοίπου για M � 1 και
r � 1 μας δίνει

�R2k(x) � � 1 �

Για κάθε x , είναι R2k l 0 καθώς k l � . Συνεπώς, η σειρά συγκλίνει
στο cos x για κάθε x .

Σφάλμα αποκοπής
H σειρά Maclaurin του ex συγκλίνει στο ex για κάθε x , αλλά μένει ακό-
μη να μάθουμε πόσους όρους χρειαζόμαστε για να προσεγγίσουμε το
ex με δεδομένο βαθμό ακρίβειας. Tην πληροφορία αυτή μάς δίνει το θε-
ώρημα εκτίμησης υπολοίπου.

Παράδειγμα 8 Yπολογισμός του e

Yπολογίστε το e με σφάλμα μικρότερο του 10�6.

Λύση Xρησιμοποιούμε τον τύπο του Παραδείγματος 2 για x � 1,
οπότε 

e � 1 � 1 � � … � � Rn(1) ,

με

Rn(1) � ec για κάποιο c μεταξύ των 0 και 1.

Για τους σκοπούς του παραδείγματος, έστω πως ξέρουμε ότι e � 3.
Eίμαστε λοιπόν βέβαιοι ότι

1
(n � 1)!

1
n!

1
2!

� x �2k�1

(2k � 1)!
 .

 cos  x � 1 � x
2

2!
 � x

4

4!
 � … � (�1)k x2k

(2k)!
 � R2k(x) .

 / 

� x �2k�2

(2k � 2)!
 .

 sin  x � x � x
3

3!
 � x

5

5!
 � … � 

(�1)kx2k�1

(2k � 1)!
 � R2k�1(x) .
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εφόσον 1 � ec � 3 για 0 � c � 1.
Δοκιμάζοντας διάφορα νούμερα, βρίσκουμε ότι 1 9! � 10�6, ενώ

3 10! � 10�6. Συνεπώς, το (n � 1) θα πρέπει να είναι μεγαλύτερο ή
ίσο του 10, δηλ. το n μεγαλύτερο ή ίσο του 9. Έτσι με σφάλμα μι-
κρότερο του 10�6, γράφουμε

e � 1 � 1 � � … � 
 2,7182 82.

Παράδειγμα 9 H συνάρτηση ημιτόνου ως πολυώνυμο βαθμού 3

Για ποιες τιμές του x μπορούμε να αντικαταστήσουμε το sin x με το
x � (x 3 3!) με σφάλμα μικρότερο (κατ’ απόλυτη τιμή) του 3 
 10�4;

Λύση Bάσει του Παραδείγματος 6, το x � (x 2 3!) � 0 � x � 0x 2 �
(x3 3!) � 0x4 είναι το πολυώνυμο Taylor τάξης 4, αλλά και τάξης 3, του
sin x. Oπότε,

sin x � x � � 0 � R4,

και το θεώρημα εκτίμησης υπολοίπου για M � r � 1 δίνει

�R4 � � 1 �

Έτσι, το σφάλμα θα είναι μικρότερο ή ίσο του 3 
 10�4 αν

� 3 
 10�4, δηλ. αν �x � � 
 0,514.

Tο θεώρημα εκτίμησης εναλλασσόμενης σειράς μας λέει κάτι
που το θεώρημα εκτίμησης υπολοίπου παραλείπει: συγκεκριμένα,
ότι η έκφραση x � (x 3 3!) «υποεκτιμά» το sin x για θετικό x επειδή η
ποσότητα x 5 120 είναι στην περίπτωση αυτή θετική.

Tο Σχήμα 8.21 δείχνει το γράφημα του sin x , μαζί με τα γραφή-
ματα μερικών προσεγγιστικών πολυωνύμων Taylor της συνάρτησης.
Όπως βλέπετε, η καμπύλη P3(x) � x � (x 3 3!) δεν διαφέρει σχεδόν
καθόλου από την ημιτονοειδή καμπύλη στο διάστημα �1 � x � 1.

 / 

 / 

 / 

�5 360 
 10�4� x �5

120

� x �5

5!
 � 

� x �5

120
 .

x3

3!

 / 

 / 

 / 

1
9!

1
2
 � 1

3!

 / 

 / 

1
(n � 1)!

 � Rn(1) � 3
(n � 1)!
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Στρογγυλοποιούμε
προς τα κάτω, για
να είμαστε βέβαιοι

y

0 1

1
y � sin x

2

–1

–2

2 3 4 8 9

P1 P5 P9 P13 P17

P11 P15 P19P3 P7

5 6 7
x

ΣXHMA 8.21 Tα πολυώνυμα

συγκλίνουν στο sin x καθώς n l �.

P2n�1(x) � �
n

k�0
 
(�1)kx2k�1

(2k � 1)!



Πίνακας σειρών Maclaurin
Παραθέτουμε εδώ μερικές από τις χρησιμότερες σειρές Maclaurin από
αυτές που είδαμε ώς τώρα. Στις ασκήσεις θα σας ζητηθεί να χρησιμο-
ποιήσετε τις σειρές αυτές για να κατασκευάσετε άλλες σειρές (π.χ.,
των συναρτήσεων tan�1 x 2 , 7xex, κ.ο.κ.). Παραθέτουμε επίσης τα δια-
στήματα σύγκλισης.

Σειρές Maclaurin 

1.

2.

3. (για κάθε πραγματικό x)

4.

(για κάθε πραγματικό x)

5.

(για κάθε πραγματικό x)

6.

7.

Συνδυασμός σειρών Taylor
Δύο ή περισσότερες σειρές Taylor μπορούν (στην τομή των διαστημά-
των σύγκλισής τους) να προστεθούν, να αφαιρεθούν η μία από την άλ-
λη, να πολλαπλασιασθούν με σταθερές ή και με δυνάμεις του x , έτσι
ώστε η προκύπτουσα σειρά να είναι πάλι μια σειρά Taylor. H σειρά
Taylor του αθροίσματος f (x) � g(x) είναι το άθροισμα των σειρών
Taylor της f (x) και της g(x) διότι η n-οστή παράγωγος της f � g είναι η
f (n) � g(n), κ.ο.κ. H σειρά Maclaurin του (1 � cos 2x) 2 προκύπτει αν
αντικαταστήσουμε το x με το 2x στη σειρά Maclaurin του cos x , προ-
σθέτοντας το 1, και διαιρώντας με το 2. H σειρά Maclaurin του sin x �
cos x είναι το άθροισμα των σειρών του sin x και του cos x . H σειρά
Maclaurin του x sin x προκύπτει αν πολλαπλασιάσουμε όλους τους ό-
ρους της σειράς Maclaurin του sin x με το x .

Παράδειγμα 10 Eύρεση σειράς Maclaurin με αντικατάσταση

Bρείτε τη σειρά Maclaurin του cos 2x .

Λύση Στον τύπο της σειράς Maclaurin του cos x, αντικαθιστούμε
το x με 2x:

 � �
�

k�0
 (�1)k 2

2kx2k

(2k)!
 .

 � 1 � 2
2x2

2!
 � 2

4x4

4!
 � 2

6x6

6!
 � …

  cos  2x ��
�

k�0
 
(�1)k(2x)2k

(2k)!
 � 1 � 

(2x)2

2!
 � 

(2x)4

4!
 � 

(2x)6

6!
 � …

 / 

 � �
�

n�0
 (�1)n x2n�1

2n � 1
 (� x � � 1)  tan�1 x � x � x

3

3
 � x

5

5
 � … � (�1)n x2n�1

2n � 1
 � …

 � �
�

n�
 (�1)n�1 x

n

n  (�1 � x � 1) ln (1 � x) � x � x
2

2
 � x

3

3
 � … � (�1)n�1 x

n

n  �…

 � �
�

n�0
 (�1)n x2n

(2n)!
  cos  x � 1 � x

2

2!
 � x

4

4!
 � … � (�1)n x2n

(2n)!
 � …

 � �
�

n�0
 (�1)n x2n�1

(2n � 1)!
  sin  x � x � x

3

3!
 � x

5

5!
 � … � (�1)n x2n�1

(2n � 1)!
 � …

ex � 1 � x � x
2

2!
 � … � x

n

n!
 � … � �

�

n�0
 x

n

n!

1
1 � x

 � 1 � x � x2 � … � (�x)n � … � �
�

n�0
 (�1)nxn   (� x � � 1)

1
1 � x

 � 1 � x � x2 � … � xn � … � �
�

n�0
 xn   (� x � � 1)
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H Eξίσωση (5) ισχύει για �� � x � � , άρα και για �� � 2x � � ,
επομένως η σειρά που βρήκαμε συγκλίνει για κάθε x . Λύνοντας την
Άσκηση 54 θα πεισθείτε γιατί η σειρά που βρήκαμε δεν μπορεί να εί-
ναι άλλη από τη σειρά Maclaurin του cos 2x .

Παράδειγμα 11 Eύρεση σειράς Maclaurin με πολλαπλασιασμό

Bρείτε τη σειρά Maclaurin του x sin x .

Λύση Πολλαπλασιάζουμε τον τύπο της σειράς Maclaurin του  sin
x (Eξίσωση (4)), με το x :

H προκύπτουσα σειρά συγκλίνει για κάθε x, δεδομένου ότι η σει-
ρά του sin x συγκλίνει για κάθε x . Λύνοντας την Άσκηση 54 θα πει-
σθείτε γιατί η σειρά που βρήκαμε δεν μπορεί να είναι άλλη από τη
σειρά Maclaurin του x sin x .

AΣΚΗΣΕΙΣ 8.7

 � x2 � x
4

3!
 � x

6

5!
 � x

8

7!
 � … .

 x  sin  x � x �x � x
3

3!
 � x

5

5!
 � x

7

7!
 � …�
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Eύρεση πολυωνύμων Taylor
Στις Aσκήσεις 1-6 βρείτε τα πολυώνυμα Taylor τάξεως 0, 1,
2, και 3 που παράγονται από την f στο a

1. f (x) � ln x , a � 1

2. f (x) � ln (1 � x) , a � 0

3. f (x) � a � 0

4. f (x) � sin x , a � � 4

5. f (x) � cos x , a � � 4

6. f (x) � , a � 4

Eύρεση σειρών Maclaurin 
Bρείτε τις σειρές Maclaurin για τις συναρτήσεις των
Aσκήσεων 7-14.

7. e�x

8.

9. sin 3x

10. 7 cos (�x)

11. cosh x �

12. sinh x �

13. x 4 � 2x 3 � 5x � 4

14. (x � 1)2

Eύρεση σειρών Taylor 
Στις Aσκήσεις 15-20, βρείτε τις σειρές Taylor που παράγο-
νται από την f στο x � a .

15. f (x) � x 3 � 2x � 4, a � 2

16. f (x) � 3x 5 � x 4 � 2x 3 � x 2 � 2, a � �1

17. f (x) � 1 x 2, a � 1

18. f (x) � x (1 � x) , a � 0

19. f (x) � ex, a � 2

20. f (x) � 2x, a � 1

Σειρές Maclaurin 
Kάνοντας την κατάλληλη αντικατάσταση, όπως στο Παρά-
δειγμα 10, βρείτε τις σειρές Maclaurin για τις συναρτήσεις
των Aσκήσεων 21-24.

21. e�5x 22.

23. sin 24. cos 

Σειρές Maclaurin 
Mε κατάλληλη χρήση των σειρών Maclaurin που δίνονται
στον πίνακα της τελευταίας ενότητας, βρείτε τις σειρές
Maclaurin για τις συναρτήσεις των Aσκήσεων 25-34.

25. xex 26. x 2 sin x

27. � 1 � cos x 28. sin x � x �

29. x cos �x

x3

3!
x2

2

�x�px
2 �

e�x / 2

 / 

 / 

ex � e�x

2

ex � e�x

2

1
1 � x

�x

 / 

 / 

1
(x � 2)

 ,

 .
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30. cos2 x (Yπόδειξη: cos2 x � (1 � cos 2x) 2.)

31. sin2 x 32.

33. x ln (1 � 2x) 34.

Eκτίμηση σφάλματος
35. Mάθετε γράφοντας Για ποιες κατά προσέγγιση τιμές του x

μπορούμε να αντικαταστήσουμε το sin x με το x � (x3/6)
ώστε το προσεγγιστικό σφάλμα να μην υπερβαίνει το
5 
 10�4; Aιτιολογήστε την απάντησή σας.

36. Mάθετε γράφοντας Kάντε μια εκτίμηση του προσεγγιστι-
κού σφάλματος αν αντικαταστήσουμε το cos x με το
1 � (x 2 2) για �x � � 0,5. H ποσότητα 1 � (x 2 2) παίρνει
μεγαλύτερες ή μικρότερες τιμές από το cos x; Aιτιολο-
γήστε την απάντησή σας.

37. Γραμμική προσέγγιση του sin x Πόσο καλή είναι η προσέγ-
γιση sin x � x για �x � � 10�3; Για ποιες από τις τιμές
αυτές του x ισχύει x � sin x;

38. Γραμμική προσέγγιση του H προσέγγιση �
1 � (x 2) χρησιμοποιείται για μικρά x. Eκτιμήστε το
σφάλμα για �x � � 0,01.

39. Δευτεροβάθμια προσέγγιση του ex

(α) H προσέγγιση ex � 1 � x � (x 2 2) χρησιμοποιείται
για μικρά x. Mε χρήση του θεωρήματος εκτίμησης
υπολοίπου εκτιμήστε το σφάλμα για �x � � 0,1.

(β) Για x � 0, η σειρά του ex είναι εναλλασσόμενη.
Xρησιμοποιήστε το θεώρημα εκτίμησης εναλλασ-
σόμενης σειράς για να εκτιμήσετε το σφάλμα προ-
σέγγισης του ex με το 1 � x � (x 2 2) για �0,1 � x
� 0. Συγκρίνετε την εκτίμησή σας με αυτήν που
κάνατε στο ερώτημα (α).

40. Kυβική προσέγγιση του sinh x Eκτιμήστε το σφάλμα της
προσέγγισης sinh x � x � (x 3 3!) για �x � � 0,5. (Yπόδει-
ξη: Xρησιμοποιήστε το R4, όχι το R3.)

41. Γραμμική προσέγγιση του eh Για 0 � h � 0,01, δείξτε ότι το
eh μπορεί να προσεγγιστεί από το 1 � h με σφάλμα όχι
μεγαλύτερο του 0,6% του h . Θεωρήστε ότι e0,0l � 1,01.

42. Προσεγγίζοντας το ln (1 � x) με το x Για ποιες θετικές τι-
μές του x μπορούμε να αντικαταστήσουμε το ln (1 � x)
με το x, ώστε το προσεγγιστικό σφάλμα να μην υπερ-
βαίνει το 1% του x;

43. Eκτίμηση του �/4 Έστω ότι θέλουμε να εκτιμήσουμε το
� 4 υπολογίζοντας την κατάλληλη σειρά Maclaurin
της συνάρτησης tan�1 x στο x � 1. Xρησιμοποιήστε το
θεώρημα εκτίμησης εναλλασσόμενης σειράς για να
προσδιορίσετε πόσους όρους της σειράς χρειάζεστε,
ώστε η προσέγγισή σας να έχει ακρίβεια δύο δεκαδι-
κών ψηφίων.

44. Φράγμα της y � (sin x)/x

(α) Xρησιμοποιήστε τη σειρά Maclaurin του sin x και
το θεώρημα εκτίμησης εναλλασσόμενης σειράς
για να δείξετε ότι

(β) Mάθετε γράφοντας Σχεδιάστε σε κοινό σχήμα την
f (x) � (sin x) x και τις συναρτήσεις y � 1 � (x 2 6)

και y � 1 για �5 � x � 5. Σχολιάστε τη σχέση με-
ταξύ των καμπυλών του σχήματος.

Δευτεροβάθμιες προσεγγίσεις

Tο πολυώνυμο Taylor τάξης 2 που παράγεται από τη διπλά
διαφορίσιμη συνάρτηση f (x) στο x � a καλείται δευτερο-
βάθμια προσέγγιση της f στο x � a Στις Aσκήσεις 45-48,
καλείστε να βρείτε 

(α) τη γραμμικοποίηση (πολυώνυμο Taylor τάξης 1)
στο x � 0

(β) τη δευτεροβάθμια προσέγγιση της f στο x � 0.

45. f (x) � ln (cos x) 46. f (x) � esin x

47. f (x) � 1 48. f (x) � cosh x

Θεωρία και παραδείγματα
49. Θεώρημα Taylor και θεώρημα μέσης τιμής Eξηγήστε γιατί το

θεώρημα μέσης τιμής (Eνότητα 3.2, Θεώρημα 4) απο-
τελεί ειδική περίπτωση του θεωρήματος Taylor.

50. Γραμμικοποιήσεις σε σημεία καμπής (Συνέχεια από την Eνό-
τητα 3.6, Άσκηση 49) Δείξτε ότι αν η γραφική παράστα-
ση μιας διπλά διαφορίσιμης συνάρτησης f (x) έχει ση-
μείο καμπής στο x � a , τότε η γραμμικοποίηση της f
στο x � a συμπίπτει με τη δευτεροβάθμια προσέγγιση
της f στο x � a . Aυτός είναι και ο λόγος για τον οποίο
η εφαπτόμενη ευθεία ταιριάζει τόσο καλά στην καμπύ-
λη στα σημεία καμπής.

51. Tο (δεύτερο) κριτήριο δεύτερης παραγώγου Xρησιμοποιή-
στε την εξίσωση 

f (x) � f (a) � f 
(a)(x � a) � (x � a) 2

για να κατοχυρώσετε το ακόλουθο κριτήριο.
Έστω ότι η f έχει συνεχή πρώτη και δεύτερη πα-

ράγωγο και ότι f 
(a) � 0. Στην περίπτωση αυτή

(α) H f έχει τοπικό μέγιστο στο a αν f � � 0 σε όλο το
διάστημα στο εσωτερικό του οποίου ανήκει το a .

(β) H f έχει τοπικό ελάχιστο στο a αν f � � 0 σε όλο το
διάστημα στο εσωτερικό του οποίου ανήκει το a .

52. Kυβική προσέγγιση Xρησιμοποιήστε τον τύπο του Taylor
με a � 0 και n � 3 για να βρείτε τη συνήθη κυβική προ-
σέγγιση της f (x) � 1 (1 � x) στο x � 0. Bρείτε ένα άνω
φράγμα του προσεγγιστικού σφάλματος για �x � � 0,1.

53. Bελτίωση προσεγγίσεων του �

(α) Έστω P μια προσέγγιση του � με ακρίβεια n δεκα-
δικών ψηφίων. Δείξτε ότι η ποσότητα P � sin P
προσεγγίζει το � με ακρίβεια 3n δεκαδικών ψη-
φίων. (Yπόδειξη: Θέστε P � � � x.)

(β) Δοκιμάστε το με ένα κομπιουτεράκι.

54. H σειρά Maclaurin την οποία παράγει η f(x) � ‚�
n = 0 anx

n είναι η
‚�

n = 0 anx
n H συνάρτηση που ορίζεται από τη δυναμοσειρά

anxn με ακτίνα  σύγκλισης c � 0 έχει σειρά
Maclaurin που συγκλίνει στη συνάρτηση σε κάθε ση-
μείο του διαστήματος (�c , c). Aποδείξτε την παραπάνω
πρόταση δείχνοντας ότι η σειρά Maclaurin την οποία
παράγει η f(x) � anx

n είναι η ίδια η anx
n.��

n�0��
n�0

��
n�0

 / 

f �(c2)
2

�1 � x2
 / 

 .

 /  / 

1 � x
2

6
  �   sin  x

x   �  1,   x � 0.

 / 

 / 

 / 

 / 

 / 

�1 � x�1 � x

 /  / 

1
(1 � x)2

x2

1 � 2x

 / 
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Mια άμεση συνέπεια είναι ότι σειρές όπως η

x sin x � x 2 �

και η 

x 2ex � x 2 � x 3 �

που προκύπτουν αν πολλαπλασιάσουμε σειρές Maclau-
rin με δυνάμεις του x αλλά και όλες οι σειρές που προ-
κύπτουν με την ολοκλήρωση ή την παραγώγιση μιας
συγκλίνουσας δυναμοσειράς, είναι οι ίδιες οι σειρές
Maclaurin των συναρτήσεων τις οποίες παριστάνουν.

55. Σειρές Maclaurin για άρτιες και περιττές συναρτήσεις Έστω
ότι η f (x) � anx

n συγκλίνει για κάθε x στο ανοιχτό
διάστημα (�c , c) .

(α) Δείξτε ότι αν η f είναι άρτια, τότε a1 � a3 � a5 � …
� 0Ø ότι δηλαδή η σειρά της f περιέχει μόνο άρτιες
δυνάμεις του x .

(β) Δείξτε ότι αν η f είναι περιττή, τότε a0 � a2 � a4 �
… � 0Ø ότι δηλαδή ότι η σειρά της f περιέχει μόνο
περιττές δυνάμεις του x .

56. Πολυώνυμα Taylor περιοδικών συναρτήσεων

(α) Δείξτε ότι κάθε συνεχής περιοδική συνάρτηση
f (x), �� � x � � , είναι απολύτως φραγμένη. Δείξ-
τε δηλαδή ότι υπάρχει θετική σταθερά M τέτοια
ώστε � f (x) � � M για κάθε x .

(β) Δείξτε ότι το γράφημα κάθε πολυωνύμου Taylor
θετικού βαθμού που παράγεται από την f (x) � cos x
οφείλει τελικά να απομακρύνεται από το γράφημα
του cos x καθώς το �x � αυξάνεται (δείτε το Σχήμα
8.19). Παρόμοια συμπεριφορά έχουν τα πολυώνυμα
Taylor του sin x (Σχήμα 8.21).

57. (α) Δύο γραφήματα Σχεδιάστε σε κοινό σχήμα τις κα-
μπύλες y � (1 3) � (x 2) 5 και y � (x � tan�1 x) x 3

και την ευθεία  y � 1 3.

(β) Xρησιμοποιήστε μια κατάλληλη σειρά Maclaurin
για να ερμηνεύσετε τα γραφήματα. Ποια τιμή έχει
το όριο 

58. Aπό όλα τα πολυώνυμα βαθμού � n, το πολυώνυμο Taylor τάξης n

αποτελεί την καλύτερη προσέγγιση Έστω f(x) διαφορίσιμη σε
διάστημα κέντρου x � a και ότι g(x) � b0 � b1(x � a) � …

� bn(x � a)n είναι πολυώνυμο βαθμού n με σταθερούς συ-
ντελεστές b0, . . . , bn. Έστω E(x) � f(x) � g(x). Δείξτε ότι
αν επιβάλουμε στο g τις συνθήκες

(α) E(a) � 0

(β)

τότε

g(x) � f(a)� f 
(a )(x � a)�
f n(a)
——2! (x � a) 2 � … �

f (n)(a)
——–

n!  (x�a)n.

Δηλαδή, το πολυώνυμο Taylor Pn(x) είναι το μόνο πολυώ-
νυμο βαθμού μικρότερου ή ίσου με n για το οποίο το προ-

σεγγιστικό σφάλμα είναι μηδέν στο x � a και αμελητέο συ-
γκρινόμενο με το (x � a)n

Γραμμικές, δευτεροβάθμιες και τριτοβάθμιες
προσεγγίσεις
O τύπος του Taylor για n � 1 και a � 0 δίνει τη γραμμικο-
ποίηση μιας συνάρτησης στο x � 0. Για n � 2 και n � 3, δί-
νει τις συνήθεις δευτεροβάθμιες και τριτοβάθμιες προσεγγί-
σεις. Στις ασκήσεις που ακολουθούν, καλείστε να διερευνή-
σετε τα σφάλματα των προσεγγίσεων αυτών. Συγκεκριμένα
τίθενται δύο ερωτήματα:

(α) Για ποιες τιμές του x μπορεί να αντικατασταθεί η
συνάρτηση από καθεμία προσέγγιση με σφάλμα
μικρότερο του  10�2;

(β) Πόσο είναι το μέγιστο σφάλμα που αναμένετε αν
αντικαταστήσετε τη συνάρτηση με καθεμία από τις
προσεγγίσεις αυτές στο διάστημα που δίνεται;

Mε τη χρήση κάποιου συστήματος υπολογιστικής άλγε-
βρας, εκτελέστε τα ακόλουθα βήματα για τις συναρτήσεις
και τα διαστήματα των Aσκήσεων 59-64. Aυτό θα σας βοη-
θήσει να απαντήσετε στα ερωτήματα (α) και (β).

Bήμα 1: Σχεδιάστε τη συνάρτηση στο διάστημα
που δίνεται.

Bήμα 2: Bρείτε τα πολυώνυμα Taylor P1(x) , P2(x) ,
και P3(x) στο x � 0.

Bήμα 3: Yπολογίστε τη (n � 1)-στή παράγωγο
f (n�1)(c) που εμφανίζεται στον τύπο του υπολοίπου
κάθε πολυωνύμου Taylor. Σχεδιάστε την παράγω-
γο συναρτήσει του c στο ίδιο διάστημα και εκτι-
μήστε τη μέγιστη απόλυτη τιμή της, M .

Bήμα 4: Yπολογίστε το υπόλοιπο Rn(x) για κάθε
πολυώνυμο. Xρησιμοποιώντας την τιμή M του βή-
ματος 3 αντί για την f (n�1 )(c) , σχεδιάστε το Rn(x)
στο καθορισμένο διάστημα. Kατόπιν εκτιμήστε
τις τιμές του x που απαντούν στο ερώτημα (α).

Bήμα 5: Συγκρίνετε το εκτιμώμενο σφάλμα με το
πραγματικό σφάλμα En(x) � � f (x) � Pn(x) � σχεδιά-
ζοντας το En(x) στο διάστημα. Έτσι θα απαντήσε-
τε στο ερώτημα (β).

Bήμα 6: Σχεδιάστε σε κοινό διάγραμμα τη συνάρ-
τηση και τις τρεις προσεγγίσεις της κατά Taylor.
Σχολιάστε τις γραφικές παραστάσεις αναφορικά
με όσα μάθατε στα βήματα 4 και 5.

59. f (x) � , �x � �

60. f (x) � (1 � x) , � � x � 2

61. f (x) � , �x � � 2

62. f (x) � (cos x)(sin 2x) , �x � � 2

63. f (x) � e�x cos 2x , �x � � 1

64. f (x) � sin 2x , �x � � 2ex / 3

x
x2 � 1

1
2

3 / 2

3
4

1

�1 � x

 .

lim
xla

  
E(x)

(x � a)n � 0,

lim
xl0

  x � tan�1 x
x3

 ;

 / 

 /  /  / 

��
n�0

 ,

x4

2!
 � x

5

3!
 � … ,

x4

3!
 � x

6

5!
 � x

8

7!
 � …
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T

Tο προσεγγιστικό σφάλμα
μηδενίζεται για x � a .

Tο σφάλμα είναι αμελητέο
συγκρινόμενο με την ποσότητα 
(x �a )n.

YΠΟΛΟΓΙΣΤΙΚΕΣ ΔΙΕΡΕΥΝΗΣΕΙΣ



8.8
Διωνυμική σειρά για δυνάμεις και ρίζες • Λύσεις διαφορικών

εξισώσεων σε μορφή σειρών • Όρια που περιλαμβάνουν

απροσδιόριστες μορφές και υπολογίζονται με δυναμοσειρές

• Tόξα εφαπτομένης

Θα δούμε τώρα με ποιον τρόπο οι επιστήμονες και οι μηχανικοί χρη-
σιμοποιούν τις δυναμοσειρές σε μια πληθώρα εφαρμογών.

Διωνυμική σειρά για δυνάμεις και ρίζες
H σειρά Maclaurin την οποία παράγει η f (x) � (1 � x)m, όπου m είναι
σταθερά, είναι

H σειρά αυτή, που καλείται διωνυμική σειρά, συγκλίνει απολύτως για
�x � � 1. Για να καταλήξουμε στην παραπάνω έκφραση της σειράς, κα-
ταγράφουμε πρώτα τη συνάρτηση και τις παραγώγους της:

Kατόπιν τις αποτιμούμε στο x � 0 και τις αντικαθιστούμε στον τύπο
της σειράς Maclaurin, ώστε να πάρουμε τη διωνυμική σειρά.

Aν ο m είναι ακέραιος μεγαλύτερος ή ίσος του μηδενός, η σειρά
σταματά μετά από (m � 1) όρους, διότι οι συντελεστές από k � m � 1
και εφεξής μηδενίζονται.

Aν ο m δεν είναι θετικός ακέραιος ή μηδέν, η σειρά είναι άπειρη
και συγκλίνει για �x � � 1. Για να δείτε γιατί συμβαίνει αυτό, έστω uk ο
όρος που περιέχει το xk. Eφαρμόζουμε τότε το κριτήριο του λόγου για
απόλυτη σύγκλιση, οπότε βλέπουμε ότι 

H ώς τώρα ανάλυση αποδεικνύει μονάχα ότι η διωνυμική σειρά
παράγεται από την (1 � x)m και ότι συγκλίνει για �x � � 1. Δεν αποδεί-
ξαμε ότι η σειρά συγκλίνει στη συνάρτηση (1 � x)m. Έτσι συμβαίνει
όντως, αλλά αυτό θα το δεχτούμε χωρίς απόδειξη.

� uk�1
uk

� � �m � k
k � 1

 x � l � x �   �����  k l �.

f (k)(x) � m(m � 1)(m � 2) … (m � k � 1)(1 � x)m�k
 .

 �
 �
 �

f �(x) � m(m � 1)(m � 2)(1 � x)m�3

f �(x) � m(m � 1)(1 � x)m�2

f 
(x) � m(1 � x)m�1

f (x) � (1 � x)m

 � 
m(m � 1)(m � 2) … (m � k � 1)

k!
 xk � … .

 1 � mx � 
m(m �1)

2!
 x2 � 

m(m � 1)(m � 2)
3!

 x3 � …
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Διωνυμική σειρά
Για �1 � x � 1, ισχύει ότι

όπου εξ ορισμού 

και �m
k� � 

m(m � 1)(m � 2) … (m � k � 1)
k!

  � 	� k � 3.

�m
1� � m ,   �m

2� � 
m(m � 1)

2!
 ,

(1 � x)m � 1 � �
�

k�1
 �m

k� xk ,



Παράδειγμα 1 Xρήση της διωνυμικής σειράς

Για m � �1, είναι

και

Mε αυτές τις τιμές για τους συντελεστές, ο τύπος της διωνυμικής
σειράς δίνει τη γνωστή μας γεωμετρική σειρά

(1 � x)�1 � 1 � (�1)kxk � 1 � x � x 2 � x 3 � … � (�1)kxk � … .

Παράδειγμα 2 Xρήση της διωνυμικής σειράς

Γνωρίζουμε από την Eνότητα 3.6, Παράδειγμα 1, ότι 
 1 �
(x 2) για μικρά �x �. Για m � 1 2, η διωνυμική σειρά μάς παρέχει πε-
ραιτέρω προσεγγίσεις της συνάρτησης , μέσω πολυωνύμων
δευτέρου ή και μεγαλύτερου βαθμού, ενώ με το θεώρημα εκτίμησης
εναλλασσόμενης σειράς μπορούμε να εκτιμήσουμε το αντίστοιχο
σφάλμα:

Aντικαθιστώντας το x καταλλήλως, παίρνουμε προσεγγιστικές εκ-
φράσεις για διάφορες άλλες συναρτήσεις. Για παράδειγμα,

Λύσεις διαφορικών εξισώσεων σε μορφή σειρών
Όταν δεν μπορούμε να βρούμε μια σχετικά απλή έκφραση της λύσης
ενός προβλήματος αρχικών τιμών (δηλ. μιας διαφορικής εξίσωσης),
προσπαθούμε να «ψηλαφίσουμε» τη λύση με άλλους τρόπους. Ένας
εξ αυτών είναι να την εκφράσουμε σε μορφή δυναμοσειράς. Aν αυτό
είναι εφικτό, τότε η δυναμοσειρά μάς εφοδιάζει με πολυωνυμικές
προσεγγίσεις της λύσης, πράγμα  που μπορεί να μας αρκεί για τη συ-
γκεκριμένη εφαρμογή. Tο πρώτο παράδειγμα (Παράδειγμα 3) ανα-
φέρεται σε μια πρωτοτάξια γραμμική διαφορική εξίσωση που μπο-
ρεί να λυθεί με μεθόδους που έχουμε ήδη δει. Mπορεί όμως να λυθεί
και με δυναμοσειρές. Tο δεύτερο παράδειγμα (Παράδειγμα 4) έχει
να κάνει με μια εξίσωση που δεν λύνεται με μεθόδους που έχουμε
ήδη αναφέρει.

 	1 � 1x 
 1 � 1
2x

 � 1
8x2

  �	� �	��� � 1
x �, ���. �	� ������  � x �.

 �1 � x2 
 1 � x
2

2
 � x

4

8
    �	� �	��� � x2

 � 

 � 1 � x
2

 � x
2

8
 � x

3

16
 � 5x4

128
 � … .

� 
�1

2� ��1
2� ��3

2� ��5
2�

4!
 x4 � …

 (1 � x)1 / 2 � 1 � x
2

 � 
�1

2� ��1
2�

2!
 x2 � 

�1
2� ��1

2� ��3
2�

3!
 x3

�1 � x
 /  / 

�1 � x

�
�

k�1

��1
k � � 

�1(�2)(�3) … (�1 � k � 1)
k!

 � (�1)k �k!
k!� � (�1)k

 .

��1
1� � �1,   ��1

2� � 
�1(�2)

2!
 � 1,
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Παράδειγμα 3 Λύση σε μορφή σειράς προβλήματος αρχικών
τιμών

Nα λυθεί το πρόβλημα αρχικών τιμών

y
 � y � x , y(0) � 1.

Λύση Έστω ότι υπάρχει λύση της μορφής

y � a0 � a1x � a2x
2 � … � an�1x

n�1 � anx
n � … . (1)

Στόχος μας είναι να βρούμε τους συντελεστές ak έτσι ώστε η σειρά
και η πρώτη της παράγωγος,

y
 � a1 � 2a2x � 3a3x
2 � … � nanx

n�1 � … (2)

να ικανοποιούν τη δοθείσα διαφορική εξίσωση και την αρχική συν-
θήκη. H σειρά y
 � y είναι η διαφορά των σειρών (1) και (2):

y
 � y � (a1 � a0 ) � (2a2 � a1 )x � (3a3 � a2 )x 2 � … 

� (nan � an�1 )xn�1 � … . (3)

Aν η y ικανοποιεί την εξίσωση y
 � y � x , τότε η σειρά της Eξί-
σωσης (3) θα ισούται με x Kαι εφόσον η αναπαράσταση μιας συ-
ναρτήσεως μέσω δυναμοσειρών είναι μοναδική, όπως είδαμε στην
Άσκηση 45 της Eνότητας 8.6, οι συντελεστές στην Eξίσωση (3)
οφείλουν να ικανοποιούν τις εξισώσεις

Aπό την Eξίσωση (1) βλέπουμε ότι y � a0 για x � 0, οπότε a0 � 1 (αρ-
χική συνθήκη). Έχουμε λοιπόν

Aντικαθιστώντας τους συντελεστές αυτούς στην Eξίσωση (1) παίρ-
νουμε

H λύση του προβλήματος αρχικών τιμών είναι λοιπόν y � 2ex�1�x .

Eπαληθεύουμε:

 � 1 � x � 2(ex � 1 � x) � 2ex � 1 � x .

 � 1 � x � 2 �x2

2!
 � x

3

3!
 � … � x

n

n!
 � …�

 y � 1 � x � 2 � x
2

2!
 � 2 � x

3

3!
 � … � 2 � x

n

n!
 � …

 a 3 � 
a 2

3
 � 2

3 � 2
 � 2

3!
 ,   … ,   an � 

an�1

n  � 2
n!

 , … .

 a 0 � 1,   a 1 � a 0 � 1,   a 2 � 
1 � a 1

2
 � 1 � 1

2
 � 2

2
 ,

 �

 �

 �

 nan � an�1 � 0 

 �

 �

 �

 3a 3 � a 2 � 0 

 2a 2 � a 1 � 1 

 a 1 � a 0 � 0 

 .
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Σταθεροί όροι

Συντελεστές του x

Συντελεστές του x 2

.

.

.

Συντελεστές του xn�1

.

.

.

Bιογραφικά στοιχεία

John Van Neumann
(1903-1957)

CD-ROM
Δικτυότοπος

Σειρά Maclaurin του ex –1 – x



y(0) � 2e0 � 1 � 0 � 2 � 1 � 1

και

y
 � y � (2ex � 1) � (2ex � 1 � x) � x .

Παράδειγμα 4 Eπίλυση διαφορικής εξίσωσης

Nα βρεθεί η λύση σε μορφή δυναμοσειράς της

y� � x 2y � 0. (4)

Λύση Yποθέτουμε ότι υπάρχει λύση της μορφής

y � a0 � a1x � a2x
2 � … � anx

n � … (5)

και βρίσκουμε ποιοι οφείλουν να είναι οι συντελεστές ak ούτως ώστε
η σειρά και η δεύτερη παράγωγός της

y� � 2a2 � 3 � 2a3x � … � n(n � 1)anx
n�2 � … (6)

να ικανοποιούν την Eξίσωση (4). H σειρά του x 2y ισούται με x 2 επί
τη σειρά του y, οπότε, από την Eξίσωση (5) έχουμε:

x 2y � a0x 2 � a1x
3 � a2x 4 � … � anxn�2 � … . (7)

H σειρά του y� � x 2y είναι το άθροισμα των σειρών των Eξισώσεων
(6) και (7):

y� � x 2y � 2a2 � 6a3x � (12a4 � a0 )x 2 � (20a5 � a1)x
3

� … � (n(n � 1)an � an�4)x
n�2 � … . (8)

Προσέξτε ότι ο συντελεστής του xn�2 στην Eξίσωση (7) είναι an�4.
Aν τα y και y� ικανοποιούν την Eξίσωση (4), οι συντελεστές κάθε δύ-
ναμης του x στο δεξιό μέλος της Eξίσωσης (8) θα πρέπει να μηδενί-
ζονται:

2a2 � 0, 6a3 � 0, 12a4 � a0 � 0, 20a5 � a1 � 0, (9) 

και για κάθε n � 4,

n(n � 1)an � an�4 � 0. (10)

Bλέπουμε από την Eξίσωση (5) ότι

a0 � y(0), a1 � y
(0).

Mε άλλα λόγια, οι δύο πρώτοι συντελεστές της σειράς είναι οι τιμές
των y και y
 για x � 0. Oι Eξισώσεις (9) και ο αναδρομικός τύπος της
Eξίσωσης (10) μας επιτρέπουν να υπολογίσουμε τους υπόλοιπους συ-
ντελεστές συναρτήσει των a0 και a1.

Oι δύο πρώτες από τις Eξισώσεις (9) δίνουν

a2 � 0, a3 � 0.

H Eξίσωση (10) δίνει an�4 � 0, οπότε an � 0, που σημαίνει ότι  

a6 � 0, a7 � 0, a10 � 0, a11 � 0,

και ότι μηδενίζεται επίσης κάθε άλλος συντελεστής an με δείκτη 
n � 4k � 2 ή 4k � 3. Για τους υπόλοιπους συντελεστές, έχουμε

,

οπότε

an � 
�an�4

n(n � 1)
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και

Για αισθητικούς λόγους, εκφράζουμε την τελική λύση ως άθροισμα
δύο σειρών, η μία με συντελεστή το a0, η άλλη με το a1:

Kαι οι δύο αυτές σειρές συγκλίνουν απολύτως για κάθε x , όπως προ-
κύπτει εύκολα από το κριτήριο του λόγου.

Όρια που περιλαμβάνουν απροσδιόριστες μορφές και
υπολογίζονται με δυναμοσειρές
Mερικές φορές μπορούμε να υπολογίζουμε απροσδιόριστες μορφές
εκφράζοντας τις σχετικές συναρτήσεις ως σειρές Taylor.

Παράδειγμα 5 Όρια και δυναμοσειρές

Yπολογίστε το

Λύση H σειρές Maclaurin των sin x και tan x , μέχρι τον όρο x 5, εί-
ναι

Έτσι,

και

Xρησιμοποιώντας λοιπόν σειρές για την εύρεση του limnl0 ((1 sin x)
� (1 x)) , βρίσκουμε όχι μόνο το ζητούμενο όριο αλλά και έναν προ-
σεγγιστικό τύπο για το csc x .

Παράδειγμα 6 Όρια και δυναμοσειρές

Nα βρεθεί το 

lim
xl0

  � 1
 sin  x

 � 1x� .

 / 

 / 

 � �1
2

 .

 lim
xl0

   sin  x �  tan  x
x3

 � lim
xl0

  ��1
2

 � x
2

8
 � …�

 sin  x �  tan  x � �x3

2
 � x

5

8
 � … � x3 ��1

2
 � x

2

8
 � …�

 sin  x � x � x
3

3!
 � x

5

5!
 � … ,    tan  x � x � x

3

3
 � 2x5

15
 � … .

lim
xl0

   sin  x �  tan  x
x3

 .

 � a 1 �x � x5

4 � 5
 � x9

4 � 5 � 8 � 9
 � x13

4 � 5 � 8 � 9 � 12 � 13
 � …� .

 y �  a 0 �1 � x4

3 � 4
 � x8

3 � 4 � 7 � 8
 � x12

3 � 4 � 7 � 8 � 11 � 12
 � …�

 a 13 � 
�a 9

12 � 13
 � 

�a 1

4 � 5 � 8 � 9 � 12 � 13
  .

 a 5 � 
�a 1

5 � 4
  ,   a 9 � 

�a 5

9 � 8
 � 

a 1

4 � 5 � 8 � 9
  ,

 a 12 � 
�a 8

11 � 12
 � 

�a 0

3 � 4 � 7 � 8 � 11 � 12

 a 4 � 
�a 0

4 � 3 

  ,   a 8 � 
�a 4

8 � 7
 � 

a 0

3 � 4 � 7 � 8
  ,

6658.8. Eφαρμογές δυναμοσειρών



Λύση

Συνεπώς,

Aπό το τελευταίο κλάσμα βλέπουμε ότι για μικρό �x � θα ισχύει

Tόξα εφαπτομένης
Στην Eνότητα 8.6, Παράδειγμα 5, βρήκαμε μια έκφραση σε μορφή σει-
ράς για την tan�1 x, παραγωγίζοντας την (άγνωστη, τότε) συνάρτηση

και στη συνέχεια ολοκληρώνοντας,

Ωστόσο, δεν αποδείξαμε το θεώρημα ολοκλήρωσης όρο προς όρο, κά-
τι που η τελευταία έκφραση προϋποθέτει. Θα αναπαραγάγουμε τώρα
τη σειρά της tan�1 x, ολοκληρώνοντας κατά μέλη τον τύπο

όπου ο τελευταίος όρος προέρχεται από την άθροιση των υπολειπόμε-
νων όρων θεωρούμενων ως γεωμετρική σειρά με αρχικό όρο a �
(�1)n�1t 2n�2 και λόγο r � �t 2. Oλοκληρώνοντας κατά μέλη την τελευ-
ταία εξίσωση από     t � 0 έως t � x παίρνουμε

όπου

O παρονομαστής της ολοκληρωτέας ποσότητας είναι μεγαλύτερος ή
ίσος του 1Ø έτσι,

Για �x � � 1, το δεξιό μέλος της ανισότητας αυτής τείνει στο μηδέν κα-
θώς n l �. Συνεπώς, limnl� R(n , x) � 0 για �x � � 1 και

� R(n , x) � � 
� x �

0
 t 2n�2 dt � 

� x �2n�3

2n � 3
 .

R(n , x) � 
 x

0
 
(�1)n�1t 2n�2

1 � t 2
 dt .

 tan�1 x � x � x
3

3
 � x

5

5
 � x

7

7
 � … � (�1)n x2n�1

2n � 1
 � R(n , x) ,

1
1 � t 2

 � 1 � t 2 � t 4 � t 6 � … � (�1)nt 2n � 
(�1)n�1t 2n�2

1 � t 2
 ,

 tan�1 x � x � x
3

3
 � x

5

5
 � x

7

7
 � … .

d
dx

  tan�1 x � 1
1 � x2

 � 1 � x2 � x4 � x6 � …

1
 sin  x

 � 1x 
 x � 1
3!

 � x
6

  ���.   csc x 
 1x � x
6

 .

lim
xl0

  � 1
 sin  x

 � 1x� � lim
xl0

  �x 

1
3!

 � x
2

5!
 � …

1 � x
2

3!
 � …� � 0.

 � 

x3 � 1
3!

 � x
2

5!
 � …�

x2 �1 � x
2

3!
 � …�

 � x 

1
3!

 � x
2

5!
 � …

1 � x
2

3!
 � …

  .

 1
 sin  x

 � 1x � x �  sin  x
x  sin  x

 � 

x � �x � x
3

3!
 � x

5

5!
 � …�

x � �x � x
3

3!
 � x

5

5!
 � …�
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Θέτοντας x � 1 στη σειρά του tan�1 x παίρνουμε τον λεγόμενο τύπο του
Leibniz:

H σειρά αυτή συγκλίνει εξαιρετικά αργά για να έχει κάποια χρησιμό-
τητα, προκειμένου για δεκαδικές προσεγγίσεις του �. Προτιμότερη
για τον σκοπό αυτόν είναι η χρήση του τύπου 

όπου χρησιμοποιούνται τιμές του x εγγύτερα στο μηδέν.

AΣΚΗΣΕΙΣ 8.8

p � 48  tan�1 1
18

 � 32  tan�1 1
57

 � 20  tan�1 1
239

 ,

p
4

 � 1 � 1
3

 � 1
5

 � 1
7

 � 1
9

 � … � 
(�1)n

2n � 1
 � … .

 tan�1 x � �
�

n�0
 
(�1)nx2n�1

2n � 1
 ,   � x � � 1.
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Aκολουθούμε τη μέθοδο αυτή, αντί του
απευθείας υπολογισμού της σειράς
Maclaurin, διότι οι τύποι των
παραγώγων μεγαλύτερης τάξης του
tan�1 x γίνονται πολύπλοκοι.

Διωνυμικές σειρές
Bρείτε τους πρώτους τέσσερις όρους των διωνυμικών σει-
ρών για τις συναρτήσεις των Aσκήσεων 1-10.

1. (1 � x) 2. (1 � x)

3. (1 � x) 4. (1 � 2x)

5. 6.

7. (1 � x 3) 8. (1 � x 2)

9. 10.

Nα βρεθούν οι διωνυμικές σειρές για τις συναρτήσεις των
Aσκήσεων 11-14.

11. (1 � x) 4 12. (1 � x2 )3

13. (1 � 2x) 3 14.

Προβλήματα αρχικών τιμών
Bρείτε λύσεις σε μορφή σειρών για τα προβλήματα αρχι-
κών τιμών των Aσκήσεων 15-32.

15. y
 � y � 0, y(0) � 1 16. y
 � 2y � 0, y(0) � 1

17. y
 � y � 1, y(0) � 0 18. y
 � y � 1, y(0) � 2

19. y
 � y � x , y(0) � 0 20. y
 � y � 2x , y(0) � �1

21. y
 � xy � 0, y(0) � 1 22. y
 � x 2y � 0, y(0) � 1

23. (1 � x)y
 � y � 0, y(0) � 2

24. (1 � x 2)y
 � 2xy � 0, y(0) � 3

25. y� � y � 0, y
(0) � 1 και y(0) � 0

26. y� � y � 0, y
(0) � 0 και y(0) � 1

27. y� � y � x , y
(0) � 1 και y(0) � 2

28. y� � y � x , y
(0) � 2 και y(0) � �1

29. y� � y � �x , y
(2) � �2 και y(2) � 0

30. y� � x 2y � 0, y
(0) � b και y(0) � a

31. y� � x 2y � x , y
(0) � b και y(0) � a

32. y� � 2y
 � y � 0, y
(0) � 1 και y(0) � 0

Προσεγγίζοντας ολοκληρωτικές συναρτήσεις
με πολυώνυμα
Σε καθεμία από τις Aσκήσεις 33-36, βρείτε ένα πολυώνυμο
που προσεγγίζει την F(x) στο δοθέν διάστημα, με μέγεθος
σφάλματος μικρότερο του 10�3.

33. F(x) � sin t 2 dt , [0, 1]

34. F(x) � dt , [0, 1]

35. F(x) � tan�1 t dt , (α) [0, 0,5] (β) [0, 1]

36. F(x) � dt , (α) [0, 0,5] (β) [0, 1]

Aπροσδιόριστες μορφές
Bρείτε τα όρια των Aσκήσεων 37-42 με χρήση σειρών.

37. 38.

39. x 2(e � 1) 40.

41. 42. (x � 1) sin 

Θεωρία και παραδείγματα
43. Σειρά του ln (1 � x ), �x � � 1 Aντικαταστήστε το x με το �x

στη σειρά Maclaurin του ln (1 � x) έτσι ώστε να πάρετε
τη σειρά του ln (1 � x). Kατόπιν αφαιρέστε αυτό που
βρήκατε από τη σειρά Maclaurin του ln (1 � x) για να δεί-
ξετε ότι για �x � � 1, ισχύει

ln  1 � x
1 � x

 � 2 �x � x
3

3
 � x

5

5
 � …� .

1
x � 1

lim
xl�

lim
xl0

  
ln  (1 � x2)
1 �  cos  x

lim
yl0

  
 tan�1 y �  sin  y

y 3  cos  y
�1 / x2

lim
xl�

lim
tl0

  
1 �  cos  t � (t 2

 / 2)

t 4
lim
xl0

  
ex � (1 � x)

x2


 x

0
 
ln  (1� t)

t


 x

0

t 2e�t2
 x

0


 x

0

�1 � x
2�

4

�1 � 2x�
1 / 3

�1 � 1x�
1 / 2

�1 / 3�1 / 2

�1 � x
2�

�2

�1 � x
2�

�2

1 / 2�1 / 2

1 / 31 / 2



44. Mάθετε γράφοντας Πόσους όρους της σειράς Maclaurin
του ln (1 � x) πρέπει να συμπεριλάβετε ώστε να είστε
βέβαιοι ότι υπολογίζετε το ln (1,1) με μέγεθος σφάλμα-
τος μικρότερο του 10�8; Aιτιολογήστε την απάντησή
σας.

45. Mάθετε γράφοντας Σύμφωνα με το θεώρημα εκτίμησης
εναλλασσόμενης σειράς, πόσους όρους της σειράς
Maclaurin του tan�1 1 πρέπει να συμπεριλάβετε ώστε
να είστε βέβαιοι ότι υπολογίζετε το � 4 με μέγεθος
σφάλματος μικρότερο του 10�3; Aιτιολογήστε την απά-
ντησή σας.

46. Σειρά Maclaurin του tan�1 x Δείξτε ότι η σειρά Maclaurin
της f (x) � tan�1 x αποκλίνει για �x � � 1.

47. Πολυώνυμο Taylor του sin�1 x

(α) Xρησιμοποιήστε τη διωνυμική σειρά και το γεγο-
νός ότι

sin�1 x � (1 � x 2)

ώστε να παραγάγετε τους πρώτους τέσσερις μη μη-
δενικούς όρους της σειράς Maclaurin του sin�1 x .
Ποια είναι η ακτίνα σύγκλισης;

(β) Πολυώνυμο Taylor του cos�1 x Xρησιμοποιήστε το
αποτέλεσμα (α) για να βρείτε τους πρώτους πέντε
μη μηδενικούς όρους της σειράς Maclaurin του
cos�1 x

48. Σειρά Maclaurin του sin�1 x Oλοκληρώστε τη διωνυμική
σειρά της συναρτήσεως (1 � x 2) για να δείξετε ότι
για �x � � 1, ισχύει

sin�1 x � x �

49. Σειρά της tan�1 x για �x � � 1 Προκειμένου να δείξετε ότι

ολοκληρώστε τη σειρά

από x έως � στην πρώτη περίπτωση, και από �� έως x
στη δεύτερη.

50. H τιμή του ��
n=0 tan�1 (2/n2)

(α) Xρησιμοποιήστε τον τύπο της εφαπτομένης διαφο-
ράς δύο γωνιών για να δείξετε ότι

tan (tan�1 (n � 1) � tan�1 (n � 1)) �

και συνεπώς ότι

tan�1 � tan�1 (n � 1) � tan�1 (n � 1).

(β) Δείξτε ότι

� tan�1 (N � 1) � tan�1 N � .

(γ) Yπολογίστε το tan�1 (2 n2 ) . / ��
n�1

p

4�
N

n�1
  tan�1 2

n 2

2
n 2

2
n 2

1
1 � t 2

 � 1
t 2

 � 1
1 � (1 / t 2)

 � 1
t 2

 � 1
t 4

 � 1
t 6

 � 1
t 8

 � …

  tan�1 x � �p

2
 � 1x � 1

3x3
 � 1

5x5
 � … ,  x � �1

  tan�1 x � p
2

 � 1x � 1
3x3

 � 1
5x5

 � … ,  x � 1

�
�

n�1
 
1 � 3 � 5 � … � (2n � 1)

2 � 4 � 6 � … � (2n)
 x2n�1

2n � 1 

 .

�1 / 2

 .

�1 / 2d
dx

 / 
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8.9    
Συντελεστές σειρών Fourier • Σύγκλιση σειρών Fourier

• Περιοδική επέκταση

Mελετώντας την αγωγή θερμότητας κατά μήκος ενός θερμικά μονωμέ-
νου σωλήνα μεγάλου μήκους, ο Γάλλος μαθηματικός Jean-Baptiste
Joseph Fourier αντιμετώπισε το ζήτημα του πώς μπορεί μια συνάρτηση
f(x) να εκφραστεί ως τριγωνομετρική σειρά. Γενικά, αν η f(x) ορίζεται
στο διάστημα �L � x � L , ζητούμε να βρούμε τους συντελεστές a0, an,
και       bn (n � 1) ώστε να ισχύει

(1)

Προσέξτε ότι το διάστημα �L � x � L είναι συμμετρικό ως προς την
αρχή των αξόνων. H Eξίσωση (1) καλείται σειρά Fourier της f στο διά-
στημα (�L , L). Oι σειρές Fourier έχουν ευρεία χρήση σε επιστημονι-
κές και τεχνολογικές εφαρμογές κατά τη μελέτη προβλημάτων αγωγής
θερμότητας, κυματικών φαινομένων, συγκεντρώσεων χημικών και ρυ-
πογόνων ουσιών, και αλλού. Στην παρούσα ενότητα θα εξετάσουμε τις
τριγωνομετρικές αυτές σειρές ως αναπαραστάσεις μιας δεδομένης συ-
νάρτησης f .

f (x) � 
a 0

2
 � �

�

n�1
 �an  cos  npx

L
 � bn  sin  npx

L � .

8.9 Σειρές Fourier

Bιογραφικά στοιχεία

Jean-Baptiste 
Joseph Fourier 

(1766-1830) 

CD-ROM
Δικτυότοπος



Συντελεστές σειρών Fourier 
Έστω συνάρτηση f ορισμένη στο συμμετρικό διάστημα �L � x � L .
Έστω ακόμη ότι η f μπορεί να εκφραστεί ως τριγωνομετρική σειρά βά-
σει της Eξίσωσης (1). Zητούμε έναν τρόπο υπολογισμού των συντελε-
στών a0, a1, a2, … , b1, b2, … . Kαίρια σημασία για τους υπολογισμούς
μας έχουν τα ορισμένα ολοκληρώματα του Πίνακα 8.3.

(Στις Aσκήσεις 17 έως 21 σας ζητείται ο υπολογισμός των ολοκληρωμά-
των αυτών.)

Yπολογισμός του a0 Oλοκληρώνουμε κατά μέλη την Eξίσωση (1) από
�L έως L και θεωρούμε ότι οι πράξεις ολοκλήρωσης και άθροισης μπο-
ρούν να αντιμετατεθούν, οπότε παίρνουμε

(2)

Για κάθε θετικό ακέραιο n , τα δύο τελευταία ολοκληρώματα στο δεξιό
μέλος της Eξίσωσης (2) μηδενίζονται (Tύποι 1 και 2 του Πίνακα 8.3).
Έτσι,

Λύνουμε ως προς a0:

(3)

Yπολογισμός του am Πολλαπλασιάζουμε κατά μέλη την Eξίσωση (1)
με το cos (m�x L), m � 0, και ολοκληρώνουμε από �L έως L :

(4)

Tο πρώτο ολοκλήρωμα στο δεξιό μέλος της Eξίσωσης (4) μηδενίζεται
(Tύπος 1 του Πίνακα 8.3). Eπιπλέον, οι Tύποι 3 και 4 του Πίνακα 8.3

 � �
�

n�1
 bn 
L

�L
  sin  npx

L
  cos  mpx

L
 dx .

 � �
�

n�1
 an 
L

�L
  cos  npx

L
  cos  mpx

L
 dx

 
L

�L
 f (x)  cos  mpx

L
 dx � 

a 0

2
 
L

�L
  cos  mpx

L
 dx

 / 

a 0 � 1
L

 
L

�L
 f (x) dx .


L

�L
 f (x) dx � 

a 0

2
 
L

�L
 dx � 

a 0 x
2 �L

�L
 � La 0 

.

 � �
�

n�1
 bn 
L

�L
  sin  npx

L
 dx .

 
L

�L
 f (x) dx � 

a 0

2
 
L

�L
 dx � �

�

n�1
 an 
L

�L
  cos  npx

L
 dx
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O όρος a0 2 στην Eξίσωση (1)
χρησιμεύει στο να διατηρηθεί η
συμφωνία με τους τύπους υπολογισμού
των συντελεστών Fourier.

 / 

Πίνακας 8.3 Tριγωνομετρικά ολοκληρώματα

Aν m και n θετικοί ακέραιοι, τότε

1.

2.

3.

4.

5. 
 L

�L
  sin  npx

L
  sin  mpx

L
 dx � �0,

L ,
 m � n ,

m � n .


 L

�L
  sin  npx

L
  cos  mpx

L
 dx � 0


 L

�L
  cos  npx

L
  cos  mpx

L
 dx � �0,

L ,
 m � n ,

m � n


 L

�L
  sin  npx

L
 dx � 0


 L

�L
  cos  npx

L
 dx � 0



απλοποιούν περαιτέρω την εξίσωση, οπότε

Έτσι,

(5)

Yπολογισμός του bm Πολλαπλασιάζουμε κατά μέλη την Eξίσωση (1)
με το sin (m�x L), m � 0, και ολοκληρώνουμε από �L έως L :

Aπό τους Tύπους 2, 4, και 5 του Πίνακα 8.3, παίρνουμε

Έτσι,

(6)

H τριγωνομετρική σειρά (1), με συντελεστές a0, an, bn που δίνονται από
τις Eξισώσεις (3), (5), και (6), αντίστοιχα (με το m στη θέση του n), κα-
λείται ανάπτυγμα σε σειρά Fourier της συνάρτησης f στο διάστημα
�L�x�L . Oι σταθερές a0, an, και bn είναι οι συντελεστές Fourier της f .

Παράδειγμα 1 Eύρεση αναπτύγματος σε σειρά Fourier

Nα βρεθεί το ανάπτυγμα σε σειρά Fourier της συνάρτησης

(Σχήμα 8.22).

Λύση Aπό το Σχήμα 8.22 προκύπτει ότι L � �. Συνεπώς, η Eξίσω-
ση (3) μας δίνει

Για να βρούμε το an χρησιμοποιούμε την Eξίσωση (5) θέτοντας
όπου m το n :

 ,

 � 1 � p
2

 .

 � 1p 
 0

�p

 dx � 1p 
p

0
 x dx

 a 0 � 1p 
p

�p

 f (x) dx

f (x) � �1,
x ,

 �p � x � 0,
 0 � x � p ,

bm � 1
L

 
L

�L
 f (x)  sin  mpx

L
 dx .


L

�L
 f (x)  sin  mpx

L
 dx � bm 
L

�L
  sin  mpx

L
  sin  mpx

L
 dx � Lbm  

.

 � �
�

n�1
 bn 
L

�L
  sin  npx

L
  sin  mpx

L
 dx .

 � �
�

n�1
 an 
L

�L
  cos  npx

L
  sin  mpx

L
 dx

 
L

�L
 f (x)  sin  mpx

L
 dx � 

a 0

2
 
L

�L
  sin  mpx

L
 dx

 / 

am � 1
L

 
L

�L
 f (x)  cos  mpx

L
 dx .


L

�L
 f (x)  cos  mpx

L
 dx � am 
L

�L
  cos  mpx

L
  cos  mpx

L
 dx � Lam 

.

670 Κεφάλαιο 8. Άπειρες σειρές

CD-ROM
Δικτυότοπος

x

y

π

π

–π ΣXHMA 8.22 H τμηματικά συνεχής
συνάρτηση του Παραδείγματος 1.



Oμοίως, από την Eξίσωση (6) παίρνουμε (θέτουμε όπου m το n ):

Συνεπώς, η ζητούμενη σειρά Fourier είναι

Στο Σχήμα 8.23 παρατίθεται ένα διάγραμμα των προσεγγίσεων
Fourier καθώς το n παίρνει τιμές 1, 5, και 20. Προσέξτε πώς οι αλλε-
πάλληλες προσεγγίσεις προσεγγίζουν το γράφημα της συνάρτησης
σε όλα τα σημεία συνέχειας καθώς το n αυξάνεται. Στο σημείο x � 0,
όπου η f είναι ασυνεχής, οι προσεγγίσεις Fourier τείνουν στην τιμή
0,5 που αντιστοιχεί στο μέσον της ασυνέχειας της f (μεταξύ των τι-
μών 1 και 0). Tα αποτελέσματα αυτά συμφωνούν με το θεώρημα σύ-
γκλισης σειρών Fourier που αναφέρεται παρακάτω.

f (x) � 1
2

 � p
4

 � �
�

n�1
 
(�1)n �1

pn 2
  cos  nx � �

�

n�1
 
(�1)n(1 � p) � 1

pn   sin  nx .

 � 
(�1)n(1 � p) � 1

np  .

 � 1p 
 0

�p

  sin  nx dx � 1p 
p

0
 x  sin  nx dx

 bn � 1p 
p

�p

 f (x)  sin  nx dx

 � 
(�1)n � 1

pn 2
 .

 � 1
pn 2

 ( cos  np � 1)

 � 1
pn 2

  cos  nx�
p

0

 � 1
np  sin  nx �0

�p

 � 1p �x
n  sin  nx�

p

0
 � 1

pn 
p

0
  sin  nx dx

 � 1p 
 0

�p

  cos  nx dx � 1p 
p

0
 x  cos  nx dx

 an � 1p 
p

�p

 f (x)  cos  nx dx
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cos n� � (�1)n

x

y

–π π/2 π

2

3

2,5

3,5

1,5

0,5

1

–π/20
0

n = 1

n = 5
n = 20

ΣXHMA 8.23 Προσεγγίσεις με σειρά Fourier της συνάρτησης του
Παραδείγματος 1 για n (πλήθος όρων) ίσο με 1, 5, και 20. Kαθώς το
n αυξάνεται, οι προσεγγίσεις κατά Fourier τείνουν στην f (x).



Kατά τον υπολογισμό των a0, an, και bn, θεωρήσαμε ότι η f ήταν
ολοκληρώσιμη στο διάστημα (�L , L) . Θεωρήσαμε ακόμη ότι τόσο η
τριγωνομετρική σειρά στο δεξιό μέλος της Eξίσωσης (1), όσο και η
σειρά που προκύπτει από αυτήν μέσω πολλαπλασιασμού επί  cos (m�x
L) ή sin (m�x L) , συγκλίνουν κατά τρόπο που να επιτρέπεται η ολο-
κλήρωση όρο προς όρο. Aυτά τα ζητήματα σύγκλισης, καθώς και το
ερώτημα του πότε ισούται με την f(x) η σειρά Fourier στο διάστημα �L
� x � L, εξετάζονται στον προχωρημένο λογισμό. Για τις περισσότε-
ρες συναρτήσεις που θα συναντήσουμε σε εφαρμογές, η σειρά συγκλί-
νει και ισούται με την  f. Προτού αναφερθούμε περαιτέρω στο θέμα αυ-
τό, ας συνοψίσουμε τα αποτελέσματα που έχουμε δει ώς τώρα.

Σύγκλιση σειρών Fourier
Θα παραθέσουμε τώρα χωρίς απόδειξη το συμπέρασμα περί σύγκλισης
των σειρών Fourier για μια μεγάλη κλάση συναρτήσεων που χρησιμο-
ποιούνται συχνά σε απλά μοντέλα φυσικών συστημάτων. Θυμίζουμε
πρώτα ότι μια συνάρτηση f είναι τμηματικά συνεχής στο διάστημα I αν
αμφότερα τα όρια

υπάρχουν σε κάθε εσωτερικό σημείο c του I, αν τα αντίστοιχα πλευρι-
κά όρια υπάρχουν στα ακραία σημεία του I, και αν η f έχει πεπερασμέ-
νο (ή μηδενικό) πλήθος ασυνεχειών στο I . Προσέξτε ότι μια τμηματι-
κά συνεχής συνάρτηση σε κλειστό διάστημα οφείλει να είναι φραγμέ-
νη (και άρα δεν μπορεί να τείνει στο άπειρο).

lim
xlc�

  f (x) � f(c�)   ��	   lim
xlc�

  f (x) � f(c�)

 / 

 / 
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Oρισμός Σειρά Fourier 
H σειρά Fourier της συναρτήσεως f (x) που ορίζεται στο
διάστημα �L � x � L είναι

(7)

όπου

(8)

(9)

(10) bn � 1
L

 
L

�L
 f (x)  sin  npx

L
 dx .

 an � 1
L

 
L

�L
 f (x) cos npx

L
 dx ,

 a0 � 1
L

 
L

�L
 f (x) dx ,

f (x) � 
a0

2
 � �

�

n�1
 �an cos npx

L
 � bn sin npx

L � ,

Θεώρημα 18 Σύγκλιση σειράς Fourier
Aν η συνάρτηση f και η παράγωγός της f 
 είναι τμηματικά
συνεχείς στο διάστημα �L � x � L , τότε σε όλα τα σημεία
συνέχειάς της η f ισούται με τη σειρά Fourier που της
αντιστοιχεί. Στα δε σημεία c όπου η f παρουσιάζει ασυνέχεια
άλματος, η σειρά Fourier συγκλίνει στη μέση τιμή

όπου οι f (c�) και f (c�) συμβολίζουν τα δεξιά και αριστερά όρια
της f στο c , αντίστοιχα.

f (c�) � f(c�)
2

 ,



Παράδειγμα 2 Tιμές σύγκλισης

H συνάρτηση του Παραδείγματος 1 ικανοποιεί τις συνθήκες του Θε-
ωρήματος 18. Για κάθε x � 0 στο διάστημα �� � x � �, η σειρά
Fourier συγκλίνει στην f(x) . Για x � 0, η συνάρτηση παρουσιάζει
ασυνέχεια άλματος και η σειρά Fourier συγκλίνει στη μέση τιμή

(Σχήμα 8.23).

Περιοδική επέκταση
Oι τριγωνομετρικοί όροι sin (n�x L) και cos (n�x L) στη σειρά Fourier
είναι περιοδικοί, με περίοδο 2L :

και

Aπό τα παραπάνω προκύπτει ότι και η σειρά Fourier είναι περιοδική,
με περίοδο 2L . Έτσι, η σειρά Fourier όχι μόνο παριστάνει τη συνάρ-
τηση f στο διάστημα �L � x � L , αλλά και παράγει την περιοδική επέ-
κταση της f σε όλο τον άξονα των πραγματικών αριθμών. Bάσει του Θε-
ωρήματος 18, η σειρά συγκλίνει στη μέση τιμή [f(L�) � f (�L�)] 2 στα
άκρα του διαστήματος, καθώς και στα σημεία 	3L , 	5L , 	7L , κ.ο.κ.

Παράδειγμα 3 Σύγκλιση και περιοδική επέκταση

H σειρά Fourier της f (x) � x στο διάστημα �� � x � � είναι 

(Στην Άσκηση 3 καλείστε να το αποδείξετε.) H σειρά συγκλίνει
στην περιοδική επέκταση της f (x) � x σε όλο τον άξονα x. Oι κουκ-
κίδες στο Σχήμα 8.24 παριστάνουν την τιμή

H σειρά συγκλίνει στο 0 στα άκρα του αρχικού διαστήματος και των
περιοδικών επεκτάσεών του, δηλ. στα σημεία  	�, 	3�, 	5�, … .

f (p�) � f(p�)
2

 � 
p � (�p)

2
 � 0.

f (x) � �
�

n�1
 
2(�1)n�1

n   sin  nx .

 / 

 �  cos  npx
L

 .

  cos  
np(x � 2L)

L
 �  cos  npx

L
  cos  2np �  sin  npx

L
  sin  2np

 �  sin  npx
L

  sin  
np(x � 2L)

L
 �  sin  npx

L
  cos  2np �  cos  npx

L
  sin  2np

 /  / 

f (0�) � f(0�)
2

 � 0 � 1
2

 � 1
2
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ΣXHMA 8.24 H σειρά Fourier της f (x) � x συγκλίνει στην f στο
διάστημα �� � x � �. Στο υπόλοιπο τμήμα του άξονα των
πραγματικών, η σειρά συγκλίνει στην περιοδική επέκταση της f .
(Θεώρημα 18).
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Eύρεση σειρών Fourier
Στις Aσκήσεις 1-14, αναπτύξτε σε σειρά Fourier κάθε συ-
νάρτηση στο διάστημα που δίνεται.

1. f (x) � 1, �� � x � �

2.

3. f (x) � x , �� � x � �

4. f (x) � 1 � x , �� � x � �

5. f (x) � , �� � x � �

6.

7. f (x) � ex, �� � x � �

8.

9.

10.

11.

12. f (x) � �x �, �1 � x � 1

13. f (x) � �2x � 1 � , �1 � x � 1

14. f (x) � x�x �, �� � x � �

Θεωρία και παραδείγματα
15. Xρησιμοποιήστε τη σειρά Fourier της Άσκησης 5 για

να δείξετε ότι

16. Xρησιμοποιήστε τη σειρά Fourier της Άσκησης 6 για
να δείξετε ότι

Aποδείξτε τις ισότητες των Aσκήσεων 17-21, όπου m και n
θετικοί ακέραιοι.

17.

18.

19.

(Yπόδειξη: cos A cos B � (1 2) [cos (A � B) � cos (A �

B)].)

20.

(Yπόδειξη: sin A sin B � (1 2) [cos (A � B) � cos (A �

B)].)

21.

(Yπόδειξη: sin A cos B � (1 2) [sin (A � B) � sin (A�B)].)

22. Mάθετε γράφοντας: Σειρές Fourier αθροισμάτων συναρτήσεων

Aν οι f (x) και g(x) πληρούν τις προϋποθέσεις του Θεω-
ρήματος 18, τότε θα ισούται η σειρά Fourier της f (x) �
g(x) στο (�L , L) με το άθροισμα των σειρών Fourier
των f (x) και g(x) στο διάστημα αυτό; Aιτιολογήστε τις
απαντήσεις σας.

23. Παραγώγιση όρο προς όρο

(α) Xρησιμοποιήστε το Θεώρημα 18 για να επιβεβαι-
ώσετε ότι η σειρά Fourier της f (x) = x στην Άσκη-
ση 3 συγκλίνει στην f (x) για �� � x � �.

(β) Παρ’ όλο που f 
(x) � 1, δείξτε ότι η σειρά που προ-
κύπτει παραγωγίζοντας όρο προς όρο τη σειρά του
ερωτήματος  (α) αποκλίνει.

(γ) Mάθετε γράφοντας Tι συμπεραίνετε από το ερώτημα
(β); Aιτιολογήστε την απάντησή σας.

24. Oλοκλήρωση όρο προς όρο Aποδεικνύεται στον προχωρη-
μένο λογισμό ότι η σειρά Fourier μιας τμηματικά συ-
νεχούς συνάρτησης στο [�L , L] μπορεί να ολοκληρω-
θεί όρο προς όρο. Xρησιμοποιήστε το γεγονός αυτό
για να δείξετε ότι αν η f (x) είναι τμηματικά συνεχής
στο �� � x � �, τότε

όπου a0, an, και bn είναι οι συντελεστές Fourier της f.

� �
�

n�1
 1n (an sin  nx �bn( cos  nx � cos  np)) �	� �p � x � p ,


p

�p

 f (s) ds � 1
2

 a 0(x � p) 

 / 


L

�L
  sin  npx

L
  cos  mpx

L
 dx � 0   �	� ���� m ��	 n.

 / 


L

�L
 sin npx

L
  sin  mpx

L
 dx � �0,

L ,
 m � n

m � n

 / 


L

�L
  cos  npx

L
  cos  mpx

L
 dx � �0,

L ,
 m � n

m � n


L

�L
  sin  mpx

L
 dx � 0  �	� ���� m .


L

�L
  cos  mpx

L
 dx � 0  �	� ���� m .

1 � 1
4

 � 1
9

 � 1
16

 � … � p
2

12
 .

1 � 1
4

 � 1
9

 � 1
16

 � 1
25

 � … � p
2

6
 .

f (x) � �
0,

1,

0,

�p � x � �p

2

� p
2

 � x � p
2

 �
p

2
 � x � p� x � p

f (x) � �� x ,
2,

 � 2 � x � 0
0 � x � 2

f (x) � �0,
 cos  x ,

 � p � x � 0
0 � x � p

f (x) � � 0,
ex ,

 �p � x � 0
0 � x � p

f (x) � � 0,
x2 ,

 �p � x � 0
0 � x � p

x2

4

f (x) � ��1,
1,

 �p � x � 0
0 � x � p
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8.10
Oλοκληρώματα άρτιων και περιττών συναρτήσεων • Άρτια

επέκταση: Σειρές Fourier συνημιτόνων • Περιττή επέκταση: Σειρές

Fourier ημιτόνων • Φαινόμενο Gibbs 

Έστω ότι θέλουμε να περιγράψουμε μαθηματικά την αγωγή θερμό-
τητας κατά μήκος ενός μακρόστενου θερμικά μονωμένου σωλήνα ή
καλωδίου. Έστω ακόμη ότι ο σωλήνας μήκους L ευθυγραμμίζεται με
τον άξονα x στο διάστημα 0 � x � L . H συνάρτηση θερμοκρασίας
u (x, t) μεταβάλλεται συναρτήσει της θέσης x κατά μήκος του σωλή-
να και του χρόνου t. (Στο Kεφάλαιο 12, θα μελετήσουμε τέτοιες συ-
ναρτήσεις δύο ή περισσότερων μεταβλητών.) Tο πρόβλημα που
έχουμε λοιπόν να λύσουμε είναι ο προσδιορισμός του u (x, t) για δε-
δομένη αρχική θερμοκρασία u (x, 0) � f (x). Για παράδειγμα, το ένα
άκρο του σωλήνα μπορεί να είναι θερμότερο του άλλου, οπότε η
θερμότητα θα διαδοθεί από το θερμό στο ψυχρό άκρο, και μπορεί να
μας ενδιαφέρει η κατανομή της θερμοκρασίας στον σωλήνα μετά
από μία ώρα. Mία από τις μεθόδους λύσης του προβλήματος αυτού
χρησιμοποιεί το ανάπτυγμα  

επί του μη συμμετρικού διαστήματος 0 � x � L . Πώς λοιπόν θα υπο-
λογίσουμε το ανάπτυγμα σε σειρά Fourier της f ; Για τον σκοπό αυ-
τόν επεκτείνουμε τη συνάρτηση, ώστε να ορίζεται στο συμμετρικό
διάστημα �L � x � L . Tο ερώτημα είναι, πώς ορίζουμε την επέκτα-
ση της f στο διάστημα �L � x � 0; H απάντηση είναι ότι μπορούμε
να ορίσουμε την επέκταση ως οποιαδήποτε συνάρτηση θέλουμε στο
�L � x � 0, αρκεί η ίδια και η παράγωγός της να είναι τμηματικά συ-
νεχείς (ώστε να ικανοποιούνται οι προϋποθέσεις του Θεωρήματος
18). Aνεξαρτήτως του ποια τμηματικά συνεχή συνάρτηση ορίζουμε
ως την επέκταση της f στο �L � x � 0, η προκύπτουσα σειρά Fourier
οφείλει να ισούται με την f (x) σε κάθε σημείο συνέχειας του αρχι-
κού διαστήματος 0 � x � L . Aσφαλώς, η σειρά Fourier θα συγκλίνει
επίσης σε οποιαδήποτε συνάρτηση επέκτασης επιλέξουμε στο διά-
στημα �L � x � 0. Yπάρχουν δύο ειδικές περιπτώσεις επεκτάσεων
που έχουν ιδιαίτερη σημασία, και που ο υπολογισμός των αντίστοι-
χων συντελεστών Fourier γίνεται εύκολαØ πρόκειται για την άρτια
και την περιττή επέκταση της f .

Oλοκληρώματα άρτιων και περιττών συναρτήσεων
Θυμίζουμε (βλ. Προκαταρκτικά, Eνότητα 2) ότι μια συνάρτηση g(x) εί-
ναι άρτια συνάρτηση του x αν g(�x) � g(x) για κάθε x στο πεδίο ορι-
σμού τής g. Aν όμως είναι g(�x) � �g(x) , τότε η g είναι περιττή συ-
νάρτηση του x. H συνάρτηση cos x είναι άρτια, ενώ η sin x είναι περιτ-
τή. H γραφική παράσταση μιας άρτιας συνάρτησης είναι συμμετρική
ως προς τον άξονα y, ενώ μιας περιττής είναι συμμετρική ως προς  την
αρχή των αξόνων (Σχήμα 8.25).

f (x) � �
�

n�1
 bn  sin  npx

L
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x

y
y = g(x)

(x,g(x))(–x,g(–x))

(–x,g(–x))
–x x x

y
y = g(x)

(x,g(x))
–x

x

(�) (#)

ΣXHMA 8.25 (α) H γραφική παράσταση μιας άρτιας
συνάρτησης είναι συμμετρική ως προς τον άξονα y.
(β) H γραφική παράσταση μιας περιττής
συνάρτησης είναι συμμετρική ως προς την αρχή.



H παρατήρηση αυτή διευκολύνει τον υπολογισμό ολοκληρωμάτων
άρτιων και περιττών συναρτήσεων σε διαστήματα ολοκλήρωσης συμ-
μετρικά ως προς την αρχή. Παραδείγματος χάριν, για τις συναρτήσεις
του Σχήματος 8.25, παίρνουμε τα ακόλουθα αποτελέσματα:

Λόγω των κανόνων (1) και (2), οι άρτιες και οι περιττές επεκτάσεις
μιας συνάρτησης παρουσιάζουν ευκολία χειρισμού. Iσχύουν επίσης οι
ακόλουθες προτάσεις.

Άρτια επέκταση: Σειρές Fourier συνημιτόνων
Έστω ότι η συνάρτηση y � f (x) ορίζεται στο διάστημα 0 � x � L . Oρί-
ζουμε την άρτια επέκταση της f απαιτώντας ότι

f (�x) � f(x) , �L � x � L .

Mπορούμε να σχεδιάσουμε το γράφημα της άρτιας επέκτασης αν κα-
τοπτρίσουμε την καμπύλη y � f (x) ως προς τον άξονα y. Mια τέτοια πε-
ρίπτωση φαίνεται στο Σχήμα 8.26. Στην περίπτωση λοιπόν άρτιας επέ-
κτασης, οι συντελεστές Fourier είναι

H σειρά Fourier της f είναι τότε

f (x) � 
a 0

2
 � �

�

n�1
 an  cos  npx

L
 .

 bn � 1
L

 
L

�L
  f (x)  sin  npx

L
  dx � 0.

 an � 1
L

 
L

�L
  f (x)  cos  npx

L
  dx � 2

L
 
L

0
 f (x)  cos  npx

L
 dx ,

 a0 � 1
L

  
L

�L
 f (x) dx � 2

L
 
L

0
 f (x) dx ,
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Περιττή συνάρτηση:

g(x) dx � 0. (1)

Άρτια συνάρτηση:

g(x) dx � 2 g(x) dx . (2)
L

0

L

�L


L

�L

1. Tο γινόμενο δύο άρτιων συναρτήσεων είναι άρτια συνάρτηση.

2. Tο γινόμενο μιας άρτιας με μια περιττή συνάρτηση είναι
περιττή συνάρτηση.

3. Tο γινόμενο δύο περιττών συναρτήσεων είναι άρτια
συνάρτηση.

Bιογραφικά στοιχεία

John William
Strutt Rayleigh

(1842-1909)
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x

y

(#)

ΣXHMA 8.26 (α) H αρχική τμηματικά συνεχής συνάρτηση f ορίζεται
στο μη συμμετρικό διάστημα 0 � x � L (β) H άρτια επέκταση της f
στο διάστημα �L � x � L .

 .



Eπειδή οι συντελεστές Fourier bn είναι όλοι μηδέν, δεν υπάρχουν κα-
θόλου όροι ημιτόνων στο παραπάνω ανάπτυγμα σε σειρά Fourier, το
οποίο κατά συνέπεια καλείται σειρά Fourier συνημιτόνων (ή συνημιτο-
νική σειρά Fourier) της συνάρτησης f . H σειρά αυτή θα συγκλίνει στην
αρχική συνάρτηση f στο διάστημα 0 � x � L, και στην περιοδική επέ-
κταση της f στο �L � x � 0 (εξυπακούεται η τμηματική συνέχεια των
f και f 
) . Συνοψίζουμε το αποτέλεσμα αυτό ως ακολούθως.

Παράδειγμα 1 Eύρεση σειράς Fourier συνημιτόνων

Nα βρεθεί η σειρά Fourier συνημιτόνων της συνάρτησης

που παρατίθεται στο Σχήμα 8.27.

Λύση Προκειμένου να βρούμε τη σειρά Fourier συνημιτόνων, επι-
φέρουμε άρτια επέκταση της συνάρτησης στο �� � x � �, όπως δεί-
χνει το Σχήμα 8.28. Oι συντελεστές Fourier είναι τότε

Έχουμε λοιπόν τη σειρά Fourier συνημιτόνων

H συνημιτονική σειρά Fourier παίρνει ακριβώς τις τιμές της συνάρ-
τησης f(x) για x � � 2Ø στο σημείο x � � 2, η σειρά Fourier ισούται
με 1 2. Στο Σχήμα 8.29 παριστάνονται γραφικά οι συνημιτονικές προ- / 

 /  / 

f (x) � 1
2

 � �
�

n�1
 2
np  sin  np

2
  cos  nx .

 � 2
np  sin  np

2
 .

 � 2p 
p / 2

0
  cos  nx dx

 an � 2p 
p

0
 f (x)  cos  npx

p  dx

 � 2x
p  �

p / 2

0

 � 1

 � 2p 
p / 2

0
 dx

 a 0 � 2p 
p

0
 f (x) dx

f (x) � �1,

0,

0 � x � p
2

 ,

p
2

 � x � p ,
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Σειρές Fourier συνημιτόνων
H σειρά Fourier μιας άρτιας συνάρτησης στο διάστημα
�L � x � L είναι η σειρά συνημιτόνων (ή συνημιτονική σειρά)

(3)

όπου

(4)

(5) an � 2
L

 
L

0
 f (x)  cos  npx

L
 dx .

 a0 � 2
L

 
L

0
 f (x) dx ,

f (x) � 
a0

2
 � �

�

n�1
 an  cos  npx

L
 ,
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ΣXHMA 8.27 H συνάρτηση του
Παραδείγματος 1.

x

y

0

1

π/2–π/2 π–π

ΣXHMA 8.28 H άρτια επέκταση της
συνάρτησης του Παραδείγματος 1.

Eξ. (4) για L � �

f (x) � 0 για 
�/2 � x � �

Eξ. (5) για L � �



σεγγίσεις Fourier της f(x) καθώς το πλήθος όρων n που μετέχουν στην
εκάστοτε προσέγγιση μεταβάλλεται από 1 σε 5 και, τέλος, σε 20.

Περιττή επέκταση: Σειρές Fourier ημιτόνων
Θεωρούμε και πάλι μια συνάρτηση  y � f (x) ορισμένη στο διάστημα 0
� x � L . Oρίζουμε την περιττή επέκταση της f απαιτώντας ότι

f (�x) � �f (x) , �L � x � L .

Aπό γραφικής απόψεως, η περιττή επέκταση προκύπτει κατοπτρίζο-
ντας την y � f(x) ως προς την αρχή των αξόνων. Ένα παράδειγμα για
μια τυχούσα συνάρτηση φαίνεται στο Σχήμα 8.30. Για την περιττή επέ-
κταση της f , παίρνουμε τους συντελεστές Fourier

Έτσι, η σειρά Fourier της f είναι 

Eφόσον οι συντελεστές Fourier a0 και an μηδενίζονται, δεν υπάρχουν
όροι συνημιτόνων στη σειρά Fourier, η οποία επομένως καλείται σει-
ρά Fourier ημιτόνων (ή ημιτονική σειρά Fourier) της συνάρτησης f . H
σειρά αυτή συγκλίνει στην αρχική συνάρτηση f στο διάστημα
0 �x �L , ενώ συγκλίνει στην περιττή επέκταση της f στο διάστημα
� L � x � 0 (δεδομένης της τμηματικής συνέχειας των f και f 
) . Συνο-
ψίζουμε το αποτέλεσμα ως ακολούθως.

f (x) � �
�

n�1
 bn  sin  npx

L
 .

 bn � 1
L

 
L

�L
  f (x)  sin  npx

L

  
dx � 2

L

 
L

0

 
f (x)  sin  npx

L

 
dx .

 an � 1
L

  
L

�L
  f (x)  cos  npx

L   
dx � 0

 a0 � 1
L

 
L

�L
 f (x) dx � 0
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x

y

0 π

1,06

0,66

0,26

0

n = 1

n = 5

n = 20

π/2

ΣXHMA 8.29 Προσεγγίσεις με σειρά Fourier συνημιτόνων της
συνάρτησης του Παραδείγματος 1 για n (πλήθος όρων) ίσο με 1, 5,
και 20. Kαθώς το n αυξάνεται, οι προσεγγίσεις Fourier τείνουν στις
τιμές της f(x). Στο σημείο ασυνέχειας x � � 2, όλες οι
συνημιτονικές προσεγγίσεις Fourier διέρχονται από το μέσον της
ασυνέχειας, παίρνοντας την τιμή y � 0,5.

 / 

Άρτια

Περιττή



Παράδειγμα 2 Eύρεση σειράς Fourier ημιτόνων

Nα βρεθεί η ημιτονική σειρά Fourier για τη συνάρτηση

του Παραδείγματος 1.

Λύση Eπιλέγουμε την περιττή επέκταση της συνάρτησης f (x) . Oι
συντελεστές Fourier είναι

H σειρά Fourier ημιτόνων, λοιπόν, είναι

Στο Σχήμα 8.31 υπάρχει μια γραφική παράσταση των προσεγγίσεων
της f (x) με ημιτονική σειρά Fourier, για πλήθος όρων που μετέχουν
στην εκάστοτε προσέγγιση ίσο με n � 1, 5, και 20.

f (x) � �
�

n�1
 2
np �1 �  cos  np

2 �  sin  nx .

 � � 2
np  cos  nx �

p / 2

0

 
� 2

np �1 �  cos  np

2 � .

 � 2p 
p / 2

0
  sin  nx dx

 bn � 2p 
p

0
 f (x)  sin  npx

p  dx

f (x) � �1,

0,

0 � x � p
2

 ,

p
2

 � x � p ,

6798.10. Σειρές Fourier ημιτόνων και συνημιτόνων

x

y

L L

–L

(�)

x

y

(#)

ΣXHMA 8.30 (α) H αρχική τμηματικά συνεχής συνάρτηση f είναι
ορισμένη στο μη συμμετρικό διάστημα 0 � x � L . (β) H περιττή
επέκταση της f στο διάστημα �L � x � L .

Σειρές Fourier ημιτόνων
H σειρά Fourier μιας περιττής συνάρτησης στο διάστημα
�L � x � L είναι η σειρά ημιτόνων (ή ημιτονική σειρά)

(6)

όπου

(7)bn � 2
L

 
L

0
 f (x)  sin  npx

L
 dx .

f (x) � �
�

n�1
 bn  sin  npx

L
 ,
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Eξ. (7) για L � �

f (x) � 0 για 
�/2 � x � �



Φαινόμενο Gibbs
Στα Σχήματα 8.29 και 8.31, παρατηρούμε ότι η σειρά υπερακοντίζει τη
συνάρτηση στο x � � 2�, ενώ υπερακοντίζεται από αυτήν στο x �
� 2�. Tέτοια συμπεριφορά είναι χαρακτηριστική όταν αναπτύσσουμε
μια συνάρτηση σε σειρά Fourier κοντά σε σημεία ασυνέχειας, ακόμη
και όταν συμπεριλάβουμε μεγάλο αριθμό όρων της σειράς, και καλεί-
ται φαινόμενο Gibbs, προς τιμήν του Aμερικανού μαθηματικού φυσικού
Josiah Willard Gibbs. Συνολικά, στο σημείο ασυνέχειας η σειρά «ξε-
φεύγει» από τη συνάρτηση κατά περίπου 18% της διαφοράς τιμών εκα-
τέρωθεν της ασυνέχειας (Σ.τ.M. Δηλαδή η σειρά υπερακοντίζει τη συ-
νάρτηση κατά 9% στο � 2� και υπερακοντίζεται από αυτήν πάλι κατά
9% στο x � � 2�.). Tο Σχήμα 8.32 δείχνει το φαινόμενο για τη συνάρ-
τηση

 / 

 / 

 / 

 / 
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x

y

0 π
2

π

1,04

0,64

0,24

0

n = 1

n = 5
n = 20

ΣXHMA 8.31 Προσεγγίσεις με σειρά Fourier ημιτόνων της
συνάρτησης του Παραδείγματος 2, για n (πλήθος όρων) ίσο με 1, 5,
και 20. Kαθώς το n αυξάνεται, οι ημιτονικές προσεγγίσεις Fourier
τείνουν στις τιμές της f(x). Στο σημείο ασυνέχειας x � � 2, οι
προσεγγίσεις Fourier συγκλίνουν στο μέσον της ασυνέχειας.

 / 

Bιογραφικά στοιχεία

Josiah Willard Gibbs
(1839-1903)
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0 1 1

1

y

0

1

1

y

0

1

1

y

0

1

1

y

0

1

1

y

0

1

(�) n = 2 (#) n = 4 (�) n = 8 (�) n = 16 (�) n = 32 (
�) n = 64

(0,5,
1,09958)

(0,75,
1,09211) (0,875,

1,09014)
(0,9375,
1,08965)

(0,96875,
1,08953)

ΣXHMA 8.32 Tο φαινόμενο Gibbs για n � 2, 4, 8, 16, 32, και 64 όρους. H
κορυφή της καμπύλης μετατοπίζεται από το 0,5 στο 0,75, έπειτα στο
0,875, κ.ο.κ, πλησιάζοντας συνεχώς στο σημείο ασυνέχειας x � 1. Tο
μέγιστο της καμπύλης ισούται πάντα με 1,09 περίπου, δηλαδή με το 9%
της απόστασης μεταξύ των y � 0 και y � 1 στο σημείο ασυνέχειας x�1. 



και n � 2, 4, 8, 16, 32, και 64 όρους. Aν πάρουμε ακόμη περισσότε-
ρους όρους, τότε η κορυφή της προσεγγιστικής καμπύλης πλησιάζει
μεν στο σημείο ασυνέχειας x � 1, αλλά  διατηρεί το ύψος της, περί-
που 1,09.

AΣΚΗΣΕΙΣ 8.10

f (x) � �1,
0,

 0 � x � 1
x � 1
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Eύρεση συνημιτονικής σειράς Fourier 
Σε καθεμία από τις Aσκήσεις 1-8 δίνεται μια συνάρτηση
f(x) που ορίζεται στο διάστημα (0, L). Σχεδιάστε την f και
την άρτια επέκτασή της στο (�L, L). Kατόπιν βρείτε τη
σειρά Fourier συνημιτόνων της f.

1. f (x) � x , 0 � x � �

2. f (x) � sin x , 0 � x � �

3. f (x) � ex, 0 � x � 1

4. f (x) � cos x , 0 � x � �

5.

6.

7. f (x) � �2x � 1 �, 0 � x � 1

8. f (x) � �2x � � �, 0 � x � �

Eύρεση ημιτονικής σειράς Fourier
Σε καθεμία από τις Aσκήσεις 9-16 δίνεται μια συνάρτηση
f(x) που ορίζεται στο διάστημα (0, L). Σχεδιάστε την f και
την περιττή επέκτασή της στο (�L, L). Kατόπιν βρείτε τη
σειρά Fourier ημιτόνων της f.

9. f (x) � �x , 0 � x � 1

10. f (x) � x 2, 0 � x � �

11. f (x) � cos x , 0 � x � �

12. f (x) � ex, 0 � x � 1

13. f (x) � sin x , 0 � x � �

14.

15.

16. f (x) � �2x � � �, 0 � x � �

Θεωρία και παραδείγματα
17. Xρήση σειράς για τον υπολογισμό του � 4

(α) Nα βρεθεί η ημιτονική σειρά Fourier της 

(β) Eφαρμόστε το αποτέλεσμα (α) για να δείξετε ότι

18. Συνάρτηση με τριγωνικό γράφημα

(α) Σχεδιάστε την «τριγωνική» συνάρτηση

(β) Bρείτε ένα ανάπτυγμα σε σειρά Fourier της f (x) .

(γ) Bρείτε ένα ανάπτυγμα σε σειρά Fourier συνημιτό-
νων της f(x) .

19. Yπολογισμός σειράς Eφαρμόστε το αποτέλεσμα της
Άσκησης 2 προκειμένου να υπολογίσετε το άθροισμα

20. Σειρά Fourier ημιτόνων Δοθείσας της συνάρτησης

f (x) � 2 � x , 0 � x � 2,

ορίστε μια συνάρτηση της οποίας η αναπαράσταση σε
ημιτονική σειρά Fourier να συγκλίνει στην f(x) για κά-
θε τιμή του x . (Σημείωση: Δεν υπάρχει μία μόνον απά-
ντηση.)

�
�

n�1
 

(�1)n

4n 2 � 1
 .

f (x) � �1 � x ,
x � 1,

 0 � x � 1
1 � x � 2

p

4
 � 1 � 1

3
 � 1

5
 � 1

7
 � … .

f (x) � �1,
0,

 0 � x � p
x � 0 ��	 x � p .

 / 

f (x) � �1 � x ,
0,

 0 � x � 1
1 � x � 2

f (x) � �x ,
1,

 0 � x � 1
1 � x � 2

f (x) � ��1,
 1,

 0 � x � 0,5
0,5 � x � 1

f (x) � � 1,
�x ,

 0 � x � 1
1 � x � 2
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1. Tι είναι μια άπειρη ακολουθία; Tι εννοούμε όταν λέμε
ότι μια ακολουθία συγκλίνει; Tι όταν αποκλίνει; Δώ-
στε παραδείγματα.

2. Ποια θεωρήματα έχουμε στη διάθεσή μας για τον υπο-
λογισμό ορίων ακολουθιών; Δώστε παραδείγματα.

3. Ποιο θεώρημα μας επιτρέπει ενίοτε να χρησιμοποιού-
με τον κανόνα του l’Hôpital για να υπολογίζουμε το
όριο ακολουθίας; Δώστε ένα παράδειγμα.

4. Ποια είναι τα έξι είδη ορίων ακολουθιών που πιθανόν
να προκύψουν όταν μελετάμε τη σύγκλιση ακολουθιών
και σειρών;

5. Tι είναι μια υποακολουθία; Ποια η σημασία της; Ποια
χρησιμότητα έχουν οι υποακολουθίες; Δώστε παρα-
δείγματα.

6. Tι είναι μια μη φθίνουσα ακολουθία; Tι μια μη αύξου-
σα ακολουθία;  Tι μια μονότονη ακολουθία; Yπό ποιες
συνθήκες έχουν όρια οι ακολουθίες αυτές; Δώστε πα-
ραδείγματα.

7. Ποια είναι η μέθοδος του Picard για την επίλυση της
εξίσωσης f (x) � 0; Δώστε ένα παράδειγμα.

8. Tι είναι μια άπειρη σειρά; Tι εννοούμε όταν λέμε ότι
μια τέτοια σειρά συγκλίνει; Ότι αποκλίνει; Δώστε πα-
ραδείγματα.

9. Tι είναι μια γεωμετρική σειρά; Πότε συγκλίνει μια τέ-
τοια σειρά; Πότε αποκλίνει; Όταν συγκλίνει, τότε ποιο
είναι το άθροισμά της; Δώστε παραδείγματα.

10. Ποιες συγκλίνουσες και ποιες αποκλίνουσες σειρές
γνωρίζετε, πλην των γεωμετρικών σειρών;

11. Ποιο είναι το κριτήριο του n-οστού όρου σχετικά με
την απόκλιση σειρών; Ποια η κεντρική ιδέα που κρύ-
βεται πίσω από αυτό;

12. Tι γνωρίζετε για το άθροισμα ή τη διαφορά συγκλινου-
σών σειρών όρο προς όρο; Tι για τα σταθερά πολλα-
πλάσια συγκλινουσών και αποκλινουσών σειρών;

13. Tι θα συμβεί αν προσθέσουμε πεπερασμένο πλήθος
όρων σε μια συγκλίνουσα σειρά; Σε μια αποκλίνουσα
σειρά; Tι θα συμβεί αν αφαιρέσουμε πεπερασμένο
πλήθος όρων από μια συγκλίνουσα σειρά; Aπό μια
αποκλίνουσα σειρά; 

14. Yπό ποιες συνθήκες θα συγκλίνει μια άπειρη σειρά μη
αρνητικών όρων; Yπό ποιες συνθήκες θα αποκλίνει;
Γιατί έχουν ενδιαφέρον οι σειρές με μη αρνητικούς
όρους;

15. Tι είναι το κριτήριο του ολοκληρώματος; Ποια η λογι-
κή που το διέπει; Δώστε ένα παράδειγμα της χρήσης
του.

16. Πότε συγκλίνει μια p-σειρά; Πότε αποκλίνει; Πώς το
ξέρουμε; Δώστε παραδείγματα συγκλινουσών και απο-
κλινουσών p-σειρών.

17. Ποιο είναι το κριτήριο άμεσης σύγκρισης και ποιο το
κριτήριο οριακής σύγκρισης; Ποια η λογική που τα
διέπει; Δώστε παραδείγματα της χρήσης τους.

18. Ποια είναι τα κριτήρια του λόγου και της ρίζας; Mας
επιτρέπουν πάντοτε να αποφασίζουμε περί σύγκλισης
ή απόκλισης; Δώστε παραδείγματα.

19. Tι είναι μια εναλλασσόμενη σειρά; Ποιο θεώρημα μας

επιτρέπει να προσδιορίζουμε τη σύγκλιση μιας τέτοι-
ας σειράς;

20. Πώς μπορούμε να εκτιμήσουμε το σφάλμα όταν προ-
σεγγίζουμε μια εναλλασσόμενη σειρά με κάποιο από
τα μερικά της αθροίσματα; Ποια λογική διέπει την
εκτίμηση αυτή;

21. Tι είναι η απόλυτη σύγκλιση; Tι η υπό συνθήκη σύ-
γκλιση; Πώς συνδέονται αυτές μεταξύ τους;

22. Tι γνωρίζετε περί αναδιάταξης των όρων μιας απολύ-
τως συγκλίνουσας σειράς; Tο ίδιο ερώτημα για μια υπό
συνθήκη συγκίνουσα σειρά. Δώστε παραδείγματα.

23. Tι είναι μια δυναμοσειρά; Πώς εξετάζουμε τη σύγκλι-
σή της; Tι μπορεί να προκύψει στην περίπτωση αυτή;

24. Tι πρέπει να γνωρίζει κανείς σχετικά με

(α) την παραγώγιση όρο προς όρο μιας δυναμοσειράς;

(β) την ολοκλήρωση όρο προς όρο μιας δυναμοσειράς;

(γ) τον πολλαπλασιασμό μιας δυναμοσειράς;

Δώστε παραδείγματα.

25. Tι είναι η σειρά Taylor την οποία παράγει η συνάρτη-
ση f (x) στο σημείο x � a ; Ποιες πληροφορίες σχετικά
με την f χρειαζόμαστε για την κατασκευή τέτοιας σει-
ράς; Δώστε ένα παράδειγμα.

26. Tι είναι η σειρά Maclaurin;

27. Συγκλίνει πάντοτε μια σειρά Taylor στη γεννήτρια συ-
νάρτησή της; Eξηγήστε.

28. Tι είναι τα πολυώνυμα Taylor; Ποια η χρησιμότητά
τους;

29. Tι είναι το θεώρημα Taylor; Tι μας λέει σχετικά με τα
σφάλματα προσέγγισης συναρτήσεων με πολυώνυμα
Taylor; Eιδικότερα, τι μας λέει το θεώρημα εκτίμησης
υπολοίπου σχετικά με το σφάλμα γραμμικοποίησης;
Σχετικά με το σφάλμα μιας δευτεροβάθμιας προσέγγι-
σης;

30. Tι είναι η διωνυμική σειρά; Σε ποιο διάστημα συγκλί-
νει; Πώς χρησιμοποιείται;

31. Ποιες οι σειρές Maclaurin των 1 (1 � x), 1 (1 � x) , ex,
sin x , cos x , ln (1 � x), και tan�1 x ;

32. Tι είναι η σειρά Fourier; Πώς υπολογίζουμε τους συ-
ντελεστές Fourier μιας συνάρτησης f (x) ορισμένης στο
διάστημα �L � x � L ; Yπό ποιες προϋποθέσεις συ-
γκλίνει μια σειρά Fourier στη συνάρτηση που την πα-
ράγει; Tι συμβαίνει σε σημεία ασυνέχειας;

33. Tι είναι η περιοδική επέκταση σε όλον τον άξονα των
πραγματικών αριθμών μιας συνάρτησης f (x) που ορί-
ζεται στο �L � x � L ;

34. Tι είναι η άρτια επέκταση στο �L � x � 0 μιας συνάρ-
τησης f(x) ορισμένης στο 0 � x � L ; Tι είναι η σειρά
Fourier συνημιτόνων; Πώς υπολογίζονται οι συντελε-
στές της;

35. Tι είναι η περιττή επέκταση στο �L � x � 0 μιας συ-
νάρτησης f(x) ορισμένης στο 0 � x � L ; Tι είναι η σει-
ρά Fourier ημιτόνων; Πώς υπολογίζονται οι συντελεστές
της;

36. Tι είναι το φαινόμενο Gibbs; Πώς επηρεάζεται όταν
συμπεριλάβουμε όλο και περισσότερους όρους της
σειράς Fourier;

 /  / 
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Συγκλίνουσες και αποκλίνουσες ακολουθίες

Ποιες από τις ακολουθίες των οποίων οι n-στοί όροι δίνο-
νται στις Aσκήσεις 1-18 συγκλίνουν, και ποιες αποκλίνουν;
Bρείτε το όριο κάθε συγκλίνουσας ακολουθίας.

1. an � 1 � 2.

3. 4. an � 1 � (0,9)n

5. 6. an � sin n�

7. 8.

9. 10.

11. 12.

13. 14.

15. an � n(2 � 1) 16.

17. 18.

Συγκλίνουσες σειρές

Bρείτε τα αθροίσματα των σειρών στις Aσκήσεις 19-24.

19. 20.

21. 22.

23. 24.

Συγκλίνουσες και αποκλίνουσες σειρές

Ποιες από τις σειρές των Aσκήσεων 25-40 συγκλίνουν
απολύτως, ποιες υπό συνθήκη, και ποιες αποκλίνουν; Aι-
τιολογήστε τις απαντήσεις σας.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

Δυναμοσειρές

Στις Aσκήσεις 41-50, (α) βρείτε την ακτίνα και το διάστη-
μα σύγκλισης κάθε σειράς. Έπειτα εντοπίστε τις τιμές x
για τις οποίες η σειρά συγκλίνει (β) απολύτως και (γ) υπό
συνθήκη.

41. 42.

43. 44.

45. 46.

47. 48.

49. (csch n) xn 50. (coth n) xn

Σειρές Maclaurin

Σε καθεμία από τις Aσκήσεις 51-56 δίνεται η τιμή μιας σει-
ράς Maclaurin της συνάρτησης f(x) σε κάποιο σημείο.
Ποια είναι η συνάρτηση και ποιο το σημείο; Mε τι ισούται
το άθροισμα της σειράς;

51.

52.

53.

54.

55.

56.

Bρείτε σειρές Maclaurin για τις συναρτήσεις των Aσκήσε-
ων 57-64.

57. 58.

59. sin �x 60.

61. cos (x ) 62.

63. 64.

Σειρές Taylor

Στις Aσκήσεις 65-68, βρείτε τους πρώτους τέσσερις μη μη-
δενικούς όρους της σειράς Taylor την οποία παράγει η f
στο x � a.

65. f (x) � �3 � x2  
��  x � �1

e�x2

e(px / 2)

 cos  �5x5 / 2

 sin  2x
3

1
1 � x3

1
1 � 2x

1
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9�3
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66. f (x) � 1 (1 � x) στο x � 2

67. f (x) � 1 (x � 1) στο x � 3

68. f (x) � 1 x στο x � a � 0

Προβλήματα αρχικών τιμών

Xρησιμοποιήστε δυναμοσειρές για να λύσετε τα προβλή-
ματα αρχικών τιμών των Aσκήσεων 69-76.

69. y
 � y � 0, y(0) � �1 70. y
 � y � 0, y(0) � �3

71. y
 � 2y � 0, y(0) � 3 72. y
 � y � 1, y(0) � 0

73. y
 � y � 3x , y(0) � �1 74. y
 � y � x , y(0) � 0

75. y
 � y � x , y(0) � 1 76. y
 � y � �x , y(0) � 2

Aπροσδιόριστες μορφές

Στις Aσκήσεις 77-82:

(α) Yπολογίστε κάθε όριο με χρήση δυναμοσειρών.

(β) Kατόπιν σχεδιάστε με υπολογιστή κάθε συνάρτη-
ση για να υποστηρίξετε τον υπολογισμό σας.

77. 78.

79. 80.

81. 82.

83. Aναπαραστήστε σε σειρά τη συνάρτηση sin 3x προ-
κειμένου να βρείτε τις τιμές των r και s για τις οποίες
ισχύει ότι

84. (α) Δείξτε ότι η προσέγγιση csc x 
 1 x � x 6 στην
Eνότητα 8.8, Παράδειγμα 6, οδηγεί στην προσέγ-
γιση sin x 
 6x (6 � x 2) .

(β) Mάθετε γράφοντας Συγκρίνετε την ακρίβεια των
προσεγγίσεων sin x 
 x και sin x 
 6x (6 � x 2) συ-
γκρίνοντας τα γραφήματα των f (x) � sin x � x και
g(x) � sin x � (6x (6 � x 2)) . Περιγράψτε τι βλέπε-
τε.

Σειρές Fourier

Στις Aσκήσεις 85-90, βρείτε τη σειρά Fourier της f στο δο-
θέν διάστημα.

85.

86.

87. f (x) � x � �, �� � x � �

88.

89.

90.

Hμιτονικές και συνημιτονικές σειρές Fourier

Στις Aσκήσεις 91-96, βρείτε 

(α) τη συνημιτονική σειρά Fourier 

(β) την ημιτονική σειρά Fourier της f στο δοθέν διά-
στημα.

91.

92.

93. f (x) � sin �x , 0 � x � 1

94. f (x) � cos x , 0 � x � � 2

95. f (x) � 2x � x 2, 0 � x � 3

96. f (x) � e�x, 0 � x � 2

Θεωρία και παραδείγματα

97. Συγκλίνουσα σειρά

(α) Δείξτε ότι η σειρά

συγκλίνει.

(β) Mάθετε γράφοντας Eκτιμήστε το μέγεθος του σφάλ-
ματος αν αθροίσουμε μέχρι 20 όρους της σειράς.
H προσεγγιστική τιμή που παίρνουμε είναι μεγα-
λύτερη ή μικρότερη από την πραγματική; Aιτιο-
λογήστε την απάντησή σας.

98. (α) Συγκλίνουσα σειρά Δείξτε ότι η σειρά

συγκλίνει.

(β) Mάθετε γράφοντας Eκτιμήστε το μέγεθος του σφάλ-
ματος αν αθροίσουμε μέχρι και τον όρο �tan (1
41) της σειράς. H προσεγγιστική τιμή που παίρ-
νουμε είναι μεγαλύτερη ή μικρότερη από την
πραγματική; Aιτιολογήστε την απάντησή σας.

99. Aκτίνα σύγκλισης Bρείτε την ακτίνα σύγκλισης της
σειράς

100. Aκτίνα σύγκλισης Bρείτε την ακτίνα σύγκλισης της
σειράς

101. n-οστό μερικό άθροισμα Bρείτε μια κλειστή έκφραση για
το n-οστό μερικό άθροισμα της σειράς ln (1 �
(1/n2 )) και χρησιμοποιήστε τη για να προσδιορίσετε
αν η σειρά συγκλίνει ή αποκλίνει.

102. n-οστό μερικό άθροισμα Yπολογίστε το (1 (k2 � 1)) / ��
k�2

��
n�2

�
�

n�1
 

3 � 5 � 7 � … � (2n � 1)
4 � 9 � 14 � … � (5n � 1)

 (x � 1)n
 .

�
�

n�1
 
2 � 5 � 8 � … � (3n � 1)

2 � 4 � 6 � … � (2n)
 xn .

 / 

�
�

n�1
 �tan  1

2n
 �  tan  1

2n � 1� 

�
�

n�1
 �sin  1

2n
 �  sin  1

2n � 1�

 / 

f (x) � �0,
x ,

 0 � x � 1
1 � x � 2

f (x) � �1,
0,

 0 � x � 1 / 2
1 / 2 � x � 1

f (x) � �0,
x ,
1,

�2 � x � 0
0 � x � 1
1 � x � 2

f (x) � �1,
1 � x ,

�2 � x � 0
  0 � x � 2

f (x) � �0,
 sin  x ,

�p � x � 0
   0 � x � p

f (x) � �0,
x ,

�1 � x � 0 

  0 � x � 1

f (x) � ��1,
2,

�p � x � 0
�0 � x � p

 / 

 / 

 / 

 /  / 

lim
xl0

  � sin  3x
x3

 � r
x2

 � s� � 0.

lim
yl0

  
y 2

 cos  y � cosh y
lim
zl0

  1 �  cos2 z
ln  (1 � z) �  sin  z

lim
hl0

  
(sin  h) / h �  cos  h

h2
lim
tl0

  � 1
2 � 2  cos  t

 � 1
t 2�

lim
ul0

  e
u � e�u � 2u

u �  sin  u
lim
xl0

  7  sin  x
e2x � 1

 / 

 / 

 / 
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βρίσκοντας το όριο καθώς n l � του n-οστού μερικού
αθροίσματος.

103. (α) Διάστημα σύγκλισης Bρείτε το διάστημα σύγκλισης
της σειράς

(β) Διαφορική eξίσωση Δείξτε ότι η συνάρτηση που ορί-
ζεται από τη σειρά ικανοποιεί μια διαφορική εξί-
σωση της μορφής

και βρείτε τις τιμές των σταθερών a και b .

104. (α) Σειρά Maclaurin Bρείτε τη σειρά Maclaurin της συ-
νάρτησης x 2 (1 � x) .

(β) Συγκλίνει η σειρά στο x � 1; Eξηγήστε.

105. Mάθετε γράφοντας Aν οι an και bn είναι συ-
γκλίνουσες σειρές μη αρνητικών αριθμών, τότε τι συ-
μπεραίνετε για την anbn; Aιτιολογήστε την απά-
ντησή σας.

106. Mάθετε γράφοντας Aν οι an και bn είναι απο-
κλίνουσες σειρές μη αρνητικών αριθμών, τότε τι συ-
μπεραίνετε για την anbn; Aιτιολογήστε την απά-
ντησή σας.

107. Ακολουθία και σειρά Δείξτε ότι η ακολουθία {xn} και η
σειρά (xk�1 � xk) συγκλίνουν ταυτόχρονα ή απο-
κλίνουν ταυτόχρονα.

108. Σύγκλιση Δείξτε ότι η σειρά (an (1 � an)) συγκλί-

νει εφόσον an � 0 για κάθε n και η an συγκλίνει.

109. (α) Απόκλιση Έστω a1, a2, a3, . . . , an θετικοί αριθμοί
που ικανοποιούν τις ακόλουθες συνθήκες:

i. a1 � a2 � a3 � …

ii. η σειρά a2 � a4 � a8 � a16 � … αποκλίνει.

Δείξτε ότι η σειρά

αποκλίνει.

(β) Xρησιμοποιήστε το αποτέλεσμά σας στο (α) για
να δείξετε ότι η σειρά

αποκλίνει.

110. Eκτίμηση ολοκληρώματος Έστω ότι θέλετε να βρείτε μια
εύκολη και γρήγορη προσεγγιστική τιμή για το x 2ex

dx . Yπάρχουν διάφοροι δυνατοί τρόποι για να το πρά-
ξετε.

(α) Xρησιμοποιήστε τον κανόνα του τραπεζίου με
n � 2 για να εκτιμήσετε το x 2ex dx .

(β) Γράψτε τους τρεις πρώτους όρους της σειράς
Maclaurin του x 2ex για να εξαγάγετε έτσι το τέταρ-
το πολυώνυμο Maclaurin P(x) του x 2ex. Έπειτα
χρησιμοποιήστε το P(x) dx ως προσέγγιση του

x 2ex dx .

(γ) Mάθετε γράφοντας H δεύτερη παράγωγος της f(x) �
x 2ex είναι θετική για κάθε x � 0. Eξηγήστε γιατί
αυτή η παρατήρηση συνεπάγεται ότι η εκτίμηση
που κάνατε στο (α) είναι μεγαλύτερη της πραγμα-
τικής τιμής. 

(δ) Mάθετε γράφοντας Kάθε παράγωγος της f (x) � x 2ex

είναι θετική για x � 0. Eξηγήστε γιατί αυτή η πα-
ρατήρηση συνεπάγεται ότι κάθε πολυωνυμική
προσέγγιση Maclaurin της f (x) για x στο διάστη-
μα [0, 1] θα δίνει τιμή μικρότερη της πραγματικής
τιμής. (Yπόδειξη: f (x) � Pn(x) � Rn(x) .)

(ε) Xρησιμοποιήστε παραγοντική ολοκλήρωση για
να υπολογίσετε το x 2ex dx .

111. Σειρά της tan�1 x

(α) Oλοκληρώστε κατά μέλη από t � 0 έως t � x την
εξίσωση

όπου ο τελευταίος προσθετέος είναι το υπόλοιπο
μετά (n � 1) όρους, και προέκυψε ως άθροισμα γε-
ωμετρικής σειράς με αρχικό όρο a � (�1)n�1t 2n�2

και λόγο r � �t 2.

(β) Δείξτε ότι ο όρος υπολοίπου του ερωτήματος (α)
ισούται με

Rn(x) �

και βρείτε το limnl� Rn(x) για �x � � 1.

(γ) Bάσει του αποτελέσματός σας στο (β), βρείτε μια
δυναμοσειρά της συνάρτησης tan�1 x.

(δ) Θέστε x � 1 στη σειρά της tan�1 x ώστε να εξαγά-
γετε τον τύπο του Leibniz

112. Yπολογισμός μη στοιχειωδών ολοκληρωμάτων Όπως έχουμε
δει, οι σειρές Maclaurin μπορούν να χρησιμοποιη-
θούν για να εκφράσουμε μη στοιχειώδη ολοκληρώμα-
τα σε μορφή σειρών.

(α) Eκφράστε το sin t 2 dt σε μορφή δυναμοσειράς.

(β) Σύμφωνα με το θεώρημα εκτίμησης εναλλασσόμε-
νης σειράς, πόσους όρους της σειράς (α) χρειαζό-
μαστε για να εκτιμήσουμε το sin x 2 dx με σφάλ-
μα μικρότερο του 0,001;

113. H μέθοδος του Picard για κλίσεις μεγαλύτερες του 1 Στο Πα-
ράδειγμα 9 της Eνότητας 8.2 είδαμε ότι δεν μπορούμε
να εφαρμόσουμε τη μέθοδο του Picard για να βρούμε
ένα σταθερό σημείο της g(x) � 4x � 12, αλλά μπορού-
με να βρούμε ένα σταθερό σημείο της g�1(x) � (1 4)x
� 3 διότι η παράγωγος της g�1 είναι πάντα μικρότερη
της μονάδας (κατ’ απόλυτη τιμή)Ø για την ακρίβεια,
ισούται με 1 4. Στο Παράδειγμα 7 της Eνότητας 8.2,
βρήκαμε ότι το σταθερό σημείο της g�1 είναι το x � 4.
Παρατηρήστε τώρα ότι το 4 είναι επίσης σταθερό ση-
μείο της g , δεδομένου ότι

g(4) � 4(4) � 12 � 4.

 / 

 / 

�1
0

�x
0

p

4
 � 1 � 1

3
 � 1

5
 � 1

7
 � 1

9
 � … � 

(�1)n

2n � 1
 � … .


 x

0
 
(�1)n�1t 2n�2

1 � t 2
 dt

1
1 � t 2

 � 1 � t 2 � t 4 � t 6 � … � (�1)nt 2n � 
(�1)n�1t 2n�2

1 � t 2

�1
0

�1
0

�1
0

�1
0

�1
0

1 � �
�

n�2
 1
n ln  n

a 1

1
 � 

a 2

2
 � 

a 3

3
 � …

��
n�1

 / ��
n�1

��
k�1

��
n�1

��
n�1��

n�1

��
n�1

��
n�1��

n�1

 / 

d 2y

dx2
 � xa y � b

y �1� 1
6

 x3� 4
720

 x6�…� 
1 � 4 � 7 � … � (3n � 2)

(3n)!
 x3n� … .
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Δηλαδή, βρίσκοντας το σταθερό σημείο της g�1, βρή-
καμε και της g .

Mια συνάρτηση έχει πάντοτε τα ίδια σταθερά ση-
μεία με την αντίστροφή της. Tα γραφήματα των συ-
ναρτήσεων αυτών είναι συμμετρικά ως προς την ευ-
θεία y � x την οποία και τέμνουν στα ίδια σημεία.

Bλέπουμε λοιπόν τώρα ότι η μέθοδος του Picard έχει
ευρεία εφαρμογή. Έστω ότι η g είναι αμφιμονοσήμα-
ντη (1-1), με συνεχή πρώτη παράγωγο μεγαλύτερη της
μονάδας (κατ’ απόλυτη τιμή) σε κλειστό διάστημα I,

στο εσωτερικό του οποίου κείται ένα σταθερό σημείο
τής g . Στην περίπτωση αυτή η παράγωγος της g�1,
όντας ίση με την αντίστροφη τής g
, είναι μικρότερη
του 1 στο I . Eφαρμόζοντας τη μέθοδο του Picard στην
g�1 στο I θα μας δώσει το σταθερό σημείο της g . Για να
εξασκηθείτε στην ιδέα αυτή, βρείτε τα σταθερά ση-
μεία των ακόλουθων συναρτήσεων.

(α) g(x) � 2x � 3

(β) g(x) � 1 � 4x
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Eπιπρόσθετες ασκήσεις: θεωρία, παραδείγματα, εφαρμογές

Σύγκλιση και απόκλιση

Ποιες από τις σειρές an τις οποίες ορίζουν οι τύποι
των Aσκήσεων 1-4 συγκλίνουν, και ποιες αποκλίνουν; Aι-
τιολογήστε τις απαντήσεις σας.

1. 2.

3. (�1)n tanh n 4.

Ποιες από τις σειρές an που ορίζουν οι τύποι των
Aσκήσεων 5-8 συγκλίνουν, και ποιες αποκλίνουν; Aιτιο-
λογήστε τις απαντήσεις σας.

5. a1 � 1, an�1 � an (Yπόδειξη: Γράψτε

μερικούς όρους, δείτε ποιοι παράγοντες διαγράφονται,

και κατόπιν γενικεύστε.)

6. a1 � a2 � 7, an�1 � an αν n � 2

7. a1 � a2 � 1, an�1 � αν n � 2

8. an � 1 3n αν n περιττός, an � n 3n αν n άρτιος

Eπιλογή κέντρου της σειράς Taylor

O τύπος του Taylor

f (x) � f (a) � f 
(a)(x � a) � (x � a)2

� … � (x � a)n�1

εκφράζει την τιμή της f στο x συναρτήσει των τιμών της f
και των παραγώγων της στο x � a . Kατά την εκτέλεση λοι-
πόν αριθμητικών υπολογισμών, το a πρέπει να είναι σημείο
όπου τόσο η f όσο και οι παράγωγοί της να μας είναι γνω-
στές. Πρέπει επίσης να βρίσκεται αρκετά κοντά στις τιμές
της f που μας ενδιαφέρουν, ώστε η ποσότητα (x � a)n�1 να
είναι μικρή και να μπορούμε να αγνοήσουμε τον όρο του
υπολοίπου.

Στις Aσκήσεις 9-14, ποια σειρά Taylor θα επιλέγατε για
να αναπαραστήσετε τη συνάρτηση κοντά στη δοθείσα τιμή
του x ; (Eνδέχεται να υπάρχουν περισσότερες της μίας απο-
δεκτές απαντήσεις.) Για τη σειρά που επιλέξατε, γράψτε
τους πρώτους τέσσερις μη μηδενικούς όρους.

9. cos x κοντά στο x � 1 10.  sin x κοντά στο x � 6,3

11. ex κοντά στο x � 0,4 12.  ln x κοντά στο x � 1,3

13. cos x κοντά στο x � 69 14.  tan�1 x κοντά στο x � 2

Θεωρία και παραδείγματα

15. n-στή ρίζα του an � bn Έστω a και b σταθερές με 0 � a �
b . Συγκλίνει η ακολουθία {(an � bn) }; Aν ναι, σε ποιο
όριο;

16. Eπαναλαμβανόμενα δεκαδικά ψηφία Nα βρεθεί το άθροισμα
της άπειρης σειράς

.

17. Άθροιση ολοκληρωμάτων Yπολογίστε το

18. Aπόλυτη σύγκλιση Nα βρεθούν όλες οι τιμές x για τις
οποίες η σειρά

συγκλίνει απολύτως.

19. Σταθερά του Euler Γραφικές παραστάσεις όπως αυτή στο
Σχήμα 8.13, μας δείχνουν ότι καθώς το n αυξάνεται, ολο-
ένα και μικραίνει η διαφορά μεταξύ του αθροίσματος

1 � 1
2

 � … � 1n

�
�

n�1
 nxn

(n � 1)(2x � 1)n

�
�

n�0
 
 n�1

n
 1
1 � x2

  dx.

2 3 7 2 3 7 2 3 71+ —+ — + — + — + — + — + — + — + — +. . .
1 0 1 0 2 1 0 3 1 0 4 1 0 5 1 0 6 1 0 7 1 0 8 1 0 9

1 / n

f (n) (a)
n!

 (x � a)n � 
f (n�1)(c)
(n � 1)!

f �(a)
2!

 /  / 

1
1 � an

n
(n � 1)(n � 1)

n(n � 1)
(n � 2)(n � 3)

��
n�1

�
�

n�2
 
 logn (n!)

n 3�
�

n�1

�
�

n�1
 
( tan�1 n)2

n 2 � 1�
�

n�1
 1
(3n � 2)n�(1 / 2)

��
n�1



και του ολοκληρώματος

Διερευνήστε την παραπάνω πρόταση, εκτελώντας τα
ακόλουθα βήματα.

(α) Θέστε f (x) � 1 x στο Σχήμα 8.13, και δείξτε ότι

δηλαδή ότι

Συνεπώς, η ακολουθία

είναι άνω και κάτω φραγμένη.

(β) Δείξτε ότι

και χρησιμοποιήστε το αποτέλεσμα αυτό για να
δείξετε ότι η ακολουθία {an} του ερωτήματος (α)
είναι μη αύξουσα.

Eφόσον μια κάτω φραγμένη μη αύξουσα ακολουθία συ-
γκλίνει, τα an όπως ορίζονται στο (α) θα συγκλίνουν:

O αριθμός � που ισούται με 0,5772 . . . , καλείται στα-
θερά του Euler. Eν αντιθέσει με άλλους ειδικούς αριθ-
μούς όπως το � και το e, δεν έχει βρεθεί κάποια απλού-
στερη μαθηματική έκφραση του g.

20. Γενίκευση της σταθεράς του Euler Tο ακόλουθο σχήμα δεί-
χνει τη γραφική παράσταση μιας θετικής διπλά διαφο-
ρίσιμης φθίνουσας συνάρτησης f η οποία έχει θετική
δεύτερη παράγωγο στο (0, �) . Για κάθε n , ο αριθμός An

είναι το εμβαδόν του χωρίου μεταξύ της καμπύλης και
του ευθύγραμμου τμήματος που συνδέει τα σημεία
(n , f (n)) και (n � 1,  f (n � 1)) .

(α) Xρησιμοποιώντας το σχήμα, δείξτε ότι
An � (1 2)( f (1) � f (2)) .

(β) Kατόπιν αποδείξτε ότι υπάρχει το όριο

(γ) Δείξτε, τέλος, ότι υπάρχει και το όριο

Για f (x) � 1 x , το όριο (γ) είναι η σταθερά του
Euler. (Πηγή: “Convergence with Pictures” άρθρο του P.
J. Rippon, American Mathematical Monthly, Vol. 93, No.
6 (1986), pp. 476–478.)

21. «Aποκόπτοντας» τρίγωνα Θεωρήστε το ισόπλευρο τρίγω-
νο πλευράς 2b του σχήματος. Aπό αυτό αποκόπτουμε
ισόπλευρα τρίγωνα όπως δείχνει η ακολουθία των πα-
ρακάτω σχημάτων. Tο άθροισμα των εμβαδών που
αφαιρούνται έτσι από το εμβαδόν του αρχικού τριγώ-
νου σχηματίζει μια άπειρη σειρά.

(α) Nα βρεθεί η σειρά αυτή.

(β) Nα βρεθεί το άθροισμα της άπειρης σειράς και
ακολούθως το ολικό εμβαδόν που αφαιρείται από
αυτό του αρχικού τριγώνου.

(γ) Kαθώς η διαδικασία αποκοπής συνεχίζεται επ’
άπειρον, θα απομείνει τελικά κανένα σημείο του
αρχικού τριγωνικού χωρίου; Eξηγήστε γιατί ναι ή
γιατί όχι.

22. Mια γρήγορη εκτίμηση του �/2 Όπως θα είδατε στην
Άσκηση 10 της Eνότητας 8.2, η ακολουθία που πα-
ράγεται από τον αναδρομικό τύπο xn�1 � xn � cos xn

με τιμή εκκίνησης x0 � 1 συγκλίνει ταχύτατα στο �
2. Προκειμένου να εξηγήσετε την ταχύτητα της σύ-
γκλισης, έστω �n � (� 2) � xn. (Δείτε το σχήμα.)
Στην περίπτωση αυτή

 � 1
3!

 (en)
3 � 1

5!
 (en)

5 � … .

 � en �  sin  en

 � en �  cos  �p

2
 � en�

 en�1 � p
2

 � xn �  cos  xn

 / 

 / 

2b

2b 2b

2b

2b 2b

2b

2b 2b • • •

x

y

f(4)

1

y � f(x)

0 2 3 4 5

f(3)

f(2)

f(1)

…

A2

A3

A1

A2

A3 …

 / 

lim
nl�

  ��
n

k�1
 f (k) � 
 n

1
 f (x) dx� .

lim
nl�

  ��
n

k�1
 f (k) � 1

2
 ( f (1) � f (n)) � 
 n

1
 f (x) dx� .

 / ��
n�1

 ,

1 � 1
2

 � … � 1n � ln  n l g .

1
n � 1

 � 
 n�1

n
 1x dx � ln  (n � 1) � ln  n

an � 1 � 1
2

 � … � 1n � ln  n

0 � ln  (n � 1) � ln  n � 1 � 1
2

 � … � 1n � ln  n � 1.

ln  (n � 1) � 1 � 1
2

 � … � 1n � 1 � ln  n

 / 

ln  n � 
 n

1
 1x dx  .
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Xρησιμοποιήστε την ισότητα αυτή για να δείξετε ότι

23. Yπολογιστική διερεύνηση

(α) Mάθετε γράφοντας Φαίνεται να εξαρτάται από το a η
τιμή του ορίου 

, όπου a σταθερά;

Aν ναι, ποια είναι η εξάρτηση αυτή;

(β) Mάθετε γράφοντας Φαίνεται να εξαρτάται από το b η
τιμή του ορίου

, όπου a και b σταθερές, και b � 0;

Aν ναι, ποια είναι η εξάρτηση αυτή;

(γ) Eφαρμόζοντας μεθόδους του απειροστικού λογι-
σμού, επαληθεύστε ό,τι βρήκατε στα (α) και (β) .

24. Δείξτε ότι αν η σειρά an συγκλίνει, τότε και η

θα συγκλίνει.

25. Aκτίνα σύγκλισης Nα βρεθεί η τιμή της σταθεράς b για
την οποία η ακτίνα σύγκλισης της δυναμοσειράς

ισούται με 5.

26. Mάθετε γράφοντας: Yπερβατικές συναρτήσεις Πώς γνωρίζου-
με ότι οι συναρτήσεις sin x , ln x , και ex δεν είναι πο-
λυώνυμα; Aιτιολογήστε την απάντησή σας.

27. Kριτήριο του Raabe (ή του Gauss) Tο ακόλουθο κριτήριο,
που παραθέτουμε άνευ αποδείξεως, αποτελεί επέκτα-
ση του κριτηρίου του λόγου.

Kριτήριο του Raabe: Aν η un είναι σειρά θετικών
αριθμών και υπάρχουν σταθερές C, K , και N τέτοιες
ώστε

όπου � f (n) � � K για n � N , τότε η un συγκλίνει για
C � 1 και αποκλίνει για C � 1.

Δείξτε ότι τα αποτελέσματα του κριτηρίου του
Raabe συμφωνούν με όσα ήδη γνωρίζετε για τις σειρές

(1 n2 ) και (1 n) .

28. Xρήση του κριτηρίου του Raabe Έστω ότι οι όροι της
un ορίζονται αναδρομικά μέσω των τύπων

Eφαρμόστε το κριτήριο του Raabe για να προσδιορί-
σετε αν η σειρά συγκλίνει.

29. Yποθέστε ότι η σειρά an συγκλίνει, ότι an � 1, και
ότι an � 0 για κάθε n .

(α) Ύψωση στο τετράγωνο Δείξτε ότι η an
2 συγκλί-

νει.

(β) Mάθετε γράφοντας Συγκλίνει η an (1 � an); Eξη-
γήστε.

30. (Συνέχεια της Άσκησης 29) Aν η σειρά an συγκλί-
νει και αν 1 � an � 0 για κάθε n , δείξτε ότι η ln (1
� an) συγκλίνει. (Yπόδειξη: Δείξτε πρώτα ότι � ln (1 �
an) � � an (1 � an) .)

31. Θεώρημα της Nicole Oresme Aποδείξτε το θεώρημα της
Nicole Oresme, ότι

(Yπόδειξη: παραγωγίστε κατά μέλη την εξίσωση
1 (1 � x) � 1 � xn.)

32. (α) Παραγώγιση όρο προς όρο Δείξτε ότι

για �x � � 1, παραγωγίζοντας δύο φορές την ταυτό-
τητα

,

πολλαπλασιάζοντας αυτό που βρήκατε με x , και
αντικαθιστώντας, τέλος, το x με το 1 x .

(β) Xρησιμοποιήστε το (α) για να βρείτε την πραγμα-
τική και μεγαλύτερη της μονάδας λύση της εξίσω-
σης

33. Άθροιση εκθετικών δυνάμεων Eφαρμόστε το κριτήριο του
ολοκληρώματος για να δείξετε ότι η σειρά

συγκλίνει.

34. Mάθετε γράφοντας Aν η an είναι συγκλίνουσα σειρά
θετικών αριθμών, τότε τι μπορείτε να συμπεράνετε για
τη σύγκλιση της ln (1 � an) ; Aιτιολογήστε την
απάντησή σας.

35. Ποιοτικός έλεγχος

(α) Παραγωγίστε τη σειρά

� 1 � x � x 2 � … � xn � …

ώστε να προκύψει η σειρά της συνάρτησης
1/(1 � x) 2.

1
1 � x

��
n�1

��
n�1

�
�

n�0
 e�n2

x � �
�

n�1
 
n(n � 1)

xn  .

 / 

�
�

n�1
 xn�1 � x2

1 � x

�
�

n�1
 
n(n � 1)

xn  � 2x2

(x � 1)3

��
n�1 / 

1 � 1
2

 � 2 � 1
4

 � 3 � … � n
2 n�1

 � … � 4.

 / 

��
n�1

��
n�1

 / ��
n�1

��
n�1

��
n�1

u1 � 1,   un�1 � 
(2n � 1)2

(2n)(2n � 1)
 un .

��
n�1

 / ��
n�1 / ��

n�1

��
n�1

un

un�1
 � 1 � Cn  � 

f (n)

n 2
 ,

��
n�1

�
�

n�2
 b

nxn

ln  n

�
�

n�1
 �1 �  sin  (an)

2 �
n

��
n�1

lim
nl�

 �1 � 
 cos  (a / n)

bn �
n

lim
nl�

  �1 � 
 cos  (a / n)

n �
n

x

y

1

cosxn

0

1

xn

xn

�n

0 � en�1 � 1
6

 (en)
3 .
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(β) Zάρια Pίχνοντας δύο ζάρια μία φορά, η πιθανότητα
να βγει άθροισμα 7 είναι p � 1 6. Pίχνοντας τα ζά-
ρια κατ’ εξακολούθηση, η πιθανότητα εμφάνισης
του 7 για πρώτη φορά στη n-στή ρίψη ισούται με
qn�1p , όπου q � 1 � p � 5 6. O αναμενόμενος αριθ-
μός ρίψεων μέχρι να εμφανιστεί το 7 είναι 
nqn�1p . Nα βρεθεί το άθροισμα της σειράς.

(γ) Eίστε μηχανικός και εφαρμόζετε στατιστικό έλεγ-
χο στη διαδικασία βιομηχανικής παραγωγής της
εταιρείας σας. Aπό τον ιμάντα συναρμολόγησης
διαλέγετε τυχαία κάποια προϊόντα. Xαρακτηρίζε-
τε κάθε προϊόν που εξετάζετε ως «καλό» ή «ελατ-
τωματικό». Έστω p η πιθανότητα να είναι καλό ένα
προϊόν, οπότε q � 1 � p η πιθανότητα ελαττωματι-
κού προϊόντος. H πιθανότητα να βρείτε το πρώτο
ελαττωματικό προϊόν κατά τη n-οστή διαλογή
ισούται με pn�1q . O μέσος αριθμός προϊόντων που
ελέγχθησαν μέχρι και το πρώτο ελαττωματικό
προϊόν, είναι npn�1q . Yπολογίστε το άθροι-
σμα αυτό, υποθέτοντας ότι 0 � p � 1.

36. Aναμενόμενη τιμή Έστω ότι μια τυχαία μεταβλητή X μπο-
ρεί να πάρει τις τιμές 1, 2, 3, . . . , με αντίστοιχες πιθα-
νότητες p1, p2, p3, . . . , όπου pk είναι η πιθανότητα να
ισούται το X με k (k � 1, 2, 3, . . . ). Έστω ακόμη ότι pk

� 0 και ότι pk � 1. H αναμενόμενη τιμή του X που
συμβολίζεται ως E(X) , είναι kpk, δεδομένου ότι η
σειρά συγκλίνει. Σε καθεμία από τις ακόλουθες περι-
πτώσεις, δείξτε ότι pk � 1 και βρείτε την E(X) αν
υπάρχει τέτοια. (Yπόδειξη: Δείτε την Άσκηση 35.)

(α) pk � 2�k (β) pk �

(γ)

37. Aποτελεσματική δόση και ασφαλής δόση Mια φαρμακευτική
ουσία χορηγείται ενδοφλεβίως σε ασθενή. H συγκέ-
ντρωση της ουσίας στο αίμα μειώνεται με τον χρόνο
καθώς αυτή εξαλείφεται από το σώμα του ασθενούς.
Έτσι οι δόσεις πρέπει να επαναλαμβάνονται ανά τακτά
διαστήματα, ώστε ανά πάσα στιγμή η συγκέντρωση της
ουσίας στο αίμα να διατηρείται πάνω από κάποιο ελά-
χιστο όριο. Σύμφωνα με ένα μοντέλο περιγραφής του
αποτελέσματος των χορηγούμενων δόσεων, η συγκέ-
ντρωση της ουσίας στο αίμα μόλις πριν τη (n � 1)-στή
δόση ισούται με

όπου C0 � η μεταβολή της συγκέντρωσης ανά δόση (σε
milligram ανά milliliter), k � η σταθερά εξάλειψης του
φαρμάκου από το σώμα (ανά ώρα), και t0 � ο χρόνος
που μεσολαβεί μεταξύ δύο δόσεων (σε ώρες). Δείτε το
σχήμα που ακολουθεί.

(α) Γράψτε το Rn σε κλειστή μορφή ως κλάσμα και
βρείτε το R � limnl� Rn.

(β) Yπολογίστε τα R1 και R10 για C0 � 1 mg mL, k �
0,1 h�1, και t0 � 10 h. Πόσο καλή εκτίμηση του R
αποτελεί το R10;

(γ) Aν k � 0,01 h�1 και t0 � 10 h, βρείτε το ελάχιστο n
έτσι ώστε Rn � (1 2)R .

(Πηγή: Prescribing Safe and Effective Dosage των B.
Horelick και S. Koont (Lexington, MA: COMAP,
Inc., 1979).)

38. Xρόνος μεταξύ χορηγήσεων (συνέχεια της Άσκησης 37) Έστω
ότι κάποιο φάρμακο είναι αναποτελεσματικό σε συ-
γκεντρώσεις χαμηλότερες της CL, ενώ καθίσταται επι-
βλαβές σε συγκεντρώσεις μεγαλύτερες της CH. Mας
ενδιαφέρει να βρούμε τιμές των C0 και t0 τέτοιες ώστε
η συγκέντρωση του φαρμάκου στο αίμα να παραμένει
ασφαλής (μικρότερη από CH) αλλά και αποτελεσματι-
κή (μεγαλύτερη από CL) . Δείτε το σχήμα που ακολου-
θεί. 

Zητούμε δηλαδή τιμές των C0 και t0 τέτοιες ώστε 

R � CL και C0 � R � CH.

Δηλαδή, C0 � CH � CL. Όταν αντικατασταθούν οι τιμές
αυτές στην εξίσωση για το R στο ερώτημα (α) της
Άσκησης 37, η εξίσωση παίρνει την απλοποιημένη
μορφή 

Προκειμένου να καταστεί ταχύτερα αποτελεσματικό το
φάρμακο, χορηγείται μια μεγάλη πρώτη δόση στον
ασθενή, ώστε η συγκέντρωση του φαρμάκου να φθάσει
τα CH mg ανά mL. Kάθε επόμενη δόση χορηγείται ανά
t0 ώρες και αυξάνει κάθε φορά τη συγκέντρωση κατά C0

� CH � CL mg ανά mL.

(α) Eπαληθεύστε την παραπάνω εξίσωση για το t0.

(β) Aν k � 0,05 h�1 και η μέγιστη ασφαλής συγκέντρω-
ση ισούται με το γινόμενο του e επί την ελάχιστη
αποτελεσματική συγκέντρωση, να βρεθεί το χρονι-
κό διάστημα μεταξύ δόσεων που μας εγγυάται ότι η
συγκέντρωση του φαρμάκου στο αίμα του ασθενούς
θα είναι πάντα ασφαλής και ταυτόχρονα αποτελε-
σματική.

(γ) Mάθετε γράφοντας Δεδομένου ότι CH � 2 mg mL, CL �
0,5 mg mL, και k � 0,02 h�1, προτείνετε ένα χρονο-
διάγραμμα χορηγήσεων του φαρμάκου.

(δ) Έστω ότι k � 0,2 h�1 και ότι η ελάχιστη αποτελε-
σματική συγκέντρωση είναι 0,03 mg mL. Στον
ασθενή χορηγείται μία δόση του φαρμάκου που δη-
μιουργεί συγκέντρωση 0,1 mg mL. Για πόσο διά-
στημα περίπου θα δράσει το φάρμακο;

 / 
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 / 
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39. Ένα άπειρο γινόμενο Tο άπειρο γινόμενο

θα συγκλίνει, αν συγκλίνει η σειρά

που προκύπτει παίρνοντας τον φυσικό λογάριθμο του
γινομένου. Δείξτε ότι το γινόμενο συγκλίνει αν an �
�1 για κάθε n και αν η σειρά �an � συγκλίνει. (Yπό-
δειξη: Δείξτε ότι

για �an � � 1 2.)

40. Eπεκτεταμένη λογαριθμική p-σειρά Aν p είναι σταθερά,
δείξτε ότι η σειρά

(α) συγκλίνει για p � 1

(β) αποκλίνει για p � 1. 

Eν γένει, αν f1(x) � x , fn�1(x) � ln ( fn(x)) και το n παίρ-
νει τις τιμές 1, 2, 3, . . . , βρίσκουμε ότι f2(x) � ln x , f3(x)
� ln (ln x) , κ.ο.κ. Aν fn(a) � 1, τότε το ολοκλήρωμα

συγκλίνει για p � 1 και αποκλίνει για p � 1.


�

a
 dx
f1(x) f2(x) … fn(x) ( fn�1(x)) p

1 � �
�

n�3
 1
n � ln  n � [ln  (ln  n)]p

 / 

� ln  (1 � an) � � 
� an �

1 � � an �
 � 2 � an �

��
n�1

�
�

n�1
 ln  (1 � an) ,

��
n�1

 (1 � an) � (1 � a 1)(1 � a 2)(1 � a 3) …
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